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Abstract

Systemic properties of living cells are the result of molecular dynamics governed by so-called genetic regulatory networks
(GRN). These networks capture all possible features of cells and are responsible for the immense levels of adaptation
characteristic to living systems. At any point in time only small subsets of these networks are active. Any active subset of the
GRN leads to the expression of particular sets of molecules (expression modes). The subsets of active networks change over
time, leading to the observed complex dynamics of expression patterns. Understanding of these dynamics becomes
increasingly important in systems biology and medicine. While the importance of transcription rates and catalytic
interactions has been widely recognized in modeling genetic regulatory systems, the understanding of the role of
degradation of biochemical agents (mRNA, protein) in regulatory dynamics remains limited. Recent experimental data
suggests that there exists a functional relation between mRNA and protein decay rates and expression modes. In this paper
we propose a model for the dynamics of successions of sequences of active subnetworks of the GRN. The model is able to
reproduce key characteristics of molecular dynamics, including homeostasis, multi-stability, periodic dynamics, alternating
activity, differentiability, and self-organized critical dynamics. Moreover the model allows to naturally understand the
mechanism behind the relation between decay rates and expression modes. The model explains recent experimental
observations that decay-rates (or turnovers) vary between differentiated tissue-classes at a general systemic level and
highlights the role of intracellular decay rate control mechanisms in cell differentiation.
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Introduction

Understanding living cells at a systemic level is an increasingly

important challenge in biology and medicine [1–5]. Regulatory

interactions between intracellular molecular agents (e.g. DNA,

RNA, proteins, hormones, trace elements), form so-called genetic

regulatory networks (GRN), which orchestrate gene expression and

replication, coordinate metabolic activity, and cellular develop-

ment, respond to changes in the environment, or stress. GRN

coordinate regulatory dynamics on all levels from cell-fate [6,7] to

stress response [8–10]. Qualitative understanding of GRN

structure is for instance obtained from promoter sequences [11–

13], gene-expression profiling [14–16] or protein-protein interac-

tions (proteome) [17]. However qualitative information on GRN

structure alone is insufficient to understand GRN dynamics. The

structure of a GRN, i.e. its topology, is given by the way nodes in

the network are connected by links. Nodes represent effector

molecules (agents), as for instance genes, promoters, mRNA,

siRNA, proteins, transcription factors, - and links represent either

catalytic up- or down-regulation of the production of one agent by

another agent. It has been recognized that quantitative informa-

tion is required to understand the complex dynamical properties of

regulatory interactions in living cells [18,19], mainly because

dynamics on interaction networks with identical topology still

depends on the strength of interactions (links) between agents

(nodes). Models of GRN dynamics aid the task of understanding

properties of GRN at various levels of detail available in

experimental data and therefore provide valuable tools for

integrating information from different sources into unifying

pictures and for reverse engineering GRN from experimental

data. Any model should adequately reproduce GRN dynamics and

sufficiently exhibit systemic properties of the GRN, including (i)

homeostasis, (ii) multi-stability, (iii) periodic dynamics, (iv) alter-

nating activity, (v) self-organized critical dynamics (SOC) and (vi)

differentiability.

Homeostatic dynamics regulates the equilibrium concentration

levels of agents, e.g. [20], multi-stability shows switching between

multiple steady states [21,22]. Examples for periodic dynamics are

e.g. the cell-cycle [17], circadian-clock [23], IkB-NkB signaling

[24], hER dynamics [25,26] etc. Some molecular agents show

alternating activity, i.e. their concentrations alternate between being

detectable (on) and below detection threshold (off), see e.g. [25,26].

Self-organized critical (SOC) dynamics corresponds to details of

regulatory dynamics ensuring (approximate) stability within a

fluctuating environment through various mechanisms of adapta-

tion. Finally the property of differentiability means that cells of

multicellular organisms can differentiate into various cell-types.

The differentiated cells possess identical GRN but express
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distinguishable patterns of regulatory activity. The same GRN

therefore can be expressed in different modes so that some agents

become expressed in one mode but not in another [27].

Recently it has been reported that both regulation of

transcription and mRNA decay rates (i.e. the mRNA turnover)

are necessary to understand experimentally observed expression

values [28]. Moreover it has been demonstrated that decay rates of

mRNA are cell-type specific [29]. Analogously for proteins, where

the dominant mechanism is the ubiquitin driven proteolysis in the

proteasome [30], protein abundance and therefore their degrada-

tion has to be tightly controlled [31]. Also the abundance of

proteins and whether certain proteins are produced or not is again

cell-type specific [32,33]. This indicates that decay-rates and their

control play a crucial role in cell-differentiation. It may be noted

that interactions between agents are frequently localized in various

cell- compartments which usually are not resolved in models of

experimental data. Besides active degradation of effector mole-

cules also transport-mechanisms between different cell-compart-

ments, e.g. between the nucleus and the cytosol, can change the

concentration of effector molecules (e.g. transcription factor) in the

compartment containing their target molecules (e.g. promoter).

Thus transport phenomena may also emulate the effect of local

production or decay rates.

Variable decay rates however and the property of differentia-

bility are hardly ever considered in GRN models where decay

rates of effector molecules (agents) are usually kept constant.

Understanding the effects of changes of decay rates of agents

therefore is a crucial step towards a deeper understanding of GRN

dynamics and the role decay rates play in cell-differentiation. The

GRN is the set of all possible interactions of molecular reactions

and bindings. The GRN captures all possible features of cells and

are responsible for the immense levels of adaptation characteristic

to living systems. What happens when different cell-types express

the same GRN in alternative ways? At any point in time only small

subsets of the GRN are active. Any active subset of the GRN leads

to the expression of particular sets of molecules (expression modes).

