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Members of the innate immune system, innate lymphoid cells (ILCs), encompass five
major populations (Natural Killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue
inducer cells) whose functions include defense against pathogens, surveillance of
tumorigenesis, and regulation of tissue homeostasis and remodeling. ILCs are present
in the uterine environment of humans and mice and are dynamically regulated during the
reproductive cycle and pregnancy. These cells have been repurposed to support
pregnancy promoting maternal immune tolerance and placental development. To
accomplish their tasks, immune cells employ several cellular and molecular
mechanisms. They have the capacity to remember a previously encountered antigen
and mount a more effective response to succeeding events. Memory responses are not
an exclusive feature of the adaptive immune system, but also occur in innate immune cells.
Innate immune memory has already been demonstrated in monocytes/macrophages,
neutrophils, dendritic cells, and ILCs. A population of decidual NK cells characterized by
elevated expression of NKG2C and LILRB1 as well as a distinctive transcriptional and
epigenetic profile was found to expand during subsequent pregnancies in humans. These
cells secrete high amounts of interferon-g and vascular endothelial growth factor likely
favoring placentation. Similarly, uterine ILC1s in mice upregulate CXCR6 and expand in
second pregnancies. These data provide evidence on the development of immunological
memory of pregnancy. In this article, the characteristics, functions, and localization of ILCs
are reviewed, emphasizing available data on the uterine environment. Following, the
concept of innate immune memory and its mechanisms, which include epigenetic
changes and metabolic rewiring, are presented. Finally, the emerging role of innate
immune memory on reproduction is discussed. Advances in the comprehension of ILC
functions and innate immune memory may contribute to uncovering the immunological
mechanisms underlying female fertility/infertility, placental development, and distinct
outcomes in second pregnancies related to higher birth weight and lower incidence
of complications.
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INTRODUCTION

A complex array of immunological interactions takes place in the
uterine environment that is crucial for reproductive success,
contributing to tissue homeostasis and renewing, placental
development, and maternal tolerance (1–3). Immune cells
engage in an intense cross-talk with decidual and trophoblast
cells at the maternal-fetal interface. Mediated by cell-cell
interactions, cytokines, extracellular vesicles, and microRNAs
(miRNAs), this communication modulates the recruitment,
differentiation, and education of uterine immune cells into
unique phenotypes that support pregnancy (4–7).

All innate immune cells, except basophils, are eventually
present in the uterus under physiological conditions (8–12).
Except for Natural Killer (NK) cells, most innate lymphoid
cells (ILCs) have been only superficially investigated in the
context of female reproduction and pregnancy. A better
characterization of the populations, functions, and mechanisms
employed by ILCs in the uterine environment is fundamental to
understanding reproductive processes and associated diseases.
Emerging evidence demonstrates that innate immune cells,
particularly ILCs, can develop memory to pregnancy. In the
following sections, we review the characteristics and distribution
of ILCs in the uterine compartment, describe innate immune
memory, and discuss the potential relevance of this process
to reproduction.
CHARACTERISTICS, FUNCTIONS, AND
DISTRIBUTION OF ILCS

Current studies are expanding our knowledge regarding ILC
phenotypes, marker expression, transcriptional programs, and
functional properties. Based on developmental transcription
factor requirements and cytokine output, ILCs can be classified
into five main groups: NK cells, ILC1s, ILC2s, ILC3s, and
lymphoid tissue inducer (LTi) cells (Figure 1) (18, 19).
Recently, regulatory ILCs (ILCregs) were described. However,
it is not clear whether they represent a novel or a conventional
subset that acquires immunoregulatory roles under certain
biological circumstances (19, 20).

NK and ILC precursors develop independently through the
divergence of common lymphoid progenitors. ILCs are considered
innate counterparts of adaptive T lymphocytes that lack
recombination activating gene (RAG)-dependent antigen
receptors. ILC1s, ILC2s, ILC3s, and ILCregs mirror the
function and cytokine profile of Th1, Th2, Th17, and regulatory
T cells, respectively. Similarly, NK cells are considered
counterparts of cytotoxic CD8+ T lymphocytes. ILC1s and Th1
cells play a key role in immune responses to intracellular
pathogens (mainly viruses) and tumors; ILC2s and Th2 cells
fight against large extracellular parasites and respond to
allergens; ILC3s and Th17 cells combat extracellular microbes
such as bacteria and fungi. ILCs also contribute to tissue
homeostasis and remodeling as well as metabolic regulation (16,
19, 21–23). Although ILCs can circulate (24), they are essentially
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tissue-resident cells found in mucosal layers continuously exposed
to microorganisms and potentially harmful agents. ILC functions
at the endometrial mucosa are remarkably challenging since they
also mediate unique processes related to fetal tolerance and
placental development.
NK CELLS

