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Abstract

The firm size distribution is highly skewed to the right and often follows a power law. In prac-

tice, it is common that firm size and firm age data are aggregated and released as grouped

data to avoid disclosure of confidential information. We investigate multiple parametric

methods for firm size and firm age modeling based on grouped data, and propose to esti-

mate the joint distribution of firm size and firm age using the Plackett copula. The goodness-

of-fit of the estimated marginal distributions are benchmarked with respect to the fit to the

whole data and to the upper tails, respectively. The utilization of the proposed methods are

demonstrated via an application to the 1977-2014 US firm data. Results show that the gen-

eralized lambda distribution has overall better performance in modeling both firm size and

firm age data. The exponentiated Weibull distribution also works well in modeling the firm

size data. As a by-product, the estimated parameter of the Plackett copula provides a mea-

sure of the association between firm size and firm age.

Introduction

Firms of different sizes and ages play different roles on employment, innovative activities, eco-

nomic growth and other aspects of social and economic life. It was reported that firm size and

age have a negative effect on firm growth for manufacturing firms [1–5], mining, wholesale

and retail firms [6], and firms in the fields of construction, trade and service industries [7–10].

However, Audretsch et al. discovered different relationships in wholesale and hospitality

industries in The Netherlands [11]. It was also believed that smaller and younger firms are

fundamental to job creation and growth as they bring new products to market and promote

growth through competition. Meanwhile Pagano and Shivardi revealed that large size is associ-

ated with faster productivity growth by investigating the relationship between size distribution

of firms and sectoral productivity growth in the 1990s based on a Eurostat (1998) database [12,

13]. By examining the evolution of firm size and employment share distribution in Japanese

and UK manufacturing between 1972 and 1991, Doi and Cowling found significant and

important differences between the two countries. In the UK, the small firms provided increase

share of both the total stock of firms and employment, while in Japan the small firms didn’t
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increase the employment share over the period [14]. Yasuda investigated the impacts of firm

size, firm age and firm behavior, specifically R&D activities and subcontracting, on firm

growth and survivability by fitting a multiple regression model based on the data of nearly

14,000 Japanese manufacturing firms extracted from the “MITI Basic Survey of Business Struc-

ture and Activities (SBSA)” survey [15]. He found that firm size and firm age have negative

effects on firm growth, and they have positive effects on a firm’s survivability.

The estimation of firm size distribution can be traced back to the late 1900’s [16]. Literature

shows that the size distribution of firms conforms fairly well to the log-normal distribution,

with possibly some skewness to the right [17–19]. Though, Quandt tested for firm size distri-

bution and rejected the log normality for the Fortune 500 in both 1955 and 1960. He found

that the Pareto distribution fits better than the log-normal distribution [20]. Gao et al. investi-

gated the temporal evolution of the size distribution of China’s listed companies by modeling

the upper tail behaviors using a Pareto distribution [21]. Cirillo and Hüsler analyzed the upper

tail of the size distribution of Italian companies with limited liability belongings to the CEBI

database and found that the largest firms follow a power law distribution. The power law

hypothesis was also positively tested using graphical and analytical methods [22]. Segarra and

Teruel analyzed the effect of sample size on the firm size distribution of Spanish manufactur-

ing firms for the years 2001 and 2006 and showed the existence of a non-constant power-law

distribution. Further they discovered that the firm size distribution of employment is more

sensitive to firm age than that of sales [23]. Clementi and Gianmoena modeled the dependence

structure between income and consumption parametrically using the “symmetrized Joe-Clay-

ton” copula [24].

Different variables have been used to measure the firm size, including number of employ-

ees, revenue, net worth, sales, among many others [25–33]. In practice, published firm size

(and age) data are often heavily aggregated, which poses big challenges to the density/distribu-

tion estimation of firm size or firm age, or their joint distributions, due to information loss.

Furthermore, the grouped firm size (and age) data are often top-coded which makes non-

parametric distribution estimation challenging and parametric approaches with moment

matching method infeasible [34]. In this study, we use the number of employees to measure

the firm size, and assume that both the firm size and firm age data have been aggregated into a

small number of classes. The marginal distributions of firm size and firm age are estimated by

fitting the grouped data to various well-known families of distributions. Specifically, four dis-

tributions including the log-normal distribution, the Pareto (type I) distribution, the general-

ized Pareto distribution, and the generalized lambda distribution are used to model the firm

size data. The firm age data are modeled using the exponential distribution, the Weibull distri-

bution, the exponentiated Weibull distribution, and the generalized lambda distribution,

respectively. The Bayesian information criteria is used to choose the best fits of the marginal

distributions, which will be further used to estimate the joint distribution of firm size and firm

age using the Plackett copula [35].

