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Waardenburg syndrome (WS) is an autosomal dominant inherited disorder that is
characterized by sensorineural hearing loss and abnormal pigmentation. SOX10 is one
of its main pathogenicity genes. The generation of patient-specific induced pluripotent
stem cells (iPSCs) is an efficient means to investigate the mechanisms of inherited
human disease. In our work, we set up an iPSC line derived from a WS patient
with SOX10 mutation and differentiated into neural crest cells (NCCs), a key cell
type involved in inner ear development. Compared with control-derived iPSCs, the
SOX10 mutant iPSCs showed significantly decreased efficiency of development and
differentiation potential at the stage of NCCs. After that, we carried out high-throughput
RNA-seq and evaluated the transcriptional misregulation at every stage. Transcriptome
analysis of differentiated NCCs showed widespread gene expression alterations, and the
differentially expressed genes (DEGs) were enriched in gene ontology terms of neuron
migration, skeletal system development, and multicellular organism development,
indicating that SOX10 has a pivotal part in the differentiation of NCCs. It’s worth
noting that, a significant enrichment among the nominal DEGs for genes implicated
in inner ear development was found, as well as several genes connected to the inner
ear morphogenesis. Based on the protein-protein interaction network, we chose four
candidate genes that could be regulated by SOX10 in inner ear development, namely,
BMP2, LGR5, GBX2, and GATA3. In conclusion, SOX10 deficiency in this WS subject
had a significant impact on the gene expression patterns throughout NCC development
in the iPSC model. The DEGs most significantly enriched in inner ear development
and morphogenesis may assist in identifying the underlying basis for the inner ear
malformation in subjects with WS.

Keywords: Waardenburg syndrome, SOX10, induced pluripotent stem cells (hiPSC), neural crest cells (NCCs),
inner ear development, transcriptome analysis

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 August 2021 | Volume 9 | Article 720858

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.720858
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.720858
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.720858&domain=pdf&date_stamp=2021-08-06
https://www.frontiersin.org/articles/10.3389/fcell.2021.720858/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-720858 August 5, 2021 Time: 12:34 # 2

Wen et al. Modeling Waardenburg Syndrome by hiPSCs

INTRODUCTION

Waardenburg syndrome (WS) is a rare autosomal dominant
inherited disorder. WS is distinguished by sensorineural hearing
loss (SNHL) and pigment abnormalities, such as hypo-
pigmentation of the skin, a white forelock, premature graying,
or heterochromia iridum (Waardenburg, 1951). There are four
WS subtypes categorized by the presence or lack of other clinical
symptoms. Clinically, WS1 and WS2 are the most frequently
noted (Dourmishev et al., 1999). The actual incidence of WS is
thought to be 1/42,000, and may account for 2–5% of congenital
deafness (Nayak and Isaacson, 2003). Several mutations in six
genes have thus far been reported to be linked to WS, including
PAX3, MITF, SOX10, EDNRB, EDN3, and SNAI2 (Pingault et al.,
2010). Researchers have proposed several explanations for the
clinical characteristics of WS. At present, the theory of neural
crest hypoplasia is the most widely noted. This theory holds
that the embryonic neural crest is the source of melanocytes,
frontal bone, limb muscles, and intramural ganglia, and that
their dysfunction due to WS impacts different tissues and
organs, leading to a series of abnormalities (Bolande, 1997;
Knecht and Bronner-Fraser, 2002).

As the inner ear forms and develops, neural crest cells move
from rhombomere 4 to the otocyst and begin to differentiate
into glial cells of the cochleovestibular ganglion and intermediate
melanocytic cells of the cochlear stria vascularis, both of which
are essential cell types in the inner ear (Tachibana et al., 2003;
Freter et al., 2013; Kim et al., 2013). Recently, a few studies have
demonstrated that neural crest cells (NCCs) also participate in the
development of the inner ear neurosensory components, which
are thought to be lineages derived from the otocyst. However, the
contributions of NCCs to the neurosensory components of the
inner ear are not completely understood (Freyer et al., 2011; Mao
et al., 2014; Karpinski et al., 2016).

SOX10 is a key transcription factor during the development
of the neural crest. In addition, SOX10 has a pivotal part
in maintaining the pluripotency, survival, and proliferation
of NCCs (Southard-Smith et al., 1998). SOX10 mutations are
primarily connected to the pathogenesis of WS2 and WS4
(Bondurand et al., 2007; Chen et al., 2010). In addition, SOX10
mutations can induce Kallmann syndrome (KS, OMIM 308700)
as well a plethora of neurological symptoms in the neural crest
(PCWH), such as outer peripheral demyelinating neuropathy,
central myelination disorder, WS, and Hirschsprung’s disease
(HD) (Pingault et al., 2000, 2013; Inoue et al., 2004).
Previous studies have demonstrated that WS subjects with
SOX10 mutations more frequently exhibit different degrees
of inner ear deformities. Nevertheless, additional research is
needed to elucidate the target genes and pathways regulated
by SOX10 in inner ear development (Breuskin et al., 2009;
Elmaleh-Bergès et al., 2013).