NK cells are the founding members of the ILC family. Generated
in the bone marrow and extramedullary sites, including the liver
and uterus (25, 26), NK cells can detect and eliminate
tumorigenic and virus-infected cells. Target cells are lysed
through the release of granules containing granzymes and
perforin. Antibody-dependent cell-mediated cytotoxicity, which
connects innate and adaptive immunity, also mediates NK cell
killing. The expression of eomesodermin (Eomes) and T-bet
drives the differentiation of NK cells generating two major
populations traditionally distinguished based on their
expression of surface markers and cytotoxic capacity.
CD3−CD56dimCD16+ NK cells present high cytotoxicity,
whereas CD3−CD56brightCD16− NK cells display low
cytotoxicity and strong immunomodulatory properties (27). To
regulate their functions, NK cells integrate signals from several
stochastically expressed activating and inhibitory surface
receptors. Among activating receptors present in human NK
cells are NKp30, NKp44, NKp46, NKG2D, DNAM-1 and Killer
Ig-like Receptors (KIRs), or their orthologs (Ly49 receptors) in
mice. Another set of KIRs can also trigger inhibitory responses
(12, 14).

NK cells have acquired specialized functions in different
organs. In the uterine environment, they do not only fight
against pathogens but also deplete senescent decidual cells that
accumulate along the menstrual cycle (28). During pregnancy,
NK cells act as biosensors of embryo viability and modulate
maternal tolerance, endometrial vascular remodeling, and
trophoblast invasion (29–34). Generically denominated uterine
NK cells can be classified into endometrial (eNK) and decidual
NK (dNK) cells present in the non-pregnant endometrium and
pregnant decidua, respectively. eNK and dNK cells have different
transcriptomic profiles and functional features (35, 36), likely
due to distinct conditions present in the uterine environment
and maternal body before and during pregnancy.

In humans, CD56+ eNK cells are scattered all over the
endometrium and dramatically augment from the proliferative
to the secretory phase of the menstrual cycle reaching up to
around 70% of endometrial leukocytes (37–39). Large amounts
of dNK cells remain in the decidua until the third trimester of
pregnancy when they start to decrease (40). In mice, dNK cells
concentrate during pregnancy in the mesometrial decidua where
the chorioallantoic placenta develops (41, 42). Using an NK cell
reporter model, Sojka et al. investigated the dynamics of dNK
cells in the mouse uterus during pregnancy. The authors propose
that the accumulation of these cells during early pregnancy
occurs due to the proliferation of tissue-resident NK cells.
Later on, peripheral blood NK cells seem to migrate to the
June 2022 | Volume 13 | Article 824263
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uterine compartment since they are non-proliferative, but
increase in numbers, to assist in placentation (43).

Three main subsets of NK cells were described in the human
decidua using single-cell sequencing, dNK1 cells (characterized
by the expression of CD39, CYP26A1, B4GALNT1, and CSF1);
dNK2 (ANXA1, ITGB2, XCL1); dNK3 cells (CD160, KLRB1,
CD103, XCL1, CCL5). HLA-C molecules on trophoblast cells can
be recognized by both activating KIR2DS1 and KIR2DS4 as well
as inhibitory KIR2DL1, KIR2DL2, and KIR2DL3 receptors
expressed by dNK1 cells. dNK3 cells in turn contain KLRB1
and TIGIT, which may bind to CLEC2D and PVR present in
trophoblast cells, indicating the capacity of these cells to
cooperate during pregnancy. Furthermore, molecules produced
by dNK1 (SPINK2, CD39, and CD73), dNK2, and dNK3 (ANX1)
have anti-inflammatory properties inhibiting immune activation
at the maternal-fetal interface (44). Further characterization of
dNK cell in the human decidua through the combination of 28
markers assessed by mass cytometry revealed more than 4,700
phenotypes in a single donor. The functional significance of this
diversity has not been fully appreciated (12, 45).

Small numbers of CD16+ NK cells are also present in the
human endometrium, and increased levels of these cells are
associated with infertility (39, 46, 47), potentially generating an
aversive environment to embryo development. Single-cell RNA-
sequencing (scRNA-seq) also revealed lower concentrations of
CD39−CD18− decidual NK (dNK) cells and CSF1+CD59+KIR+

dNK cells in women with unexplained recurrent pregnancy loss
(48, 49).
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ILC1S

ILC1s were initially identified in tonsils and gut mucosa (50).
Similar to Th1 cells, interferon g (IFNg) constitutes the main
cytokine produced by ILC1s. They do not express Th2- and Th17-
associated cytokines, segregating them from ILC2s and ILC3s,
respectively (16, 18, 51). Moreover, unlike ILC2s and ILC3s, ILC1s
do not express MHC class II molecules and are incapable of
directly presenting antigens (52). ILC1 development requires T-
box transcription factor (T-bet) (53). Since this feature is shared
with NK cells, a proposed classification system includes NK cells as
a subgroup of ILC1s. However, while both ILC1s and NK cells are
positive for T-bet, only NK cells express the transcription factor
Eomes (14), indicating they constitute distinct cell types.