Materials and datasets

Legacy BDS firm size and age data

In the US, data on employers are produced annually by the U.S. Census Bureau in the Statis-

tics of U.S. Businesses (SUSB) program. The SUSB’s employer data contain the number of

firms, number of establishments, employment, and annual payroll for employment size of

firm categories by location and industry. For illustration purposes, firm size and firm age

datasets from 1977-2014 are selected from the annual measures of business dynamics for

economy provided by the U.S. Census Bureau’s Business Dynamics Statistics (BDS) program
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[36]. The BDS data is a longitudinal database of business establishments and firms with cov-

erage starting in 1976. Table 1 shows the firm size (in columns) by firm age data (in rows) for

the 2014 US private-sector firms. Table 1 uses the actual firm size, which is defined as the

average employment of the year of operation and the previous year. Firm age is computed

for all firms in the Longitudinal Business Database (LBD) from the age of the establishments

belonging to that particular firm, and the establishment age is computed by taking the differ-

ence between the current year of operation and the year the establishment first reports posi-

tive employment in the LBD. Both the firm size and firm age data have been aggregated into

12 classes and are top-coded.

The firm age data and firm size data from 1977 to 2014 were released on September 6,

2016 as a part of the “Legacy BDS Firm Characteristics Data Tables 1977-2014”. More firm

size and age data have been released for 2015 and 2016 in the BDS firm and establishment

data tables.

Methods

Marginal distribution estimation by fitting parametric models to grouped

data

Let X be a random sample of size n from a continuous distribution with density function f and

distribution function F, where the functional forms of f and F are assumed to be known with a

vector of unknown parameters, θ. Assuming that X has been grouped into k classes with class

boundaries 0� b0 < b1 < b2. . .<bk. To fit F to the grouped data, we compute the maximum

likelihood estimates (MLEs) of the unknown parameters, ŷ, by maximizing the following log-

likelihood function,

‘ðyÞ ¼
Xk

i¼1

mi log½FðbiÞ � Fðbi� 1Þ�; ð1Þ

where mi� 0 is the frequency of the i-th class satisfying ∑mi = n. By adopting the maximum

likelihood method, we can simply take F(bk) = 1 when bk!1, and thus the difficulty caused

by the infinite upper limit of the last class can be easily resolved. More details on the parameter

estimation will be provided for the specific distributions later.

Table 1. Frequency distribution of 2014 US private-sector firms by size and age.

1-4 5-9 10-19 20-49 50-99 100-249 250-499 500-999 1,000-2,499 2,500-4,999 5,000-9,999 10,000+

0 307192 51571 25777 13519 3715 1584 356 116 59 10 2 1

1 229474 43723 22922 12311 2844 980 185 69 46 10 6 23

2 184923 47678 24945 13551 3115 1056 220 75 44 15 8 27

3 153375 45156 24398 13507 3348 1299 268 123 59 10 7 20

4 126917 39706 22107 12588 3180 1413 328 129 59 22 6 19

5 119916 38401 22076 12634 3265 1206 273 109 67 21 6 19

6-10 558721 188947 108484 61942 16490 7112 1691 703 303 83 42 104

11-15 361374 136588 82244 49530 14376 6951 1712 762 406 140 73 71

16-20 260952 105546 64354 39669 11557 5507 1498 710 398 119 48 83

21-25 179719 79116 49055 31115 9124 4727 1320 588 343 125 63 82

26+ 271235 135860 87894 62803 22264 13968 4733 2327 1426 555 291 276

Pre-1977 113953 78743 63856 57303 25326 19587 7042 3896 2664 1081 654 821

https://doi.org/10.1371/journal.pone.0235282.t001
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Goodness-of-fit assessment

To assess the goodness-of-fit of a fitted distribution, F̂ ¼ Fðx; ŷÞ, to the grouped data, the fol-

lowing two methods are used:

1. Dn: the Kolmogrov-Smirnov (KS) statistic.

Let F̂n be the empirical distribution function (EDF), which approximates F(x) using the

proportion of observations in sample X that are smaller than or equal to x. For grouped

data, we approximate F(x) at the boundary points as

F̂nðbiÞ ¼
1

nþ 1

Xn

i¼1

IXi�bi ¼
1

nþ 1

Xi

j¼1

mj; ð2Þ

where IXi�bi is an indicator function assuming value 1 if Xi� bi and 0 otherwise. When n

is large, which is often the case for firm size and firm age data, F̂n provides a very good

approximation to F.

To measure the goodness-of-fit of F̂ to the underlying distribution function, we adopt the

Kolmogrov-Smirnov statistic and compute the maximum distance between F̂n and F̂ over

the class boundary points as

D̂n ¼ max
i
jF̂nðbiÞ � Fðbi; ŷÞj: ð3Þ

2. ~Dn: a measure of goodness-of-fit to the upper tail of F.

The Zipf plot is a powerful graphical tool to visualize the upper tail behaviors of right-

skewed distributions. It has been used to study the upper tail of the size distribution of

firms [37, 38]. Let X(i) be the i-th order statistic. When the raw data are available, the rank

in descending order of X(i) can be computed as

Ri ¼ n½1 � FðXðiÞÞ� � n½1 � FnðXðiÞÞ�: ð4Þ

The plot of log(Ri) against log(X(i)) is the so-called Zipf plot of X. For grouped data, we

compute the rank of a boundary point bi as ri = n[1 − Fn(bi)], and the Zipf plot of the

grouped data can be obtained by plotting the log(ri) against the log(bi), for i = 1, 2. . ., k.