The active regulatory network at time t is the regulatory sub-network of

the GRN, governing the molecular (auto-catalytic) dynamics of all

agents which exist at time t. The set of existing effector molecules

forms the active agent set at time t. The active network changes over

time and typical sequences of active sets represent what we call the

expression modes of a specific cell-type and its general state.

Expression modes themselves can be modified, either locally as a

reaction to an external signal, or fundamentally through further

cell differentiation. Active sets of molecules are transient and what

is observed in experiments is a superposition of subsequent active

sets, which we call the expressed set of agents. The regulatory

interactions between the expressed agents we call the expressed

regulatory network. To find the property of differentiability in a

regulatory network model therefore requires that one network is

capable of producing different expression modes while perturba-

tions (external signal) only modify active sets locally and the

particular expression mode can be restored.

The six dynamical properties we have listed above have been

addressed with a variety of conceptually different models. The

essence of all these models is that they try to capture the dynamics

induced by positive and negative feed back loops within the GRN.

The choice of model depends largely on the type and resolution

(coarse graining) of experimental data. At the single cell level

cellular activity can be modeled by nonlinear (stochastic)

differential equations [34,35] which can explain homeostasis,

periodic and multi-stable behavior. To do so one considers a

dynamic variable xi associated with each agent i. If index i
represents a type of effector molecule, then xi denotes the

concentration (abundance) of those molecules. If index i for

instance marks the p53 protein xi is the p53-protein concentration

(abundance) in the cell. If i represents a gene, then xi represents

the frequency of i being expressed. The dynamics governed by a

GRN is given by a set of coupled nonlinear differential equations

_xxi~Fi(x) , ð1Þ

where Fi is a (nonlinear) function capturing the GRN. It depends

on the vector of concentrations (abundance/activity) of all the

possible N molecular agents in a cell, x~fxigN
i~1. _xxi is the time

derivative of the concentrations xi. Note that Fi can have

stochastic components. Analysis of such systems is often compli-

cated by the interplay between fluctuations and nonlinearities [36].

Differential equation models can be approximated by cellular

automata, Boolean or piecewise-linear models. The property of

SOC dynamics, or dynamics at the ‘‘edge of chaos’’ [37–39], has

been studied mainly in the context of cellular automata and

Boolean models [40–42]. SOC dynamics was also discussed in

continuous differential equation based models [43,44]. Boolean

and piecewise-linear models share common origins in the work of

Glass and Kauffman, [45], and have extensively been used for

modeling and analyzing GRN [46–49]. For their superior

properties in approximating nonlinear systems (in principle to

any suitable precision) piecewise-linear models also are applied in

different disciplines, for instance for modeling highly nonlinear

electronic circuits [50].

In the context of GRN both boolean and piecewise-linear

models usually are used for describing nonlinear dynamics with

switch-like regulatory elements frequently observed in biological

regulatory processes [51,52]. Such switches react if the concen-

tration of an agent (the signal) crosses a specific threshold level. To

model such switches in regulation networks of N molecular agents

with concentrations xi the range (space) of concentrations

D~fxDxi§0g is cut into segments defined by the threshold

values where the concentration xi can trigger a regulatory switch.

These segments are called regulatory domains (e.g. [53]). In each such

domain Eq. (1) gets approximated by a linear equation of the form

_xxi~Wiz
XN

j~1

Aijxj , ð2Þ

where the Wiw0 are production rates and Aij are interaction

matrices between agents. If in a regulatory domain Aijw0, then j

promotes the production of i. If Aijv0, then j suppresses i. If

Aij~0 j has no influence on i. The diagonal elements Aiiv0

(abbreviated by Di~{Aiiw0) are decay rates Such ‘‘piece-wise’’

linear dynamics is nonlinear! On the full range of concentration

values D both W and A are step-functions depending on all

concentrations x in principle, but being constant in each

regulatory domain. In other words, since Wi depends only on

the regulatory domain it can be decomposed into boolean

functions xk on the regulatory domains. Let k~1, . . . ,M index

M regulatory domains of the system. The function xk(x)~1 if x is

contained in the k’th regulatory domain and zero otherwise. Then

W can be written as Wi(x)~
P

k W
(k)
i xk(x) with W

(k)
i being the

value of the production term Wi in the k’th regulatory domain.

Between regulatory domains the system switches from one linear

behavior to another.

As an example for interpreting Eq. (2) consider Mdm2 (assign

index i~1) and p53 proteins (assign index i~2). Mdm2 is an

enzyme that can act as an E3 ubiquitin ligase on itself and on the

A Self-Organized Model for Cell-Differentiation
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tumor suppressor protein p53 encoded by the TP53 gene. Mdm2
therefore down-regulates itself and the p53 protein via the

ubiquitin-proteasome pathway. In the model this corresponds to

interaction weights {D1~A11v0 and A21v0. Further p53
promotes the transcription of Mdm2, so that A12w0, and Mdm2
can block the N-terminal transcription-activation domain (TAD)

of p53 so that Aj1v0 for transcription factors j which are activated

by p53-TAD (implying Aj2w0). Assuming that p53-protein does

not degrade on its own, i.e. A22*0, and that both Mdm2 and p53
are synthesized at some average rates W1 and W2, this leads to a

linear model of the Mdm2-p53 interaction where

_xx1~W1{D1x1zA12x2z sum over other influences and

_xx2~W2zA21x1z sum over other influences.