Human-induced pluripotent stem cell (iPSC) technology is
a new tool for researching human developmental disorders.
Genotype-specific molecular and cellular phenotypes that occur
throughout differentiation can be modeled by these cells. By
reprogramming somatic cells obtained from subjects into a

state resembling embryonic stem cells and then differentiating
them into disease-relevant cell types, researchers can use iPSC
technology to produce an almost unlimited source of human
tissues with the genetic mutations found at the genesis of the
disease. This technology is a powerful tool that can be used
to derive patient-specific cells for human disease modeling. In
addition, iPSC technology is promising for personalized cell
therapies (Takahashi et al., 2007; Tang et al., 2020; Zhang et al.,
2020a). It is currently thought that a global disturbance of
transcriptional regulation due to SOX10 deficiency, which is
still not fully understood, may be one cause of the aberrant
phenotypes found in WS patients (Huang et al., 2021). Because
SOX10 functions as a DNA-binding protein, the likelihood that
SOX10 may directly modulate transcription in the nucleus is
high. In WS patients with SOX10 mutations, no microarray-
based gene expression profiling data were generated. RNA-seq
analysis is urgently needed to fully reveal the transcriptional
perturbation induced by SOX10 deficiency.

In the present study, we provide details about a Chinese
patient with WS2, and noted a de novo heterozygous mutation
in SOX10. Patient-derived fibroblasts were gathered to produce
iPSCs, and we then differentiated these iPSCs into NCCs in vitro,
and contrasted their differentiation potential with iPSCs derived
from a normal healthy patient to examine disorders linked to
this syndrome. Further, we completed transcriptomics analysis
of the differentiating cells throughout the in vitro differentiation
process to examine the underlying genetic basis of WS. The
genes that we characterized as relevant for NCC differentiation
and development will assist in the discovery of new therapies
for WS. In this work, we generated a research model and
offer insights for additional studies on the mechanism(s)
governing WS.

MATERIALS AND METHODS

Ethics Statement
The Xiangya Ethics Committee approved the protocol for this
study, and signed informed consent was provided by every
donor before sample collection. The laboratory research on
the derivation and use of human iPSC lines was approved
by the Ethics Committee of Xiangya Hospital Central South
University (XHCSU) in accordance with local regulations, and
all of the animal experiments were conducted based on XHCSU
ethical guidelines.

Clinical Evaluation
The proband was recruited from the Otology Clinic at XHCSU.
Other family members were included, along with 100 controls
comprised of unselected, unrelated, and sex-matched healthy
individuals. Comprehensive clinical history, audiologic,
neurologic, ophthalmologic, and dermatologic examinations
were conducted on proband and all family members. The
audiologic and neurologic examinations consisted of otoscopy,
pure-tone audiometry (PTA), immittance, distortion product
otoacoustic emission (DPOAE), and auditory brain-stem
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response (ABR) tests. Another auditory steady-state response
(ASSR) test was conducted for those patients who did not do
well with the PTA test because of their young age (II-1 and
II-2). Special attention was paid to pigmentary alterations in
the skin, hair, and iris—as well as additional developmental
defects, such as dystopia canthorum and limb abnormalities.
The degree of hearing loss was defined based on the ASSR and
three frequencies: 500, 1,000, and 2,000 Hz. Hearing loss was
categorized as follows: a normal hearing level (HL) at < 26 dB
(decibels); mild HL, 26–40 dB; moderate HL, 41–70 dB; severe
HL, 71–90 dB; and profound HL, > 90 dB.

DNA Extraction and Mutational Analysis
Genomic DNA was removed from peripheral blood samples
of the subjects and healthy controls according to the standard
procedure. Whole genomic DNA was isolated with a TIANamp
Blood DNA Kit (Tiangen Biotech, China.) and quantified with
an ultraviolet spectrophotometer Du800 (Beckman Coulter,
United States). The DNA was then kept at –20◦C until use.
PCR and Sanger sequencing was conducted on each of the
coding exons and flanking splicing sites of the WS-related genes,
including MITF, SOX10, PAX3, EDNRB, EDN3, and SNAI2. The
PCR products were treated with shrimp alkaline phosphatase
and exonuclease-I to degrade deoxynucleotide triphosphates
and unincorporated PCR primers. The purified amplicons were
combined with 10 picomoles of the forward and reverse PCR
primers for bidirectional sequencing on an ABI-Prism 3100 DNA
sequencer via dye-termination chemistry (Applied Biosystems,
United States), and the SeqMan II program (DNA-STAR,
United States) was utilized to compare results. Once the mutation
was determined, DNA samples from related family members and
controls were then screened for the identical mutation.