Until now, little is known about ILC1 functions. ILC1s
present non- to moderate-cytotoxic capabilities and secrete a
broad spectrum of cytokines besides IFNg, including TNF, IL-2,
IL-4, TGF-b and GM-CSF. They also express various cytokine
receptors (IL-7R, IL-17RD, IL-21R, TGFBR), suggesting their
importance in immune regulation (51, 53, 54). In co-culture
experiments, TGF-b and MMP9 produced by ILC1s contribute
to epithelial and extracellular matrix remodeling of gut organoids
(55). Most findings regarding ILC1s derive from pathological
conditions. ILC1-derived IFNg stimulates mononuclear
phagocytes to mount a response to eradicate intracellular
infections and contributes to chronic inflammation of the
lungs and intestine (50, 51, 56). In addition, TRAIL-mediated
ILC1 antiviral response plays a role against cytomegalovirus
FIGURE 1 | Surface markers, secreted cytokines, presence in the uterine environment, and capacity to develop memory of human decidual Natural Killer (dNK) cells
(12–14) and generic human innate lymphoid cells (ILCs) 1 [conventional ILC1s (cILC1s) and intraepithelial (ipILC1s)], ILC2s, ILC3s, and lymphoid tissue inducer (LTi)
cells (11, 15–17). Composed with images from: Smart Servier Medical Art (smart.servier.com).
June 2022 | Volume 13 | Article 824263
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(CMV) (57). These data suggest that ILCs may participate in the
endometrial inflammation and defense against pathogens. In the
tumor microenvironment, TGF-b drives the conversion of
Eomes+CD49a −CD49b+ NK ce l l s f a vo r ing tumor
immunosurveillance to EomesintCD49a+CD49b− ILC1s that are
unable to control tumor growth, a mechanism by which tumors
evade the innate immune system (58). In a similar manner, the
conversion between subsets of ILCs could modulate their
properties at the maternal-fetal interface.

In humans, ILC1s were identified within the epithelium of the
oral and intestinal mucosa, liver, and tonsils (54, 59). There are
contrasting data about the presence of uterine Eomes- ILC1s in
the human uterus. While some studies report their presence (60,
61), others could not identify them (62). ILC1s, ILC3s, and LTi-
like cells are more abundant in the early pregnant human
decidua. At term, ILC1s represent a minor subset while ILC2s
are more prevalent (61). Based on single-cell transcriptional
profiling, three main subpopulations of NK cells and ILC1s
were described in the mouse uterus.

Eomes-CD49a+ ILC1s dominate before puberty ;
Eomes+CD49a+ tissue-resident NK cells resemble human dNK
cells and are most abundant during early pregnancy;
conventional Eomes+CD49a- cytotoxic NK cells predominate
after the establishment of the chorioallantoic placenta at mid-
pregnancy (15). Eomes+CD49a+ NK cells can further be
subdivided based on CD49b expression. While a population of
CD49b+ cells increases during mouse gestation, another
composed of CD49b- cells decreases (60). Their functional
significance remains to be determined.
ILC2S

ILC2s are characterized by the expression of cell surface markers
CD127 and CD161, chemo-attractant receptor homologous
molecules expressed on Th2 cells (CRTH2), ST-2, an IL-33
receptor subunit, and IL-17RB, an IL-25 receptor subunit (18,
63). ILC2s require IL-7 and specific transcription factors, such as
GATA-binding protein 3 (GATA3) and retinoic acid receptor-
related orphan receptor-a (RORa), for their differentiation and
function (14, 18). ILC2s respond to cytokines (IL-4, IL-25, IL-33,
TL1A, and SCF), inflammatory mediators, neuronal factors, and
hormones (64, 65). The production of Th2 cytokines (IL-4, IL-5,
IL-9, IL-13) and amphiregulin (AREG) constitutes ILC2 main
effector mediators with a diverse range of functions (66).