Given that the interaction matrix A of the regulatory network is

invertible (which is almost certainly true for the biologically

relevant range of connectivities of GRN) Eq. (2) can be rewritten

_xxi~
XN

j~1

Aij xj{x�j

� �
, ð3Þ

with x� being the solution of the equation Wi~{
P

j Aijx
�
j . The

fixed-point x� is stable (unstable) and xi will be attracted (repelled)

by x�i . If x� is stable and x�i w0 for all i then x(t)~x� is one (of

possibly many) stationary solution of Eq. (2).

Not all models approximating nonlinear differential equation

descriptions of GRN are equally suited to capture all GRN

properties discussed above simultaneously depending on whether

discrete (Boolean, cellular automata) or smooth (differential

equation) features dominate the model. However there exists a

surprisingly simple class of models which exhibits all desired GRN

properties.

Here we present such a simple model that captures all of the

above dynamical properties. We find that the alternating dynamics

plays a key role for the stability of regulatory systems and for the

formation of SOC dynamics in particular [43,44]. Most impor-

tantly we are able to show that even unspecific control over decay

rates, changing the magnitude of all decay rates simultaneously by

a (small) factor, leads to ‘‘cell differentiation’’, i.e. the same

regulatory network enters different expression modes, displaying

different sequences of active regulatory networks.

We show that experimental facts, linking variations of decay

rates observed between different cell-types of an organism to

variations of the abundance of intra-cellular biochemical agents in

these cell-types, correspond to (a) differences in the expressed genetic

regulatory network, and (b) these differences can be controlled via

decay rates of intracellular agents. In other words typical

expression modes (cyclical sequences of successive active sub-

networks of the GRN) can be altered and switched by controlling

decay rates.

The model
Setting Aij~0 in Eq. (2), except for the (usually) fixed decay

rates Di, leads to a set of equations _xxi~Wi{Dixi. Since W and D
may depend on the regulatory domain this corresponds exactly to

the class of Glass-Kauffman piece-wise linear models, [45,53]. In

Glass-Kauffman systems, [45], concentrations xi(t) usually remain

positive for all times t, given positive initial conditions xi(0)w0
and Wi§0 for all i since concentrations xi can at best decay

exponentially with time ( _xxi~{Dixi). This makes it impossible to

produce alternating activity of agents. For xi, in a Glass-Kauffman

system, to become zero within a finite time, production rates -

which are non-negative by definition - would have to become

negative.

Equation (2) generalizes this class of models to systems allowing

to explicitly model linear regulatory interactions Aij between

agents within each regulatory domain. Suppose j suppresses i
(Aijv0) then j can in principle down-regulate i in a finite time

( _xxi~Aijxj ) and positivity of solutions of Eq. (2) is no longer

guaranteed. Positivity (non-negativity) of solutions needs to be

ensured as a constraint on the piece-wise linear dynamics

xi(t)§0 V agents i,and times t : ð4Þ

This constraint alters the linear dynamics of Eq. (2) in the

following way. Whenever a concentration xi becomes zero at time

t then xi(t’) remains zero for t’wt for as long as _xxi(t’)v0,

according to Eq. (2). If _xxi(t’’’)§0 for t’’’§t’’wt then xi(t’’’) is no

longer subject to the positivity constraint and continues to evolve

according to Eq. (2) again. Agent i is said to be active at time t, if

xi(t)w0 and inactive, if xi(t)~0. To simplify the discussion in the

following we only consider systems with a single regulatory domain

- such that all nonlinear behavior of the dynamics is solely due to

the positivity-constraint.

The positivity constraint Eq. (4) implies the following conse-

quences. At any point in time there will be a sub-set of agents with

non-vanishing concentrations which we call the active set of agents.

The remaining agents have zero concentration, and therefore do

not actively influence the concentrations of any of the non-

vanishing agents. There exist 2N different active sets, i.e. 2N

combinations in which N agents can be active or inactive. Each

active set can be uniquely identified by an index s~1, . . . ,2N (e.g.

s~2N{
PN

j~1 qj2
j{1 with qj~1 if the j’th agent is active and

zero otherwise). In the course of time t some agents will vanish

while others re-appear, so that one effectively observes a sequence

of sets of active agents

s0 ?
tswitch
1

s1 ?
tswitch
2

s2 ?
tswitch
3

. . . , ð5Þ

s0 being the initial active set. The active set sm{1 switches to active

set sm at time tswitch
m . In each time interval Tm~ tswitch

m tswitch
mz1

� �
of

duration tm~tswitch
mz1 {tswitch

m it is thus possible to only consider the

regulatory sub-network acting on the set of active agents sm. This

sub-network is described by the part of the full interaction matrix

Aij , where i and j are restricted to the set of active agents sm.

These sub-matrices we call active networks and denote them by Asm
act.

The concentration vector of active agents we call xsm
act. Active

agents also ‘‘feel’’ a modified effective fixed point x� sm
act , such that

finally for t[Tm the concentrations of the active agents follow a

linear equation

_xxsm
act, i(t)~

X
j is active

Asm
act, ij xsm

act, j(t){x� sm
act, j

� �
: ð6Þ

We refer to such systems as sequentially linear systems. The

attractiveness of this description arises through the fact that it

becomes possible to understand the dynamics by considering the

sequences of active networks

A
s0
act ?

tswitch
1

A
s1
act ?

tswitch
2

A
s2
act ?

tswitch
3

. . . , ð7Þ

which allows to analyze dynamical properties in terms of

eigenvalues and eigenvectors of the active sub-matrices Asm
act (see

materials and methods). This model can be shown to be

mathematically equivalent to [43,44].