Under F̂ , the rank of bi can be estimated as r̂ i ¼ n½1 � Fðbi; ŷÞ� and we can obtain the Zipf

plot of the fitted distribution by plotting logðr̂ iÞ against log(bi) [39]. To measure the good-

ness-of-fit of the fitted distribution F̂ to the data, we compute the maximum distance in y-

axis between the Zipf plots of the data and F̂ as

~Dn ¼ max
i
jlogðriÞ � logðr̂ iÞj: ð5Þ

~Dn is actually a KS statistic to measure the distance between two survival functions,

Sn(t) = 1 − Fn(t) and ŜðtÞ ¼ 1 � F̂ðt; ŷÞ but at log-scales. D̂n measures the goodness-of-fit of

F̂ to the whole data, while ~Dn measures the goodness-of-fit of the fitted distribution to the

upper tail of the data. If the data is very skewed to the right, D̂n can be dominated by the first

few classes where the data is very dense. A fitted distribution with small D̂n does not neces-

sary have small ~Dn.

Fitting GLD to grouped data

The Tukey-Lambda distribution is a two-parameter distribution which specifies a distribution

through a quantile function. It has various multi-parameter extensions [40–44]. The FMKL-GLD
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(GLD hereafter) is one parameterization of the generalized lambda distribution family [45]. It

specifies a distribution through the following function:

QðuÞ ¼ l1 þ
1

l2

ul3 � 1

l3

�
ð1 � uÞl4 � 1

l4

" #

; 0 � u � 1; ð6Þ

where Q(.) = F−1(x) is a quantile function. The GLD has four parameters: λ1 is the location

parameter, λ2 is the scale parameters, λ3 and λ4 are two shape parameters. The GLD is very flexi-

ble and rich in shapes and tails. It can approximate many well-known distributions including

the lognormal distribution, extreme value distributions, Pareto distribution among many others.

The GLD can be used for statistical inferences of quantiles with very high or low levels [34, 46].

To fit GLD to grouped data, the moment matching and L-moment matching methods

won’t work well because of the missing of exact location information of the observations in the

raw data due to binning. When the data are top-coded, it becomes challenging to well approxi-

mate the moments. Though, we can fit the GLD using the percentile matching method. When

raw data are available, the following five percentiles, pu with u = 10, 25, 50, 75, 90, are used to

estimate the unknown parameters by constructing a four-dimensional equation system. For

grouped data, we can hardly obtain the five percentiles with the specific levels. For example,

when the relative frequency of the first class is larger than 50%, we cannot precisely estimate

p10, p25 (the lower quartile) and p50 (the median) based on the grouped data. However, when

we have six or more classes, we can use any five of the inner boundaries and their correspond-

ing percentile ranks to build the equation system for parameter estimation.

The burden of computing the MLE of a GLD based on raw data is very heavy, as there is no

closed-form solution for the distribution function u = F(x) for given x = Q(u) in (6). However,

for grouped data, we have only a few boundary points where the values of the distribution

function and the density function need to be evaluated, which greatly reduces the computa-

tional burden so numerically searching for the MLE becomes feasible. We use the percentile

matching method to obtain initial estimates of the GLD parameters, then searching for the

MLEs numerically by maximizing the log-likelihood function in (1). To avoid over-fitting and

make the algorithm more efficient, we adopt a two-stage algorithm by first searching in the

two-dimensional parameter space for (λ3, λ4), then search for the best estimates for (λ1, λ2)

based on ðl̂3; l̂4Þ. We also pose constraints λ3 > 0 and λ1 � λ2 � λ3 > 1 to ensure f(x) = 0 for

x� 0. More details can be found in [47, 48].

Estimating the joint distribution of firm size and firm age

Let X and Y be two continuous random variables of the firm age and firm size, respectively.

Denote the density and distribution functions of X and Y by fX, FX, fY and FY, respectively.

Also let fXY and FXY be the density and distribution functions of the bivariate distribution of

(X, Y). According to Sklar’s theorem [49], FXY can be estimated as

FXYðx; yÞ ¼ CðFXðxÞ; FYðyÞÞ; ð7Þ

where C is a copula. We adopt the Plackett copula and estimate the density and distribution

functions of the bivariate distribution of X and Y as

fX;Yðx; yÞ ¼
CfXðxÞfYðyÞ½1þ ðC � 1ÞðFXðxÞ þ FYðyÞ � 2FXðxÞFYðyÞÞ�

ðS2ðx; yÞ � 4CðC � 1ÞFXðxÞFYðyÞÞ
3=2

; ð8Þ
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FX;Yðx; yÞ ¼
Sðx;yÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðx;yÞ� 4CðC� 1ÞFXðxÞFY ðyÞ
p

2ðC� 1Þ
C 6¼ 1

FXðxÞFYðyÞ C ¼ 1

;

8
><

>:
ð9Þ

where S(x, y) = 1 + (FX(x) + FY(y))(C − 1) and C> 0 is an unknown parameter. If X and Y are

independent, C = 1. When X and Y are negatively correlated, C< 1, and when X and Y are

positively correlated, C> 1. C can be estimated based on the joint frequency distribution

table in Table 1 using the Plackett’s method [35, 50]. The optimal estimate of C is found by

maximizing the following likelihood function:

