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Abstract

Summary: Genome-wide association studies (GWAS) have revealed thousands of genetic loci for common diseases.
One of the main challenges in the post-GWAS era is to understand the causality of the genetic variants. Expression
quantitative trait locus (eQTL) analysis is an effective way to address this question by examining the relationship be-
tween gene expression and genetic variation in a sufficiently powered cohort. However, it is frequently a challenge
to determine the sample size at which a variant with a specific allele frequency will be detected to associate with
gene expression with sufficient power. This is a particularly difficult task for single-cell RNAseq studies. Therefore, a
user-friendly tool to estimate statistical power for eQTL analyses in both bulk tissue and single-cell data is needed.
Here, we presented an R package called powerEQTL with flexible functions to estimate power, minimal sample size
or detectable minor allele frequency for both bulk tissue and single-cell eQTL analysis. A user-friendly, program-free
web application is also provided, allowing users to calculate and visualize the parameters interactively.

Availability and implementation: The powerEQTL R package source code and online tutorial are freely available at
CRAN: https://cran.r-project.org/web/packages/powerEQTL/. The R shiny application is publicly hosted at https://
bwhbioinfo.shinyapps.io/powerEQTL/.

Contact: xdong@rics.bwh.harvard.edu, weiliang.qiu@sanofi.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have revealed genetic risk
loci for thousands of traits or diseases (Buniello et al., 2019;
MacArthur et al., 2017). Nearly 90% of the GWAS loci are located
in non-coding regions (Edwards et al., 2013), suggesting that they
may play a role by influencing gene expression. One of the main
challenges in the post-GWAS era is understanding how these genetic
variants cause the phenotype, for example, by regulating the expres-
sion of disease-associated or tissue-specific genes. Expression quanti-
tative trait locus (eQTL) analysis has provided such a framework to
test the effect of genetic variation on gene expression (Nica and

Dermitzakis, 2013). For instance, the Genotype-Tissue Expression
(GTEx) project has performed eQTL analysis between genetic vari-
ation and genome-wide gene expression in 54 non-diseased tissue
sites across nearly 1000 individuals, providing a comprehensive pub-
lic resource to understand the effect of genetic variants in a wide
spectrum of tissue bank samples (GTEx Consortium, 2013, 2015).
Enhancing GTEx (eGTEx) further extended this effort to include
more intermediate molecular phenotypes other than gene expression
(eGTEx Project, 2017). Recent increases in single-cell genomics will
allow mapping eQTLs across different cell types, in dynamic proc-
esses and in 3D spaces, many of which are obscured when using
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bulk methods (van der Wijst et al., 2018, 2020). One of the critical
steps common to all eQTL experiments is to determine the minimum
sample size with enough power to detect variants with a low fre-
quency (e.g. minor allele frequency less than 5%) but a substantial
effect on gene expression. However, there is no such tool available
for sample size and power calculation for eQTL analysis.

Here, we developed equation-based statistical models to calcu-
late sample size and power for an eQTL analysis in both bulk tissue
and single-cell settings. The tool, called powerEQTL, was imple-
mented in both an R package and an interactive online application.

2 Materials and methods

2.1 Bulk tissue eQTL
Bulk tissue eQTL is to identify the downstream effects of disease-asso-
ciated genetic variants on the gene expression measured at the bulk
tissue level. Because of the affordable price (compared to a single-cell
experiment) and the convenience to get enough volume of RNAs from
bulk tissue, bulk RNA-sequencing is still the most widely used tech-
nique to profile the transcriptome of a tissue nowadays. Gene expres-
sion values were quantified on tissue homogenates, usually one
sample per subject, for a number of subjects. Normalized gene expres-
sions were then compared among groups of subjects with different
genotypes. Since the effect sizes of eQTL are usually small and the
large number of gene-SNP pairs leads to a multiple-testing issue
(Huang et al., 2018), a proper power analysis including sample size
and power calculation is needed before performing experiments.

We implemented the power analysis of bulk tissue eQTL based
on two different models, one-way unbalanced ANOVA and simple
linear regression (see Online Supplementary Document). They both
test for the potential association between genotype and gene expres-
sion. The difference lies in that ANOVA test treats the genotype as a
categorical data (e.g. AA, AB and BB) and tests the potential non-lin-
ear association, while simple linear regression treats genotype as
continuous variable using additive coding (e.g. 0 for AA, 1 for AB
and 2 for BB, where B is the minor allele) and tests the linear associ-
ation. GTEx project used the one-way unbalanced ANOVA model
in their analysis (GTEx Consortium, 2013). We implemented the
two models in functions of powerEQTL.ANOVA and
powerEQTL.SLR in our R package, respectively. Note that if we
know the association is linear, powerEQTL.SLR would be more
powerful than powerEQTL.ANOVA. This is because categorizing a
continuous-type variable to a set of nominal-type variables would
lose information.