A Self-Organized Model for Cell-Differentiation
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Cell differentiation in the sequentially linear dynamics
The dynamics of nonlinear systems in general and sequentially

linear system in particular converges to different attractors of the

dynamics (fixed points, limit cycles). Which attractor is ‘‘found’’

depends on the initial condition. Sequentially linear systems can

possess multiple distinct limit cycles and fixed points. Perturbations

(or different initial conditions) may push a system from one to

another attractor. The question of how many different attractors a

sequentially linear system possesses goes beyond the scope of this

paper and will be discussed elsewhere.

In the picture of sequentially linear dynamics it becomes

possible to identify operational modes of a cell as a particular

sequence of active networks. Cell types in ordinary operational

modes may be classified by specific sequences of active networks.

Two distinct possibilities for such sequences exist. One possibility

is that, after some initial switching events, a system ends up in a

stationary state associated with a particular active network of the

system (see materials and methods). The other possibility is that a

system converges to a periodic dynamics with an associated

periodic sequence of active networks.

As a hypothetical example a liver cell under typical conditions

might be characterized by a periodic sequence

A9
act?A10

act?A46
act?A2

act?A9
act, whereas an endothelial cell is

given by A123
act ?A2

act?A4
act?A209

act ?A9
act?A77

act?A123
act . Note that

all types share the same full regulatory network A. This separates

timescales of the dynamics: on the fast timescale the dynamics is

continuous and characterized by linear changes of the concentra-

tions xi. On the slower time-scale the dynamics is characterized by

discrete changes of active sets. The change from one sequence of

active sets to another can be interpreted as the expression modes of

different cell-types (cell differentiation) and we show that changes

in decay rates of molecular species trigger switches between

expression modes.

Example
As an example for sequentially linear dynamics we consider a

system with N~4 molecular agents, x�i ~100, Di~{Aii~0:23
for all agents i~1, . . . ,4, and a regulatory network given by

A~

{0:23 {0:1 0 0:1

0 {0:23 0:2 0

1 0 {0:23 {1

{0:8 {0:8 0:1 {0:23

0
BBBBBB@

1
CCCCCCA
: ð8Þ

The dynamics of this system (over one period) is shown in Fig. 1 a.

The property describing the stability of an active set sm is the

maximal real part of the eigenvalues Lsm
act of the active matrix Asm

act

denoted Lsm
act~maxRe (Lsm

act). The number q denotes the number

of time-domains in a periodic sequence of active networks, i.e. the

number of switching events per period, and z is the number of

different sub-networks that are activated in a sequence (see also

materials and methods). In this example there are four time-

domains (q~4) associated with three different active sets (z~3)

which are periodically repeated. The sequence starts in time-

domain 1 with active set s1~1 (~24{1:1{1:2{1:4{1:8) with

maximum real eigenvalue L1
act~0:03. Positive L1

act means that the

fixed point of the active set is unstable and the associated leading

eigenvalue implies that the concentration of one agent (green) is

decaying to zero. The positivity condition deactivates this agent as

its concentration becomes zero and the system enters time-domain

2 as the active set switches to s2~3 (~24{1:1{0:2{1:4{1:8)

with L3
act~{0:24. Negative L3

act means that the fixed point x� 3
act is

stable and x3
act tries to approach x� 3

act. This leads to the deactivated

agent (green) becoming produced again and the system switches

back to s3~1 entering the third time-domain. In time-domain 3
the initial conditions differs from the one in time-domain 1 and a

different node (magenta) gets deactivated. The system switches to

s4~2 (~24{0:1{1:2{1:4{1:8) with L2
act~{0:09 at the

beginning of the fourth time-domain. This means x�2
act is a stable

fixed-point and the inactive node (magenta) eventually gets

produced again as the system switches back to the beginning

(s5~s1~1) and enters the next period. The system is thus

precisely characterized by the sequence

A1
act?A3

act?A1
act?A2

act?A1
act. The eigenvalue spectra of the

sub-matrices Asm
act associated with subsequent time-domains Tm are

shown in Fig. 1 b. Fig. 1 c shows a projection of the trajectory into

a three dimensional Poincare map. Fig. 1 d shows the eigenvalue

spectra of the different active sub-systems of the dynamics.

Some details of the dynamics, like the existence of multiple

stable fixed-points, the periodicity of bounded attractors and

temporal self-organization, can be mathematically fully under-

stood. In [43,44] it was already shown mathematically that

sequentially linear models exhibit homeostasis, and multi-stability.

This has been demonstrated for a wide range of system size N, and

a number of interactions (connectivity) and fixed decay rates.

Periodic dynamics, and self-organized critical dynamics have been noted

in [43,44] but were not clarified and require further explanation

Figure 1. Periodic dynamics and active sets. Sequentially linear
system with decay rate Di~0:23 and the fixed point x�i ~100 for all
agents i simulated with time-increment dt~0:05. Periodic time-series
organized into a sequence of four domains with three different active
sets. For each time-domain the associated spectrum of eigenvalues for
the active sets is shown in (b). In (c) a 3 d Poincare map of the limit
cycle is plotted together with the projection of x� in the center. The
domains are marked with bold numbers and switching events with
dots. (d) The eigenvalue spectra of the different subsystems are plotted
in the imaginary plane. The shift of the spectrum along the real axis
depending on the decay rate D is indicated.
doi:10.1371/journal.pone.0036679.g001
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which is given in detail in materials and methods , where also a simple

temporal balance condition is described and derived.