ILC2s are commonly located in the uterus, skin, lungs,
gastrointestinal tract, and at small concentrations in circulating
blood. Populations of CD127+ILC2s were described in both
mouse and human uteri. In mice, these cells are located in the
myometrium and increase during pregnancy (67). They express
the IL-33 receptor ST2 and estrogen receptors. Upon estrogen
treatment, ILC2s accumulate in the uterus of ovariectomized
mice (68). In humans, ILC2 reside in the non-pregnant
endometrium and decidua (67). At term, ILC2s seem to be the
most abundant ILC type at the maternal-fetal interface after dNK
cells. They are localized in both decidua basalis and parietalis
Frontiers in Immunology | www.frontiersin.org 4
(61) and present at higher numbers in the third trimester
compared to the first and, therefore, may be more important
toward the end of pregnancy. ILC2s secrete tissue repair factors
such as AREG and IL-13, which support the homeostasis of the
maternal-fetal interface (11). AREG has a tissue repair function
by controlling the proliferation and differentiation of epithelial
cells and epithelial barrier integrity (69). By releasing IL-5, ILC2s
can control eosinophil responses and may promote remodeling
of the uterine mucosa (14, 70).
ILC3S

ILC3s express the surface marker CD117 and the transcription
factor retinoic-acid-receptor-related orphan nuclear receptor g t
(RORgt). These cells mirror the features of Th17 lymphocytes
regarding marker expression and cytokine output. ILC3s and
ILC2s express major histocompatibility complex class II
(MHCII) and can process and present antigens MHCII+. Two
main ILC3 subpopulations are distinguished in humans by the
presence of the natural cytotoxic receptor (NCR) NKp44:
NKp44+ and NKp44– ILC3s. In mice, the ILC3 population is
sub-divided into NKp46– and NKp46+ cells. Each subtype
produces different sets of cytokines. NKp44– ILC3s secrete IL-
17 and TNF-alpha, whereas NKp44+ ILC3s produce IL- 8, IL-22,
and GM-CSF (16, 71, 72). NKp44+ ILC3s expressing the
chemokine receptor 6 (CCR6) and its ligand CCL20 also
produce IL-17A and IL-22 and promote the accumulation at
the inflammatory site of these cells and attraction of others, such
as memory CD4+ T cells, regulatory Th17 cells, B cells, and
dendritic cells (DCs) (73, 74).

ILC3s are abundant in mucosal compartments where their
main functions are the defense against pathogens and epithelial
tissue homeostasis. These cells are in constant interaction with
the gut microbiota and have a protective effect against
pathogenic bacteria via IL-22 secretion (75). Since the uterine
environment is exposed to microbiota, ILCs could play a role in
the regulation of endometrial homeostasis and response to
microorganisms. During pregnancy, ILC3s are engaged in the
recruitment of peripheral neutrophils into the uteurs, embryo
implantation, and induction of maternal immune tolerance (14,
76). ILC3s were detected in the uterus of both virgin and
pregnant mice (77). Likewise, in the human uterus, a
population of NKp44+ ILC3s is present in non-pregnant
endometrium and first-trimester decidua (62). However, a
major difference observed between mice and humans concerns
the localization of ILC2s and ILC3s in the uterus. In mouse
pregnancy, ILC2 and ILC3s are found in the myometrium and
ILC3s in the mesometrial lymphoid aggregate of pregnancy
(MLAp) embedded within the uterine wall (62). In contrast,
ILC2s and ILC3s are present in both human endometrium and
decidua (60). Since these cells are not present in the mouse
decidua, their effects on trophoblast cells should be limited
compared to other ILCs on this species.

Potentially pro-inflammatory functions of ILCs have been
proposed based on their increased proportion in chronic
June 2022 | Volume 13 | Article 824263
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inflammatory conditions during pathological pregnancies.
Elevated numbers of decidual ILC2s and ILC3s in the decidua
have been associated with spontaneous preterm labor (61).
Increased levels of IL-17 were detected in women with
unexplained infertility and pregnancies complicated by
preeclampsia and gestational diabetes. This process is not due
to Th17 cells and may originate from the accumulation of ILC3s
in the decidua (78, 79). IL-17 stimulates endometrial stromal
cells to secrete IL-8 (80), which promotes the proliferation and
survival of endometrial cells and acts on the chemoattraction and
activation of neutrophils (81, 82). However, when excessively
elevated in endometrial stromal cells, IL-8 impairs their ability to
decidualize, leading to a non-receptive endometrium (83).
LTI CELLS