~‘ðCÞ ¼
XK

i¼1

XK0

j¼1

mij log PððXi;YjÞ 2 CijÞ; ð10Þ

where Cij denote the cell in the i-th row (age) and j-th column (size) in Table 1 and mij is the

corresponding frequency. Pij = P((Xi, Yj) 2 Cij) is the probability that a firm with size X = x
and age Y = y falls within cell Cij. It can be computed as follows:

Pij ¼ Pðbi� 1 < X � bi and b0j� 1
< Y � b0jÞ

¼ FX;Yðbi; b0jÞ � FX;Yðbi� 1; b0jÞ � FX;Yðbi; b0j� 1
Þ þ FX;Yðbi� 1; b0j� 1

Þ;

where bi−1 and bi are the lower and upper boundaries of the i-th class for firm age, and b0j� 1
and

b0j are the lower and upper boundaries of the j-th class for firm size. We fix the parameters for

FX and FY and numerically search forC over a fine grid over (a, b). To find the values of a and

b, we divide the joint distribution of X and Y into four quadrants using lines x = bi and y ¼ b0j,
where bi and b0j are any combination of the inner boundary points of the classes for firm age

and firm size. Let Nk, k = 1, 2, 3, 4, be the total number of firms in the k-th quadrant. The

Plackett’s estimator can be computed as

Ĉ ij ¼ ðN1 � N4Þ=ðN2 � N3Þ; for N1;N2;N3;N4 > 0:

Rough estimates of a and b can be found as a ¼ min ðĈÞ and b ¼ maxðĈÞ.

Results

Fitting firm age distributions

For the firm age data in Table 1, k = 12 and we take b0 = 0 and bk =1. That says, a firm in

class “0” is formed in the year of operation and can have an age greater than 0 but less than

one year. Table 2 shows the class limits for firm age. For each class, the lower and upper

boundaries are the same as the lower and upper limits, respectively. It is worth pointing out

that the boundary between class “26+” and “Pre-1977” depends on the year of operation. For

instance, there are only two classes with positive counts, “0” and “Pre-1977”, for the year 1977

firm age data. For year 1978, three classes have positive counts: the firms established in 1978

with 0< X< 1, the firms established in 1977 with 1� X< 2, and those established before

1977 with 2� X<1, and so on.

Table 2. Firm age class limits.

Class 0 1 2 3 4 5 6-10 11-15 16-20 21-25 26+ Pre-1977

Limits (0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,11) [11,16) [16,21) [21,26) [26,38) [38,1)

https://doi.org/10.1371/journal.pone.0235282.t002
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Plot (a) of Fig 1 shows the histogram of the 2014 US firm age data.

The firm age data is right-skewed. The dashed curve in plot (a) shows the density function

of the fitted exponential distribution (EXP). Although the densities at the first class may be

under-estimated, the EXP fits the overall firm age data pretty well. Plot (b) also demonstrates

that the EXP fits the upper tail of the 2014 firm age data very well. Plot (c) shows the Zipf plots

of the 1988 firm age data and the Zipf plot of the fitted EXP. We see that the EXP well fits the

data for most of the classes but not the two or three classes at the upper tail. The Zipf plots of

the firm age data for years from 1979 to 2014 are displayed in plot (d). It shows a clear pattern

of parallel curves, which indicates that the firm age distributions for different years have simi-

lar upper tail behaviors and the EXP is a reasonably choice to be used to estimate the marginal

distribution of firm age.

To accommodate more shapes and tail behaviors, we fit the firm age data to three other

families of distributions that are more flexible than the EXP, namely, the two-parameter

Fig 1. US private-sector firm age data. (a) Histogram of 2014 firm age data. The last class is top-coded and is not shown. The dashed curve shows the fitted exponential

density function. (b) Zipf plot of 2014 firm age data (empty dots) and Zipf plot of the fitted exponential distribution (dashed curve). (c) Zipf plot of 1988 firm age data

(empty dots) and Zipf plot of the fitted exponential distribution (dashed curve). (d) Zipf plots of firm age data for years from 1977 to 2014.

https://doi.org/10.1371/journal.pone.0235282.g001
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Weibull distribution (WD), the three-parameter exponentiated Weibull distribution (EWD),

and the four-parameter generalized lambda distribution (GLD). The distribution functions of

the EXP, the WD and the EWD are given below,

FEXPðx; lÞ ¼ 1 � e� x=l

FWDðx; k; lÞ ¼ 1 � e� ðx=lÞk ;

FEWDðx; k;l; aÞ ¼ ½1 � e� ðx=lÞk �a;

where λ, κ, α> 0 are the unknown parameters to be estimated based on the grouped data. The

EXP is a special case of WD when κ = 1. It has only one parameter and can fit data of limited

shapes. WD is more general and can fit data of more shapes and tails. EWD is even more gen-

eral than WD, which is equivalent to WD when α = 1. When κ = 1, EWD is also the exponen-

tiated exponential distribution, which will not be discussed in this study.