The temporal balance condition states that the time-average

over the real parts of the leading eigenvalues Lsm
act of the matrices

Asm
act in a sequence of active networks approximate the Lyapunov

exponent l. The Lyapunov exponent l measures the overall

stability of a system (lv0 stable, lw0 instable, l~0 critical) and

for sequences following a periodic attractor l can be shown to be

exactly zero. Inserting the values for ts and Ls
act from table 1 into

the balance condition, Eq. (11) gives the value {0:055 as an

approximation of l (which has an exact value of zero). Although

the balance equation gives only a crude approximation of the

Lyapunov exponent it allows to understand why the example-

system spends more time in the weakly instable time-domain 1 and

3, than in the stable time-domains 2 and 4 which is obviously true

from Fig. 1. Strong convergence needs less time to compensate for

weak divergence.

Temporal balance is a consequence of the mechanism of self-

organization that fine-tunes switching times such that stable parts

of the dynamics compensate instable parts of the dynamics exactly.

This mechanism can be understood in the following way.

Sequentially linear systems try to converge to a fixed point. If it

is reached the system becomes static. The fixed point might not be

accessible however, meaning that the trajectory on the way toward

the fixed point hits a boundary (Fig. 1 c) causing a switching event

which changes the dynamics so that the system now is attracted by

a different effective fixed point, which it tries to reach. If the

system does not converge to an accessible fixed point it is either

unstable and some concentrations xi diverge, or the system circles

through some of the 2N possible active sets and converges onto an

effective attractor - characterized in the sequence of active

networks. In the later case small perturbations of x(t) on the

attractor will vanish with time. This allows to show that bounded

dynamics that does not converge to a fixed-point has to be periodic

(materials and methods). Switching times are not static but react to

perturbations of concentrations xi. Perturbations shift the occur-

rence of switching times proportional to the magnitude of the

perturbation. This has the effect that switching events act like

sliding ‘‘focal planes’’ allowing the perturbed dynamics to

‘‘refocus’’ onto the periodic attractor. While the perturbed

dynamics returns to the attractor switching times cumulate small

time-shifts resulting in a phase-shift of the periodic dynamics. A

perturbation is remembered as a phase-shift of the periodic

dynamics which neither grows exponentially nor dies out. The

Lyapunov exponent therefore is zero and the systems self-

organizes to the ‘‘edge of chaos’’ by adaptation of switching

times. Stable adaptive dynamics is a result of this ‘‘temporal self-

organization’’.

Results

We first show that the model is able to explain actual empirical

data, including alternating dynamics. Figure 2 shows data of

molecular concentrations xi(t) (hERa (black), Pol II (red), TRIP1

(blue), HDAC1 (green)) over three periods of about 40 minutes

time. These four agents are all part of the human estrogen nuclear

receptor dynamics. The source of the Data is Metivier et. al. [25].

Data points were taken from Pigolotti et al. [54] and the actual

values of the matrix elements

A~

{1:08 1:6 0 0

0 {1:08 1:7 0

{2:2 0 {1:08 2:7

{1 0 0:1 {1:08

0
BBBBBB@

1
CCCCCCA

ð9Þ

are bests fits with identical decay rates for optimal explanation of

the data. The TRIP1 data (blue) shows alternating activity which is

reproduced perfectly by our sequential linear model.

Decay rates and expression modes
In the following we show how the change of decay rates

induces changes from one cell-type to another. In particular we

show how changes of the overall strength of the decay rates

results in differentiated dynamics, i.e. in distinct sequences of

active expressed networks. This allows to understand recent

experimental observations which indicate correlations between

cell-type, expressed sets of agents, and decay-rates [27–29,31–

33].

For a fixed interaction network temporal self-organization can

be maintained for a wide range of decay rates D. We show this in

the same 4-node system considered in Fig. 1 by only varying the

decay rate D~{Aii from Eq. (8). Figure 3 a shows the Lyapunov

Table 1. Domain properties.

time-domain s Non ts Ls
act stability

1 1 4 7.35 0.033 unstable

2 3 3 10.6 20.24 stable

3 1 4 17.0 0.033 unstable

4 2 3 7.45 20.094 stable

Some characteristics of the four node system shown in Fig. 1 are listed,
including the index of the time domain, the index of the sub-system s, the
number of active nodes Non , the time the system spends in the s’th sub-system,
the real-part of the leading eigenvalue of s, and whether sub-system s is stable
or not.
doi:10.1371/journal.pone.0036679.t001

Figure 2. Adequacy of sequentially linear systems. Time series of
periodic binding of four proteins to the pS2 promoter after addition of
estradiol - experimental data has been extracted from [54], where a
negative feedback-loop was proposed to explain the dynamics.
Experimental data due to [25] and [26] (dotted lines) is compared with
a simulation of a SL system, based on the network shown in the inset,
with uniform decay rates Di~1:08 for all agents and fixed point
concentrations x�~ 75; 60; 20; 30½ �. Correlation coefficients for simulat-
ed and measured time-series are Ci~(0:97; 0:84; 0:94; 0:97) for time
larger 40 and agents i in order of the legend. The model simulation uses
zero concentrations for all agents as initial condition and a time
increment dt~0:1. For matching the simulation with experiment time
in the model is shifted by {40.
doi:10.1371/journal.pone.0036679.g002
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exponent l as a function of D. A plateau, where l*0, is clearly