LTi cells, ILC3, and Th17 share the expression of RORgt. In
addition, ILC3s and LTi cells express aryl hydrocarbon receptor
and secrete IL-17 and IL-22, which are characteristic of ILC3s.
However, different from ILC3s that depend on the transcription
factor promyelocytic leukemia zinc finger (Plzf) to differentiate,
LTi cells do not. LTi cells have a distinctive transcriptome and
express CCR6, CCR7, CXCR5, CXCR6, IL-7Ra, LTa1b2, and
RANKL at the cell surface (84, 85). During embryogenesis, LTi
cells are involved in the development of lymph nodes and Peyer’s
patches. They support the survival of memory CD4+ T cells via
OX40L and CD30L (86, 87). IL-12-stimulated NKp46+ LTi cells
encourage leukocyte extravasation in tumors through elevated
expression of vascular adhesion molecules (88). CCL21 secreted
by melanoma tumors promotes a tolerant environment by
recruiting LTi-like cells and other regulatory immune cells (89).

Populations of LTi-like cells were described in the human
decidua (CD127+CD117+) as well as in pregnant and non-
pregnant mouse uterus (60, 62). Decidual LTi-like cells produce
IL-17, tumor necrosis factor (TNF), and interact closely with
decidual cells, stimulating the expression of ICAM-1 and VCAM-
1(60). Considering the immunomodulatory properties of LTis
cells, one could expect their involvement in immunological
functions at the maternal-fetal interface.
ILCREGS

An ILC subset expressing IL-10 termed ILCreg was identified in
both human and murine gut. ILCregs express the transcriptional
regulator ID2 (Inhibitor Of DNA Binding 2, HLH Protein), ID3,
and SOX4. TGF-b signaling is essential for their survival and
expansion. ILCregs contribute to the resolution of intestinal
inflammation by suppressing the activation of ILC1s and
ILC3s via the secretion of IL-10 (19). Populations of ILCregs
were also described in kidney, tonsils, lymph nodes, and cancer
(90–92). Whether they are present in the uterus remains to
be demonstrated.
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INNATE IMMUNE MEMORY

The traditional concepts characterizing innate and adaptive
responses have been recently challenged. Innate immune cells
present features previously attributed do adaptive immune cells,
including clonal-like expansion, contraction, development of
memory, and recall responses (17, 93, 94). Compelling
evidence shows that innate immune cells can develop long-
term adaptations (lasting for months or even years) leading to
enhanced or lowered responses after subsequent stimulation, a
process defined as innate immune memory or trained
immunity (95).

Innate immune memory can be induced by pathogenic
agents, microbiota organisms, cytokines such as IL-1, IL-12,
IL-15, and IL-18, and hyperglycemia (96–98). Initial proof of
the existence of adaptive features and memory formation in
innate immune cells came from studies demonstrating that
specific subsets of CD94+NKG2C+ NK cells in humans and
Ly49H+ NK cells in mice expanded in response to murine
CMV (MCMV) infection. After subsequent viral challenge,
memory Ly49H+ NK cells triggered a recall response
protecting against infection (93, 99, 100). Furthermore, contact
hypersensitivity to haptens, regarded as a T cell-dependent
process, was generated and maintained for up to four weeks in
mice devoid of T cells. In contrast, mice lacking both T and NK
cells did not respond. Adoptive transfer of NK cells from
sensitized donors promoted a robust response in recipient
animals after stimulation with previously encountered haptens
(101). Since then, a rising number of reports has demonstrated
the existence of trained immunity in other ILCs as well as in
monocytes/macrophages, neutrophils, and DCs (17, 102–104).

Trained immunity occurs in liver ILC1s upon infection with
MCMV. Viral glycoprotein m12 induces the expression of IL-18
receptor and distinct transcriptional and epigenetic profiles on
these cells. Upon re-infection, memory ILC1s respond with
higher IFNg secretion (105). Transdermal hapten application
promotes the generation of long-lived IL-7Ra+ memory ILC1s in
the liver, which migrate to the effector site and generate robust
allergic skin reactions following subsequent hapten contact
(106). Trained ILC2s were identified in mouse models of
allergic lung responses. After being challenged by allergen or
cytokines, these cells display a greater response by increasing
proliferation and producing larger amounts of cytokines, such as
IL-5 and IL-13, compared to their naïve counterparts (107). The
capacity of ILC3s, ILCregs, and LTi cells to develop memory has
not yet been described.
MECHANISMS REGULATING INNATE
IMMUNE MEMORY

The development of trained immunity involves extensive
epigenetic, transcriptional, and metabolic rewiring (95, 108).
The epigenetic mechanisms include remodeling of chromatin
architecture, post-translational modification of histones, DNA
methylation, and expression of non-coding RNAs. Together they
June 2022 | Volume 13 | Article 824263
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regulate the expression of genes controlling immunological
responses. Analysis of chromatin accessibility and transcriptional
profiling of differentiating and memory Ly48H+ NK cells
challenged with MCMV showed that these two stages have
distinct chromatin accessibility states and gene signatures.
Memory cells present a poised regulatory program allowing
them to respond in a faster way. The comparison between
MCMV-stimulated NK and CD8+ T cells revealed that these
cells share similar epigenetic processes to acquire memory (109).