If the grouped data do come from an EXP, we have

l ¼ �
1

bi
log 1 � F̂nðbiÞ
� �

; for i ¼ 1; 2; . . . ; k � 1; ð11Þ

and therefore, we can find a rough estimate of λ for EXP as

l̂EXP ¼ �
1

k � 1

Xk� 1

i¼1

1

bi
log 1 � F̂nðbiÞ
� �

: ð12Þ

The MLE of θ = λ can be found numerically by maximizing the log-likelihood in (1), and use

l̂EXP as the initial estimate.

For WD, we have

Zi ¼ log½� logð1 � FðbiÞÞ� ¼ k logðbiÞ � k logðlÞ; for i ¼ 1; 2; . . . ; k � 1: ð13Þ

We can fit a simple linear regression model of Zi on log(bi) and obtain initial estimates of κ
and λ using the slope and y-intercept of the fitted least squares line. These initial estimates are

used to find the MLE by maximizing the log-likelihood function in (1).

To avoid search for the MLEs of EWD in a three dimensional space, we search for α over

a fine grid around 1.0, say (−5, 5), then fix the α value and do a power transformation as

F̂nðbiÞ
1=a

, for i = 1, 2, . . ., k−1, then search for the MLEs of λ and κ using the same algorithm as

for WD.

As an example, Fig 2 shows the results of fitting the EXP, WD, EWD and GLD to the 2014

US private-sector firm age data. The left panel shows that all four estimates provide reasonable

fits to the data. The GLD estimate (dash-dotted curve) and the EWD estimate (dotted curve)

are similar and fit the first class relatively better than those by EXP and WD. The right panel

shows the Zipf plots of the four fitted distributions, where all four estimates fit the upper tail of

the data well.

Table 3 summarizes the four fitted distributions. For Table 3, we find that

• EWD has the best fit to the upper tail of the data and has the smallest ~Dn value. The ~Dn value

of GLD is larger than but close to that of EWD, and is much smaller than those by EXP and

WD.

• EWD also provides the best fit to the whole data and has the smallest D̂n value. GLD and

WD also have smaller D̂n values and provide overall good fits to the data.
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Fig 2. Fitted distribution to 2014 US private-sector firm age data. Left panel: estimated density functions. Right

panel: Zipf plots of the fitted distributions.

https://doi.org/10.1371/journal.pone.0235282.g002
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• EWD has the smallest AIC (Akaike information criterion), BIC (Bayesian information crite-

rion), and AICc (AIC with a correction for small sample sizes) values.

Table 3 shows that each method has the same AIC and BIC values. This is because the sam-

ple size is very large (n = 5, 058, 036), and the the extra penalty term in AICc goes to zero. That

says, AIC is equivalent to AICc for firm size and firm age data with very large sample sizes.

The BIC is similar to AIC, but with a different penalty for the number of parameters (p). AIC

has the penalty 2p, whereas the penalty with BIC is log(n) � p. We propose to use BIC for

model selection so preference will be given to distribution families with less parameters so as

to avoid over-fitting to the data, which is especially important when the number of classes of

the grouped data is small.

We further fit EXP, WD, EWD and GLD to the firm age data for years from 1983 to 2014

and compare their performances. The results are summarized in Table 4. Column 1 of Table 4

Table 3. Comparisons of fitted distributions to the 2014 firm age data.

~Dn D̂n
AIC BIC AICc

EXP 0.1483 0.0285 24061198 24061211 24061198

WD 0.1455 0.0135 24046660 24046687 24046660

EWD 0.0418 0.0079 24005972 24006012 24005972

GLD 0.0445 0.0094 24012331 24012385 24012331

https://doi.org/10.1371/journal.pone.0235282.t003

Table 4. Comparisons of goodness-of-fit to firm age data.

Years (classes) Dist ~Dn D̂n Best( ~Dn) Best(D̂n) Best(BIC)