visible. If the decay rate is larger than a critical value Dw0:26, the

Lyapunov exponent becomes negative (lv0) and the system

stable. If the decay rate is smaller than a critical value of Dv0:06,

temporal balance can not be achieved any more, refocusing breaks

down, and the system becomes chaotic and trajectories diverge

exponentially with lw0. In Fig. 3 b the length of the periodic

sequences q (green triangles), which is the number of time-domains

in a sequence, and the number z of different active sets activated in

this sequence (red squares) is depicted. Figure 3 b also shows that

at several critical values of

D*0:088,0:162,0:171,0:224,0:246,0:263 in the plateau region

the sequences of active regulatory sub-networks changes when

temporal balance can no longer be established merely by adapting

the switching times of a sequence. Sequences do not usually

change completely at critical values of D and are only expanded

by additional active subsets. This can be seen clearly in the 3D

Poincare map of the dynamics Fig. 3 d, where the sequence of

subsystems s given by 1?2?1?3?1 (for D~0:23) gets

expanded to the sequence 1?2?10?9?1?3?7?5?1 (for

D~0:14).

The mathematical reason why such critical decay rates exist is

that changes of D shift the eigenvalue spectra of the active

interaction matrix As
act, shown in Fig. 3 e, along the real axis. The

real part of the leading eigenvalues, Ls
act, is becoming smaller

(larger) than zero and x� s
act becomes an attractor (repellor) of xs

act.

The stable fixed point then either is accessible and the dynamic

changes from periodic to stationary or inaccessible and the

dynamic changes qualitatively but remains periodic. Which agents

become active in a given active set s is depicted in Fig. 3 b for three

different sequences of active sets associated with three different

ranges of the decay rate D indicated by gray lines. If node i is

active in active set s then the associated field is white and black

otherwise.

The number of expressed agents Nexp is the number of agents that

are active at least once during a period of the dynamics. To

demonstrate that not only the periodic activation of agents

depends on D but also the number of expressed nodes Nexp itself,

we consider a larger sequentially linear system with N~50 agents.

The interaction matrix of the system is a random matrix with

average connectivity SkT~10, meaning for each node 10
interactions with other agents have been randomly chosen with

equal probability. Each non-zero entry, describing such an

interaction, is drawn from a normal distribution with mean zero

and a standard deviation of s~1. This means that the interaction

strength is of magnitude 1 on average and has positive or negative

sign with equal probability. In Fig. 4 a the Lyapunov exponent l,

in Fig. 4 b the number z of sets that become active during a cycle

and in Fig. 4 c the fraction of expressed agents Nexp=N is plotted

as a function of D. For large decay rates (Dw3:4) the system is

stable and x� is a fixed-point of the dynamics. As D decreases x�

becomes unstable for D*3:4. However for 2:3vDv3:4 the

system ends up in some stable accessible fixed point x� s
act so that

x(t) approaches a stationary state and z~1. In this range Nexp

increases with D. The l*0 plateau with stable self-organized

critical dynamics (zw1) only emerges in the range 1:7vDv2:4
where number of active sets z and expressed network size Nexp=N
vary strongly. Nexp=N varies between 1 and 0:5 which means that

changes of the decay rate can induce changes of the size of the

expressed network comparable to the magnitude of the full

interaction network. A small window of stability exists for

1:97vDv2:03 (see inset).

The strong dependence of Nexp=N on the decay-rate D (up to

50% of the total regulatory network) demonstrates clearly that

decay-rates alone massively influence sequences of active systems

without changing the interaction strength between agents in the

regulatory network at all. Moreover, decay rates can also cause

switches between fixed-point dynamics and periodic dynamics.

While fixed points favor larger decay-rates (in the example

Dw2:3) there can also exist fixed points for smaller decay rates

(window of stability 1:97vDv2:03) where systems favor periodic

dynamics.

Discussion

We presented a model which de-composes the dynamics of

molecular concentrations – governed by the full molecular

regulatory networks – into a temporal sequence of active sub-

networks. This novel type of model allows not only to reduce

the vast complexity of the full regulatory network into sub-

networks of manageable size but further to approximate the

complicated dynamics by linear methods. The intrinsic

nonlinearities in the system which lead to alternating dynamics

in concentrations (as found in countless experiments) are

absorbed into switching events, where the dynamics of one

linear system switches to another one. In this view different cell

types correspond to different sequences of active sub-networks

over time.

These sequentially linear models allow not only for the first time

to describe all the relevant dynamical features of the GNR

Figure 3. The edge of chaos. The Lyapunov exponent l of the four
node system, Eq. (8), is shown in (a) as a function of the decay rate D,
which exhibits a ‘‘plateau’’ with l~0 in the range 0:06vDv0:26. In (b)
the length q of the periodic sequence of domains is plotted in green
triangles and the number of different active sets z as red squares. In (c)
the sequences of active sets are shown for decay rates D~0:23, ~0:2
and 0:14. The limit circles for decay rates D~0:23 (short sequence) and
D~0:14 (long sequence) are visualized in (d) in a Poincare map using
three out of four phase-space dimensions. With decreasing D the radius
of the limit circle becomes wider and additional sets (marked with
colors) become active. In (e) the spectra of eigenvalues are shown for all
the appearing active sets with D~0:14.
doi:10.1371/journal.pone.0036679.g003
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(homeostasis, multi-stability, periodic dynamics, alternating activ-

ity, differentiability, and self-organized criticality), but also offers

the handle to understand the role of molecular decay rates. The

fact that sequentially linear dynamics properly models homeosta-

sis, multi-stability and periodic behavior was shown in [43,44].