Expansion of NKG2Chi NK cells promoted by human CMV
(HCMV) leads to epigenetic remodeling of the conserved non-
coding sequence (CNS) 1, an enhancer in the IFNG locus,
increasing its accessibility to transcription factors and IFNg
expression (110). The development of NK cell memory also
involves histone modifications (lysine-4 mono-methylation
(H3K4me1)) in an IFNG enhancer to sustain IFNg production.
Pharmacological inhibition of histone methyltransferases erases
this epigenetic feature and NK cell memory (111). H3K4me1
modifications remain in NK and macrophages after the loss of
signaling, allowing a faster and greater transcriptional response in
case of re-stimulation (111, 112). In addition, phosphorylation of
ATF7 (Activating Transcription Factor 7) triggers a long-term
decrease in repressive histone methylation (H3K9me2) and an
elevated expression of ATF7 target genes lasting after the end of
stimulation (102).

miRNAs have been implicated in the development of innate
memory. Activation of NK cells by MCMV infection elevates the
expression of miR-155, which in turn downregulates NOXA and
suppressor of cytokine signaling 1 (SOCS1), molecules related to
immune cell survival and functions. NK cells deficient in this
miRNA present impaired effector and memory properties (113).
The development of macrophage memory (tolerance) through
continuous exposition to LPS upregulates miR-221 and miR-222
levels. These miRNAs target Brg1 (brahma-related gene 1) to
promote the downregulation of a subset of inflammatory genes
via chromatin remodeling factors SWI/SNF (switch/sucrose
non-fermentable) and STAT (signal transducer and activator
of transcription) (114) to promote tolerance.

Cellular metabolism partakes in trained immunity by mediating
epigenetics and other cellular processes. Metabolites can influence
epigenetic features, conversely, epigenetic mechanisms contribute to
maintaining cellular metabolism.When cells first recognize external
stimuli, signaling cascades lead to elevated metabolism. The
resulting metabolites can function as signaling molecules,
cofactors, and substrates to modulate chromatin-modifying
enzymes and direct transcriptional processes (115, 116). For
example, fumarate and acetyl CoA can modulate epigenetic
enzymes, such as histone demethylase lysine-specific demethylase
5 (KDM5) and histone acetyltransferases. Consequently, changes in
histone methylation and acetylation of genes important to
metabolism and innate immunity occur, resulting in memory
establishment (95). Innate immune cells exhibit an up-regulation
of metabolic pathways to become primed to secondary exposure.
Metabolic rewiring provides for the proper energy needs of the cell,
which is supplied by ATP through glycolysis and oxidative
phosphorylation.
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NK cells regulate their metabolic program to perform effector
functions and develop memory. NK cell expansion promoted by
MCMV causes mitochondrial depolarization and accumulation of
reactive oxygen species. Following, during the development of NK
memory, BNIP3 (BCL2/adenovirus E1B 19-kDa interacting protein
3) and BNIP3L (BNIP3-like) mediate the removal of dysfunctional
mitochondria and reactive oxygen species through mitophagy
promoting cell survival. Autophagy induction via inhibition of
mTOR or activation of AMPK in a process dependent on ATG3
(Autophagy Related 3) amplifies the formation of memory NK cells
(117). Virus-induced memory NK cells present elevated expression
of genes regulating the electron-transport chain and increased
oxidative mitochondrial respiration, mitochondrial membrane
potential, and reserve respiratory capacity. ARID5B (AT-rich
interaction domain 5B), a chromatin-modifying protein
stimulated via DNA hypomethylation in memory NK cells, acts
as a central regulator of these processes (117).
INNATE IMMUNE MEMORY
AND REPRODUCTION

Innate immune memory may occur already at hematopoietic
stem cell or progenitor level in the bone marrow (118–120). This
concept helps to explain the maintenance of long-lasting
memory in short-lived immune cells. The transmission of
immune memory to the next generation of cells allows stable
maintenance of this process. H3K4me1 marks established in the
HSC lineage were still present in terminally differentiated
myeloid cells after cycles of DNA replication and cell division
(121). A population of CD34+ hematopoietic stem cells residing
in the human endometrium is committed to the differentiation of
NK cells, as observed in vitro upon stimulation with a blend of
stem cell factor, FMS-like tyrosine kinase ligand, IL-7, IL-15, and
IL-21 or co-cultivation with decidual cells (26). The capacity of
endometrial CD34+ cells to develop memory has not been
investigated yet. If demonstrated, there may be relevant
implications to uterine biology and pregnancy.