1983-1987 (8) EXP 0.2988 ± 0.1003 0.1021 ± 0.0440 0 0 0

WD 0.0549 ± 0.0480 0.0354 ± 0.0315 0 0 0

EWD 0.0464 ± 0.0468 0.0308 ± 0.0305 2 2 2

GLD 0.0356 ± 0.0380 0.0219 ± 0.0222 3 3 3

1988-1992 (9) EXP 0.2988 ± 0.1657 0.0672 ± 0.0388 0 0 0

WD 0.0659 ± 0.0548 0.0326 ± 0.0264 0 0 0

EWD 0.0542 ± 0.0523 0.0257 ± 0.0252 1 0 1

GLD 0.0374 ± 0.0394 0.0165 ± 0.0168 4 5 4

1993-1997 (10) EXP 0.3156 ± 0.0979 0.0508 ± 0.0186 0 0 0

WD 0.0744 ± 0.0493 0.0260 ± 0.0174 0 0 0

EWD 0.0649 ± 0.0548 0.0212 ± 0.0164 1 2 2

GLD 0.0574 ± 0.0441 0.0188 ± 0.0115 4 3 3

1998-2002(11) EXP 0.3364 ± 0.1327 0.0421 ± 0.0129 0 0 0

WD 0.0822 ± 0.0461 0.0201 ± 0.0106 0 0 0

EWD 0.0710 ± 0.0569 0.0183 ± 0.0102 2 3 2

GLD 0.0681 ± 0.0480 0.0178 ± 0.0073 3 2 3

2003-2014(12) EXP 0.1928 ± 0.0656 0.0262 ± 0.0044 0 0 0

WD 0.1132 ± 0.0182 0.0165 ± 0.0033 0 0 0

EWD 0.0426 ± 0.0093 0.0105 ± 0.0006 9 6 10

GLD 0.0502 ± 0.0100 0.0121 ± 0.0033 3 6 2

all EXP 0.2676 ± 0.1162 0.0508 ± 0.0351 0 0 0

WD 0.0858 ± 0.0438 0.0240 ± 0.0183 0 0 0

EWD 0.0529 ± 0.0399 0.0189 ± 0.0176 15 13 17

GLD 0.0499 ± 0.0330 0.0163 ± 0.0119 17 19 15

https://doi.org/10.1371/journal.pone.0235282.t004
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shows the years and the number of classes of the grouped firm age data. The means and stan-

dard deviations of ~Dn and D̂n are shown in columns 3 and 4, respectively. The last three col-

umns show the number of years that each distribution outperforms the others in terms of ~Dn,

D̂n and BIC, respectively. Results show that

• EWD and GLD have overall better performances than EXP and WD. EWD has the best fits

for 17 out of the 38 years firm age data, while GLD wins 15 times.

• GLD has smaller means and standard deviations of ~Dn and D̂n than EWD, respectively. WD

also has reasonably good performances.

• The performances of all methods improve as the number of classes of the grouped data, k,

increases. Both the means and standard deviations of ~Dn and D̂n decrease as k increases.

GLD has better performances than EWD when k< 12, and the performances of EWD are

better than that of GLD when k = 12.

In summary, both GLD and EWD are good choices to model the firm age data. Although

WD also has good performance in modeling the firm age data, it doesn’t win in any year from

1983 to 2014. We also compare the performances of the above four methods in fitting the firm

age data from 1979 to 1982, where the data have 4 to 7 classes, respectively. EWD wins for all

four years. GLD is the second place winner for 1981 and 1982, and is not applicable for 1979

and 1980 due to the data having too few classes.

Fitting firm size distributions

For the firm size data in Table 1, we take b0 = 0 and assume that a firm in class “1-4” can have

less than one employee. Such an approach is consistent with the grouping method for firm size

in EU, where the firm size data are usually aggregated into five classes as “0-9”, “10-19”, “20-

49”, “50-249” and “250+”.

Plot (a) of Fig 3 shows the histogram of the 2014 US private-sector firm size data. Because

the majority of firms have small sizes and the firm size spans over a very wide range, the histo-

gram is severely skewed to the right. As shown in plot (b), the histogram is still right-skewed

even when the firm sizes are log-transformed. Plot (c) shows the Zipf plot of the 2014 US pri-

vate sector firm size data. It shows an obvious straight-line pattern. The Zipf plots of the US

firm size data for each of the 38 years from 1977 to 2014 are shown in plot (d). All Zipf plots

show parallel straight-line patterns. The slopes of the Zipf plots of the fitted Pareto distribu-

tions have a mean of -0.991 and a standard deviation of 0.013. The 95% confidence interval is

(−1.021, −1.004).

The type I Pareto distribution (PD) is a two-parameter power-law distribution. If X is a ran-

dom variable following a Pareto (Type I) distribution with shape parameter α> 0 and scale

parameter xm> 0, X has cumulative distribution function

FPDðx; xm; aÞ ¼

(
1 � ðxm=xÞ

a x � xm;

0 x < xm:
ð14Þ

The maximum likelihood estimates (MLEs) of θ = (xm, α) can be computed numerically by

maximizing the log-likelihood function in (1). It is easy to show that the Zipf plot of a Pareto

random variable is a straight-line with slope −α. Initial estimate of θ can be obtained by fitting

a simple linear regression model to the Zipf plot of the grouped data (see plot (c) in Fig 3).

Because the location parameter xm has to be a positive value and we take b0 = 0, we have to

search for xm between the lower and upper limits of the first class with b0 < xm� b1. In case
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x̂m ¼ b1, MLE of θ cannot be found based on the whole dataset, as the data in the first class

need to be excluded. If that is the case, we use the least square estimate based on the Zipf plot

to estimate α and find an MLE for xm by maximizing the likelihood in (1). The corresponding

estimate of xm still needs be checked to make sure 0< xm< b1. We need to keep in mind that

support of the PD is different from those by the other methods, and hence the performances of

PD is not directly comparable with the others.