Here we have shown how self-organized criticality (Lyapunov

exponent self-regulates to zero) arises as a consequence of

temporal balance of switching events. This requires agents to

show alternating activity (being repeatedly on and off), which is a

natural property by construction of sequentially linear models, and

which has posed an unresolved problem of previous models such

as the Glass-Kauffman [45] model and its many variants. The

mechanism behind self-organized criticality is based on adaptive

switching times which effectively lead to refocusing of perturbed

dynamics onto the attractor of sequences of active sub-networks.

Such a temporal self-organization causes long time memory of

perturbations in terms of phase-shifts of the otherwise unchanged

periodic dynamics, causing the Lyapunov exponent to become

zero. In other words slight perturbations, e.g. noise, only cause

time-shifts of the sequence of regulatory reactions but do not

change the underlying sequence. Perturbations are ‘‘remembered’’

by the system by non vanishing phase-shifts and the dynamics gets

‘‘refocused’’ onto the periodic attractor merely accumulating a

time-shift. This has the consequence that the Lyapunov exponent

is zero and the system self-organizes its criticality by adapting

switching-times. Practically this means that a system balances the

time it spends in its active sub networks with stable and unstable

dynamics (temporal balance).

Applying the sequentially linear model to the problem of cell-

differentiation we demonstrate that different levels of decay rates

are one to one related with transitions from one active sub-

network sequence (cell type) to another. This might be a key

ingredient to understand a series of recent experimental facts

reported on the role of decay-rate regulation systems and the role

of noise in cell differentiation [27–29,31–33]. We found that

varying the decay rates only, while keeping the complete

regulatory network fixed over time, substantially modifies the

temporal organization of regulatory events. In particular the

decay rate controls the number of expressed agents, the sequence

of active sub-networks, and sometimes even the type of solution

(stationary, periodic). The changes occur at critical levels of decay

rates and changes can be drastic. For example we find situations

where a 5% variation of the decay rate causes an approximate

doubling of the number of expressed agents. In [55] it is argued

that (in the regulatory core and bottom layers of a regulatory

hierarchy) transcription factors abundance may be kept low by

tightly controlled degradation effectively acting as a noise filter

enhancing fidelity in gene expression and adaptability to

changing environments. This makes sense from a theoretical

point of view first of all since fluctuations of agents with low

abundance are more likely to trigger switching events in the

regulatory dynamics leading to distinct global responses of the

regulatory network. Secondly, degradation and re-synthesis of

agents with high regulatory activity consumes energy so that a

low abundance of regulatory important agents is consistent with

cells evolving under a constraint of energy-efficiency. Similarly,

based on measurements of mRNA and protein decay-rates [56]

argue that, while abundance of mRNA and protein over and all

may be controlled by transcription rates rather than decay-rates,

proteins with short half-lives mainly have regulatory function

(Chromatin organization and modification, cell cycle, mitosis and

cell proliferation, transcription, homeostasis, proteolysis, …). This

demonstrates that different expression modes, which distinguish

different cell-types from each other, can be very efficiently

obtained by controlling decay rates (either via proteolysis or

alternatively via transport mechanisms controlling the local

abundance of effector molecules in compartments containing

associated targets) of agents without fundamentally altering any

interactions between agents in the regulatory network, which

would be more costly in an evolutionary sense. These findings

highlight the importance of intracellular decay rate control

mechanisms and the role of noise in cell differentiation.

Materials and Methods

Eigenvalues
The eigenvalues L[C and eigenvectors v of a matrix A are

defined as solutions of the matrix equation Lv~Av. The solution

of a linear differential equation _xx~A(x{x�) is of the form

x(t){x�~exp(At)(x(0){x�). For large times the x(t) will

therefore point into the direction of the eigenvector v1 with the

eigenvalue L1 with the largest real part and

(x(t){x�)*exp(L1t)v1 as t gets large. If the largest real part of

L1 is larger (smaller) than zero Dx(t){x�D will grow (decay)

exponentially and x� is an unstable (stable) fixed point of the

differential equation.

Fixed points and attractors
Let Ls

act be the maximal real part of the leading eigenvalue of

the active interaction matrix As
act associated with the active subset

s. The effective fixed point x� s
act is stable and perturbations of

concentrations vanish if Ls
actv0. The fixed point is accessible if xs

act

approaching x� s
act does not cause a switching event and inaccessible

otherwise. Stationary solutions of a sequentially linear system

therefore require fixed points that are both stable and accessible.

Stable and accessible fixed points can be fully understood.

Suppose agents i[I are active and agents j[J are inactive then Eq.

(3) can be rewritten into two parts

Figure 4. Degradation rates and active networks. Example of a SL
system with N~50 and SkT~10 and identical initial conditions for all
values of D expressing different portions of the regulatory networks. (a)
The Lyapunov exponent, (b) the number of active sets z in a period (if
z~1 then the sequence is not periodic but a steady state!), and (c) the
fraction of expressed nodes are plotted as functions of the uniform
decay rates Di~D. For Dw3:4 x� is stable. In the range 2:4vDv3:4
the x� has become unstable but the plateau (l~0) can not form since
the dynamic finds active sets s with stable and accessible x� s

act . The inset
in (b) shows that in the plateau region a small window, 1:97vDv2:03,
exists where again an active set s contains an accessible x� s

act attracting
the dynamics. In the range 1:7vDv2:4 the plateau forms and
dynamics gets periodic. For Dv1:7 the system gets unstable.
doi:10.1371/journal.pone.0036679.g004
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_xxi ~
P

i’[I Aii’(xi’{x�i’){
P

j’[J Aij’x
�
j’ , for i[I

_xxj ~
P

i’[I Aji’(xi’{x�i’){
P

j’[J Ajj’x
�
j’ , for j[J

ð10Þ

where the first part describes the dynamics of the active agents

while the second part is the part of the linear dynamics superseded

by the positivity constraint. Symbolically we can write

_xxI~AII xI{�xx�I
� �

with �xx�I ~x�I zA{1
II x�J and �xx�I is the modified

fixed point. For �xx�I to be a accessible one requires that �xx�i w0 for all

i[I . For �xx�I to be stable one requires two things. (i) The real part of

the leading eigenvalue of AII:Aact needs to be smaller than zero.