Conditions experienced during intrauterine life have a major
impact on the development of chronic diseases later in life (122,
123). In connection, multiparity, birth order, and interpregnancy
interval are associated with pregnancy outcome as well as health in
childhood and adulthood (124–127). Distinct biological factors
have been proposed to explain these phenomena. In a
comprehensive compilation of reports, Thiele and collaborators
(128) calculated a 4.2% increment of birth weight in second
pregnancies independent of longer pregnancy duration (128).
The gender and order of sibling birth also influence birth weight.
A potential effect from male-specific immunological components
was speculated (129), suggesting the development of immune
memory to pregnancy.

Several reproductive diseases, such as preeclampsia, preterm
birth, and intrauterine growth restriction, have a higher incidence
in first than in second pregnancies (130–132). It was estimated that
first uncomplicated pregnancies reduce the risk of complications in
subsequent pregnancies by 35-65%. Contrariwise, complicated first
June 2022 | Volume 13 | Article 824263
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pregnancies raise the risk of similarly affected second pregnancies by
2.2–3.2-fold (128). Although diverse, the aforementioned
reproductive diseases may have impaired trophoblast invasion,
deficient spiral artery remodeling, and altered immunological
features. These processes are intertwined since immune cells can
modulate endometrial vascular remodeling and trophoblast
invasion. In this way, immunological processes affecting placental
development can impact fetal growth and the occurrence of
pregnancy complications (133, 134).

Several lines of investigation have been trailed to uncover
causes leading to distinct outcomes in succeeding pregnancies
encompassing morphological adaptations in the uterus,
differences in trophoblast behavior, and immunological
responses. For instance, lasting adaptations in the uterus of
multiparous women were reported, characterized by changes in
the internal elastic lamina and the proportion of muscular and
connective tissue in the wall of spiral arteries (135). In addition,
enhanced invasion of endovascular trophoblast cells was
observed in the decidua of multigravidae versus primigravidae,
indicating improved placentation in the former (136).

Exposure to paternal antigens represents a relevant factor for the
development of pregnancy complications. Long-term engagement
of a couple reduces preeclampsia incidence, however, such
protection is lost when partners are changed (137, 138). Short
periods of sexual contact, the use of physical contraception, and in
vitro fertilization with oocyte or sperm donors, which implies the
absence of previous paternal antigen exposition, have the opposite
effect (139–142). The positive influence of previous pregnancies on
reduced cases of preeclampsia in subsequent pregnancies last for up
to eight years (143). Persisting changes in uterine immune cells (i.e.
on their memory properties) may be related to improved pregnancy
outcomes in second pregnancies. We speculate that innate and
Frontiers in Immunology | www.frontiersin.org 7
adaptive immune responses may be involved since both are
stimulated by placental cells and seem to be beneficial to
pregnancy (144, 145).

Inceptive evidence concerning the establishment of innate
immune memory on pregnancy was obtained in human dNK
cells (Figure 2). The phenotype and functionality of dNK cells
from first-trimester decidua of primigravid and multigravid women
were compared. Through profiling of CXCR3, CXCR4, NKp44,
NKp30, NKp46, NKG2D, NKG2C receptors by flow cytometry, a
peculiar NKG2Chi NK cell population was revealed and
denominated pregnancy-trained decidual Natural Killer cells,
which also express LILRB1 (Leukocyte Immunoglobulin Like
Receptor B1) (13). CD94-NKG2C heterodimer binds to HLA-E
molecules, which are expressed in trophoblast, endometrial, and
endothelial cells (146, 147). LILRB1 recognizes HLA-G molecules
on trophoblast cells at the maternal-fetal interface. Although this
receptor has inhibitory functions on pbNK cells, it acts as an
activator on dNK cells (148). NKG2ChiLILRB1hi dNK cells
present a distinct transcriptomic profile from NKG2Clow dNK
cells. The engagement of NKG2C by HLA-E or LILRB1 by HLA-
G promotes the secretion of high amounts of IFNg and VEGFA in a
process associated with epigenetic mechanisms. Conditioned
medium from NKG2ChiLILRB1hi dNK cells stimulates
angiogenesis in both in vitro and in vivo models (13). IFNg is a
key cytokine required for reshaping decidual vasculature during
placentation. Implantation sites in mice lacking IFNg signaling fail
to initiate pregnancy-induced modification of decidual arteries and
display hypocellularity or decidual necrosis (29). The properties of
PTdNK cells may contribute to explain improved placentation,
higher birth weight, and reduced pregnancy complications in
second pregnancies. A recent report provides data on the
development of memory in ILC1s during mouse pregnancy
A