To ensure that the totality of data will be taken into account, we fit the generalized Pareto

distributions (GPDs) to the grouped firm size data. The GPD is a family of continuous distri-

butions with three parameters: location μ, scale σ> 0 and shape ξ. The distribution function of

Y� GPD(μ, σ, ξ) is

FGPDðx; m; s; xÞ ¼

(
1 � ½1þ xðx � mÞ=s�� 1=x

; for x 6¼ 0;

1 � e� ðx� mÞ=s; for x ¼ 0:

ð15Þ

Fig 3. US private-sector firm size data. (a) Histogram of 2014 US firm size data. (b) Histogram of 2014 US firm size data after a logarithm transformation. To avoid

infinite boundaries, we set B0
0
¼ 1. (c) Zipf plot of the 2014 US firm size data. The straight-line is the fitted least squares line to the Zipf plot. (d) Zipf plots of firm size

data for years from 1977 to 2014.

https://doi.org/10.1371/journal.pone.0235282.g003
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For the firm size data, we fix μ = 0 so no observation will be left out of the model fitting. When

ξ = 0, GPD is reduced to an exponential distribution. With ξ> 0 and μ = σ/ξ, the GPD is equiv-

alent to PD with xm = σ/ξ and α = 1/ξ. MLEs of σ and ξ can be found numerically by maximiz-

ing the log-likelihood function in (1).

As a conventional estimate, we fit the grouped firm size data to the log-normal distribution

(LN) as well. If the data come from a LN with parameters, μ and σ, we have

logðbiÞ ¼ s � zi þ m; for i ¼ 1; 2; . . . ; k; ð16Þ

where zi is the quantile of a standard normal distribution with level F(bi) which can be approx-

imated by Fn(bi). Therefore, we can fit a simple linear regression model of log(bi) on zi and

find initial estimate of μ and σ using the y-intercept and slope of the first least squares line,

respectively. MLE of θ = (μ, σ) can be found numerically using (1).

Fig 4 shows the fitted distributions for the LN, PD, GPD and GLD for the 2014 US firm size

data. The left panel shows that the estimated density curves by LN (solid), GPD (dotted) and

GLD (dash-dotted) are close, while the estimate by PD is very different from the other three,

which is mainly because PD assumes X > x̂m and sets the density to zero for X � x̂m. The fit-

ted density curves by PD, GPD and GLD stay very close for firm sizes larger than 10. The Zipf

plots in the right panel show that PD (dashed curve) has the best fit to the upper tail of the

data. Other than PD, GLD provides a very good fit to the upper tail of the data, and shows a

straight-line pattern. Though, GLD slightly under-estimates the Zipf plot of data (and thus

over-estimates the distribution function) for the top three classes. GPD also provides reason-

able fit to the whole data and the upper tail while LN fails to model the upper tail of the firm

size data.

The Zipf plots in plot (d) of Fig 3 demonstrate that the 1977-2014 firm size data have upper

tail shapes of power law distributions. We fit the LN, PD, GPD and GLD to the 1977-2014 firm

size data and compare their performances. Results in Table 5 show that GLD outperforms the

other three estimators for all firm size data from 1977 to 2014 in terms of D̂n and BIC. GLD

has much smaller mean and standard deviation of D̂n than those by the other three methods.

PD does excellent job in modeling the upper tails of firm size data. It provides the best fits for

all 38 years in terms of ~Dn—it has much smaller mean and standard deviation of ~Dn than LN,

GLD and GPD. PD also has slightly smaller D̂n than GPD. However, due to the fact that PD

cannot accommodate all firms in the first class when b0 = 0, it should be used only if interests

are not on the lower tail of the firm size distribution. Among all four methods, LN performs

the worst.

Fitting joint distribution firm size and firm age on 2014 US private sector

firm data

To demonstrate the estimation of the joint distribution of firm age and firm size, we first fit

marginal distribution of the firm age using EWD and GLD, respectively. Then we estimate the

marginal distribution of firm size using GLD and GPD, respectively. Based on the two mar-

ginal distributions, we estimate the copula parameter and compute the joint density and distri-

bution function of the bivariate distribution of firm age and firm size.

Fig 5 shows the contour plots of the estimated bivariate distributions using the four differ-

ent combinations of the marginal distribution estimates for 2014 firm data as shown in

Table 1. All four contour plots show that the firm age and firm size are positively correlated.

The MLEs of C are 35.44, 34.83, 34.77 and 34.26 for plots (a)-(d), respectively. The four esti-

mated joint distributions look very similar to each other.
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Fig 4. 2014 US private-sector firm size data. Left panel: estimated density functions. Right panel: Zipf plots of the

fitted distributions.

https://doi.org/10.1371/journal.pone.0235282.g004
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In Fig 6, we show the contour plot of the fitted joint distribution by excluding the data in

the first class of firm size. We keep all age groups and estimate the marginal distribution of

firm age with EWD. Without the first class, GLD fits the firm size data better than PD and

GPD in terms of BIC and D̂n, but PD fits the upper tail the best (with the smallest ~Dn). In Fig 6,

the two estimates of the joint distribution are similar. The MLEs of C are 43.19 and 53.12 for

Table 5. Comparisons of goodness-of-fit to firm size data.