(ii) _xxjƒ0 for all j[J. If the second condition is violated for some

k[J then _xxkw0 so that in the next time step a switching event

occurs since xk becomes larger than zero and is no longer

controlled by the positivity constraint.

Periodicity of attractors and self-organized criticality
We have seen that attractors either are fixed points or periodic.

The longer periodic sequence of Fig. 3 d is also shown in the space

of all possible active sets in Fig. 5. But can one understand why

bounded dynamics is periodic rather than chaotic? Suppose a

bounded attractor exists for a sequentially linear system with N
agents i. The perturbation x(t)?x’(t) at time t~t0 also effects

later switching times of agents i, i.e. tm?t’m such that

Dt’m{tmDvCDdxmD for some constant Cw0, where

dxm~x’(t’m){x(tm). Since DdxmD?0 sufficiently fast as m??
(there exists an attractor) the cumulated time shift t’m{tm of

switching times remains finite for all times. This shows that the

perturbed x’ behaves (after some time) just like the unperturbed x
only shifted in time. Perturbation neither vanishes nor grow

exponentially, and the Lyapunov exponent can only be zero

(l~0). Moreover, since the number of active sets is finite (2N ) and

the dynamics is bounded the concentrations have to return to

values on the attractor with arbitrary precision within some finite

return-time. The remaining concentration difference can be seen

as a perturbation so that the attractor can only be a periodic cycle.

The time-shift produces a phase-shift of the periodic dynamics.

Stability: the maximum Lyaponov exponent
While eigenvalues tell us something about the stability of a fixed

point the Lyaponov exponent l tells something about the stability

of the dynamics x(t) itself. The Lyapunov exponent

l~ limt?? log(Ddx(t)D)=log(Ddx(0)D) measures how a small per-

turbation dx(t) grows with time. If lv0 the perturbation vanishes

exponentially with time or grows exponentially if lw0. System

with lw0 are chaotic (in-stable dynamics extremely sensitive to

noise or perturbations) while lv0 indicates stable dynamics

insensitive to perturbations and noise. Systems with l~0 are

special as their dynamics is sensitive to noise and perturbations

without ‘‘overreacting’’ like chaotic systems. These systems at the

‘‘edge of chaos’’ adapt to fluctuations but remain close to their

unperturbed dynamics.

Temporal self-organization of switching events
Here we derive a simple approximation of the Lyapunov

exponent of sequentially linear dynamics which explains temporal

self-organization quantitatively. This is necessary for understand-

ing why switching in general happens between active networks

with stable and unstable dynamics and not from one stable stable

(unstable) to another stable (unstable) active network.

Qualitative analysis of bounded attractors of sequentially linear

dynamics has shown that the attractor is periodic and the

Lyapunov exponent l~0. Characteristic information on the

dynamics gets encoded by periodic sequences (tm,Lsm
act),

m~1,2, . . . with a period of some length q such that tmzq~tm

and smzq~sm (for large enough m) as in the example shown in

Fig. (1) in the main article. If the dynamics of the system would

remain in an active network As
act the Lyapunov exponent would

be identical with the largest real part Ls
act of the eigenvalues of A.

However, note that convergence of xs
act to x� s

act (if fixed point is

stable) or into the direction of the leading (possibly complex)

eigenvector (if fixed point is stable) remains incomplete, since

convergence is always interrupted by a switching event. The

Lyapunov exponent l of the sequentially linear system therefore

is well approximated by the time average over Lsm
act, i.e.

l* lim
m??

1

Zm

Xm

n~1

tnLsn
act Zm~

Xm

n~1

tn : ð11Þ

Since the dynamics is periodic the time average only needs to be

taken over one period and since l~0 one gets

0*
Pq

k~1 tnzkL
snzk
act for n large enough. The ‘‘refocusing’’

mechanism discussed above qualitatively therefore is also

‘‘balancing’’ the times tm specific active sets sm remain active

by fine tuning switching times, such that contributions from time-

domains with stable (Lsm
actv0) and unstable dynamics (Lsm

actw0)

compensate each other. This also is supported by the fact that

simulations with finite time increment regularly produce chaotic

dynamics with small but positive Lyapunov exponents since

switching times can only be tuned to the accuracy of the time

increment. However l approaches zero consistently as the time

increment is made smaller and orbits become periodic again.

Temporal balance and refocusing are two aspects of the temporal self-

organizing principle manipulating switching times.
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Figure 5. Tree of active sets. Tree of all existing active sets s for
system shown in article Fig. (3). In set 1 all xiw0, yellow background
stand for complex leading eigenvalues of the active interaction matrix.
Black indicates that the agent associated with that index is not active.
The gray lines indicate to all possible switching events where the
number of active agents Nact changes +1. Blue arrows mark the
observed sequence of the dynamics for the examples Eq. (8) with
D~{Aii~0:14.
doi:10.1371/journal.pone.0036679.g005
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