Since type I error rate (a), type II error rate (b or 1-power), effect
size and sample size are interrelated in power analysis, we could cal-
culate any one of them if we know the remaining three. We imple-
mented functions to allow calculating any one of these four
parameters (power, sample size, slope and minimum allowable
MAF) by setting the corresponding parameter as NULL and provid-
ing values for the other three parameters in powerEQTL.SLR.

2.2 Single-cell eQTL
Unlike bulk tissue RNAseq, single-cell RNAseq usually profiles
thousands of cells per sample, which provides a better representation
for the gene expression distribution of a tissue than a single value
from bulk RNAseq. However, the gene expressions among cells
within a sample are not independent, e.g. cells from one tissue sam-
ple are assumed more correlated than cells between samples. The
structured data requires a different model for power analysis.

In this study, we implemented two ways to compute the power
of single-cell eQTL (sc-eQTL) analysis. First, we modeled the associ-
ation of genotype to pre-processed single-cell RNA expression by
using a linear mixed effects model: yij ¼ b0i þ b1 * xi þ eij, where yij

is the gene expression level for the jth cell of the ith subject, xi is the
genotype for the ith subject using additive coding (e.g. 0, 1 and 2).
The random intercept b0i and error term eij are normally distributed
(see Online Supplementary Document for details). The power to test
if the slope b1 is different from zero is implemented in the function
powerEQTL.scRNAseq with parameters of subject size (n), number

of cells per subject (m), slope (b1), standard deviation of the gene ex-
pression (ry), MAF, intra-subject correlation (i.e. correlation be-
tween yij and yik for the jth and kth cells of the ith subject, q), and
number of SNP-gene pairs (nTest). Similarly, the function can be
used to calculate one of the four parameters (power, sample size,
minimum detectable slope and minimum allowable MAF) by setting
the corresponding parameter as NULL and providing values for the
other three parameters.

Second, we directly modeled the read counts of genes by zero-
inflated negative binomial (ZINB) distribution to account for the ex-
cess of zeros in single-cell RNAseq data. We provided the function
powerEQTL_scRNAseq.sim to implement a simulation-based
power calculation for sc-eQTL based on a ZINB mixed-effects
model. To alleviate the intense computation of simulation studies,
powerEQTL_scRNAseq.sim provides parallel computing capacity.

3 Result

The powerEQTL R package is available in CRAN and has been
downloaded over 10 000 times since its first deployment(see Fig. 1).
We also implemented the functions for power and sample size calcu-
lation in an online, interactive, program-free web application using
R Shiny. Power curves of different MAFs for multiple sample sizes
are visualized and downloadable for both bulk tissue and sc-eQTL.
The calculator pages allow users to freely play with the parameters
for tissue and sc-eQTL power analysis. The default values for
parameters are based on the parameters from the GTEx cohort [see
the ‘Power analysis’ section in (GTEx Consortium, 2013)]. We rec-
ommend that users extrapolate their own parameters from pertinent
pilot data or appropriate public datasets. This package also has limi-
tations. Covariates such as sex, age and disease traits may influence
eQTL relationships and are not accounted for in this model.
Moreover, it is conceivable that some eQTLs are not well captured
by simple linear or categorical models.

4 Discussion

While several R or Bioconductor packages are available for omics
sample size and power calculation, such as sizepower (equation-
based, 2006), RNASeqPower (equation-based, 2013), PROPER
(simulation-based, 2015), powsimR (simulation-based, 2017),
RnaSeqSampleSize (2018), ssizeRNA (equation-based, 2019),
PowerSampleSize, pwrEWAS and powerGWASinteraction, we are
not aware of a package specifically for eQTL power analysis. To
apply powerEQTL to RNAseq data, appropriate data transform-
ation is needed to convert counts to continuous data, such as voom
(Law et al., 2014), countTransformers (Zhang et al., 2019) or data
aggregation (e.g. taking the sum, median or mean expression levels
across cells/nuclei from each sample) with appropriate transforma-
tions (Cuomo et al., 2020, 2021; Jerber et al., 2021; van der Wijst
et al., 2018). In addition to scRNAseq, other structured data, such
as scATACseq, single-cell methylation, grouped cell lines etc. can
also be applied to this eQTL model. Adding a random effect to ac-
count for variable number of cells has been shown to improve eQTL
discovery power (Jerber et al., 2021). However, it would be a chal-
lenge to calculate power at design stage to incorporate numbers of
cells since the numbers of cells would not be known until the user
finishes data collection. A future extension to the powerEQTL pack-
age/shiny app is to incorporate the information about kinship matrix
and variations of number of cells/reads among subjects for power
calculation of sc-eQTL.
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Fig. 1. (A) eQTL schema. (B) The main models and functions in the powerEQTL package. (C) Downloads summary of powerEQTL since its original repository on CRAN

(data generated by cranlog R package). (D) Screenshot of powerEQTL R shiny application
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