Dist ~Dn D̂n Best( ~Dn) Best(D̂n) Best(BIC)

LN 5.6550 ± 0.1193 0.0373 ± 0.0045 0 0 0

PD 0.2805 ± 0.0692 0.0151 ± 0.0042 38 0 0

GPD 2.5149 ± 0.2935 0.0165 ± 0.0020 0 0 0

GLD 0.7443 ± 0.1339 0.0013 ± 0.0003 0 38 38

https://doi.org/10.1371/journal.pone.0235282.t005

Fig 5. Estimated joint distribution of firm age and firm size for 2014 US private-sector firms. Plots (a) and (b), the marginal distribution of firm age is estimated by

using EWD. Plots (c) and (d), the marginal distribution of firm age is estimated by using GLD. Plots (a) and (c), the marginal distribution of firm size is estimated by

using GPD. Plots (c) and (d), the marginal distribution of firm size is estimated by using GLD.

https://doi.org/10.1371/journal.pone.0235282.g005
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GLD and PD, respectively. That says, without taking account of the firms with size less than 5,

the association between firm size and firm age becomes stronger. This makes sense because

the firm class contains 56.66% of the firms and the MLE of C is likely to under-estimate the

association by assuming all these firms having the same ranks in terms of age and size.

Conclusion

Firm size and/or firm age data are usually released as pre-binned top-coded data. Due to the

fact that the data are heavily aggregated, non-parametric methods such as kernel smoothing

won’t work well. When the data are top-coded, the distributions fitted using non-parametric

methods usually lack the capability of predicting beyond the scope of the observed data. GLD

is parametric and very flexible in shapes and tails, and hence depends less on the assumption

of the functional form of the underlying distributions. Results have shown that GLD has very

good performances in modeling the firm age and firm size data. The firm data are usually

very large so the quantile levels of the class boundaries are well approximated. This ultimately

improves the reliability of the GLD estimates. In addition, due to the firm data being grouped,

the computational burden in fitting the GLDs will be greatly reduced. For the US private sec-

tion firm size data, PD might be a good choice due to its simpler form than GLD. However,

Fig 6. Estimated joint distribution of firm age and firm size for 2014 US private-sector firms without the first class. The dashed curves are the

estimates using EWD for firm age and GLD for firm size. The solid red curves are the estimates using EWD for firm age and PD for firm size.

https://doi.org/10.1371/journal.pone.0235282.g006
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when the firm size is measured using some other variables instead of the number of employees,

the firm size may not follow a power law and PD might not be appropriate. For some extreme

cases, GPD might not be appropriate as well. On the contrary, GLD works for many data with

different shapes and tails. Other than GLD, EWD can also be selected to model firm size data.

The estimation of the copula parameter doesn’t depend on the methods used to estimate

the marginal distribution. If the research interests focus on the lower tails of the distributions,

some non-parametric methods, such as the kernel density estimators, can also be used. The

non-parametric methods are free of distributional assumptions and can model the data locally

very well. If the upper boundary of the last class is finite and well defined, the non-parametric

estimators are also good choices. However, if the upper tail behaviors are of interest, the

parametric methods are preferred, as we can predict beyond the scopes of the data with the fit-

ted model.

For data that are severely skewed to the right, such as firm size data, the goodness-of-fit

needs to be checked carefully. The best fit can be chosen differently depending on the objec-

tives of a study. If the upper tail behaviors are of interest, the goodness-of-fit shall be checked

visually using the Zipf plot and/or using ~Dn. The goodness-of-fit of the distribution over the

whole range of data can be checked using the KS statistic D̂n, or a Chi-square test as needed.

BIC is believed to be a better choice than AIC and AICc as it gives more penalty to distribu-

tions with more parameters and hence avoid over-fitting to the grouped data, which eventually

will help to improve the predictability of the fitted model.

As a limit, the GLD method may not work well when the number of classes is very small,

say 6 or less. However, we need to keep in mind that not too many options are available

when little information is available. In such cases, a family of distributions with fewer param-

eters are recommended to estimate the marginal distributions and the corresponding joint

distributions.

When longitudinal firm data are available, the estimated distributions can be incorporated

into regression models to take into consideration information of other covariates to study the

firm growth or firm survivability. Yang et al. used several machine learning models to evaluate

the influence of periodic components on short-term speed prediction based on aggregated

data [51]. In our future studies, efforts will be devoted to simultaneously modeling firm size

and age data of a sequence of multiple years to investigate the change of the associations

between firm size and firm age in terms of the Plackett copula parameter.

All the algorithms have been implemented in the CRAN R package bda v14.3.15 or higher.

Sample codes and technical details can be found from the help manual for the command fit.
FSD.
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17. Gibrat R. Les inégalités économiques. Librairie du Recueil Survey. Paris, 1931.

18. Hart PE, Prais SJ. The analysis of business concentration: A statistical approach. Journal of the Royal

Statistical Society, Series A. 1956; 119: 150–181.

19. Simon H, Bonini CP. The size distribution of business firms. American Economic Review. 1987; 46:

607–617.

20. Quandt R. On the size distribution of firms. American Economic Review. 1966; 56: 416–432.

21. Gao B, Chan WK, Li H. On the increasing inequality in size distribution of China’s listed companies.

China Economic Review. 1995; 36: 25–41.
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