B

FIGURE 2 | Memory properties of innate lymphoid cells (ILCs) in human and mouse pregnancy. (A) A population of NKG2ChiLILRB1hi uterine Natural Killer (uNK)
cells present in the human endometrium expands during subsequent pregnancies and produces high amounts of interferon y (IFNy) and VEGFa, mediators that
contribute to placental development. These processes are mediated by NKG2C and LILRB1 on uNK cells that recognize respectively HLA-E and HLA-G molecules
expressed by trophoblast cells (13). (B) In mice, a population of innate lymphoid cells 1 (ILC1s) expand during subsequent pregnancies. uNK cells and ILC3’s may
be converted to ILC1s under the influence of TGFb (15). Composed with images from: Smart Servier Medical Art (smart.servier.com).
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(Figure 2). Eomes–CD49a+ ILC1s upregulate CXCR6, a receptor
related to innate memory, and expand 4-5 times in second
pregnancies (15). These cells have not been deeply characterized yet.

Although the acquisition of innate immune memory may
have positive effects on pregnancy, one may speculate that
impairments in the establishment of innate immune memory
or the development of memory with inhibitory actions against
pregnancy can be related to reproductive complications.
Pregnancy induces long-term epigenetic memory in maternal
T and NK cells characterized by differential methylation patterns
of genes related to their differentiation and functions. These
changes are impaired in preeclamptic women, indicating that
alterations in innate and adaptive memory are associated with
pregnancy diseases (149). The stimuli triggering innate immune
memory in the uterine environment, their mechanisms, and
repercussions to pregnancy warrant additional studies.
INNATE IMMUNE MEMORY,
MICROORGANISMS, AND REPRODUCTION

So far, the implications of microbiota, pathogens, and vaccination
on innate immune memory and its association with reproduction
have been poorly interrogated. Chronic exposition of NK cells to
both endogenous and exogenous ligands can modulate their
memory properties (150). Such modulation is particularly
relevant for the interaction with microbiota. NK cell and DC
responses in germ-free mice are impaired when challenged with
microbial components. Epigenetic mechanisms (histone acetylation
and DNAmethylation) were associated with defective expression of
inflammatory markers, including type I interferons (151). These
data demonstrate a contribution of microbiota to regulating
immune responses. The female reproductive system contains a
rich diversity of microorganisms, which has been correlated with
reproductive health and disease (152). It may be expected that the
uterine microbiota influences innate immune cells and their
memory properties, consequently impacting fertility.

Pathogenic agents may also influence reproduction via innate
immune cells and their memory properties. HCMV infection
appears to be a priming factor in the development of pregnancy-
trained NK cells. Comparisons between nulligravidae
and multigravidae women that were HCMV-seronegative
and -seropositive revealed increased percentages of
LILRB1+NKG2C+ memory NK cells only in those previously
infected by HCMV (153). Moreover, CXCR6 expressed in
pregnancy memory ILC1s in mice is also associated with NK
cell memory generated by viruses and haptens (15, 154). Further
investigations may clarify if viral-induced innate immune
Frontiers in Immunology | www.frontiersin.org 8
memory has favorable or detrimental consequences
for reproduction.

Infections and vaccinations can improve cellular responses to
a second stimulus unrelated to the initial one. There is evidence
that the BCG vaccine trains innate immune cells giving rise to
immunity against cancer (155) and pathogens, including
malaria, yellow fever, tuberculosis, and respiratory syncytial
virus (156–159). A recent study in a mouse model showed that
innate immune memory developed via the BCG vaccine previous
to pregnancy impaired fetal growth. Reduced numbers of
macrophages and NK cells were detected at the maternal-fetal
interface together with decreased mRNA levels of CCR3 and LIF
(160). This study provides evidence that pregnancy is influenced
by immunological challenges experienced during life that
develop innate memory responses.
CONCLUDING REMARKS

Further studies on ILC biology as well as on the cellular and
molecular mechanisms orchestrating innate immune memory
and its implications to reproduction promise a fertile terrain of
research. The potential existence of memory in other immune
cells present in the uterine environment should also be explored.
These data will contribute to clarifying the association of
immune cells, microbiota, and pathogens with reproductive
processes. Furthermore, the interaction of ILCs with
trophoblast cells constitutes a central issue for pregnancy
establishment, maternal immune tolerance, and placental
development. Together, this knowledge may lead to novel
therapeutic approaches addressing immune dysregulations that
are relevant for infertility and pregnancy complications.
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