Collection and Establishment of
Fibroblast Cultures From Skin Tissue of
a WS Patient
After obtaining written informed consent from the donor, human
skin samples were collected from the proband (WS patient). The
biopsy tissue was put in a sterile tube filled with phosphate-
buffered saline (PBS) containing 1% penicillin/streptomycin
(Invitrogen, United States), and kept at 4◦C. The steps that follow
were performed in a tissue culture hood under aseptic conditions
and using sterile instruments.

The subcutaneous fat and capillaries were completely removed
from the sample tissue, and the tissue was moved to a
50-ml Falcon tube containing 4 ml of 0.05% trypsin/EDTA
(Invitrogen, United States) and incubated overnight at 4◦C.
The epidermis was manually extracted from the tissue, and the
supernatant was discarded after adding 4 ml of freshly-prepared
fibroblast culture medium [DMEM containing 10% FBS, 1%
penicillin/streptomycin, 1% glutamine, and 1% non-essential
amino acids (Invitrogen, United States)]. The dermal tissues were
dissected into small pieces, placed in a 100-mm Petri dish, and
incubated at 4◦C in 5% CO2 for 3 h to allow the tissues to adhere
to the bottom of the dish. Two milliliters of fibroblast culture
medium were added to cover the bottom and ensure that the

pieces stay moist. The tissues were incubated at 37◦C in 5%
CO2, and 3 ml of fibroblast culture medium was put in on the
following day; the medium was subsequently changed every 3
day. An optical microscope was used to monitor the cultures
daily. The tissues were carefully removed when dense outgrowths
of fibroblasts appeared, the medium was aspirated, and fresh
culture medium was added to maintain the growing fibroblasts
(in passage 1). The cells were passaged with trypsin/EDTA at a
ratio of 1:3 until the cells reached 80% confluency. Cells from
passages 3–5 were then utilized for the induction of iPSCs.

Generation and Culture of iPSCs
The primary fibroblasts were cultured in hFib medium at 37◦C
in 5% CO2. The fibroblasts (5 × 105 cells) were electroporated
with 0.5 µg per vector of five episomal vectors (pCXLE-hUL,
pCXLEhOCT3/4-shp53-F, pCXLE-hSK, pCXWB-EBNA1, and
pCXLE-EGFP) in order to produce the iPSCs. Electroporation
was conducted with the Basic NucleofectorTM Kit for Primary
Mammalian Epithelial Cells (Lonza, Switzerland) and the
Lonza NucleofectorTM 2b device, program X-005. Following
electroporation, the cells were seeded on gelatin-coated 100-
mm dishes cultured in hFib medium with the addition of
0.5 mM sodium butyrate (Sigma, United States) and 50 µg/ml
VitC (Sigma, United States). The medium was emptied and
refilled daily. After 8 day, the cells were moved to Matrigel
(Corning)-coated six-well plates at a density of 5× 104 cells/cm2

and cultured in mTeSR medium (Stem Cell Technologies).
Two days after the transfer, 10 µM Y-27632 (ROCK inhibitor)
was added, and the medium was emptied and refilled on
alternating days. The iPSC colonies were manually removed and
cultured in mTeSR on Matrigel-coated 24-well plates after 14–
21 days. Accutase (Gibco, United States) was used to passage
the iPSCs every 6 d at a 1:6 split ratio using, and the iPSCs
were kept at 37◦C in a 5% CO2 incubator (Thermo Fisher
Scientific, United States).

Induction of Neural Crest Cells (NCCs)
From iPSCs
The differentiation of iPSCs into NCCs was completed according
to the standards detailed prior (Chambers et al., 2011). In
short, embryoid bodies were generated in EB Medium (KO-
DMEM supplemented with 20% KO-Serum Replacement, 1%
GlutaMax-I, and 1% non-essential amino acids) with 500 nM
LDN193189 (Stemgent, United Kingdom) and 10 µM SB431542
(Tocris Bioscience, United Kingdom) for 3 day. Culture was
carried out in EB Medium supplemented with 2% N-2 (Life
Technologies), 1% GlutaMax-I, 100 nM EDN3, 25 ng/ml BMP4,
and 50 ng/ml stem cell factor (SCF) (R&D Systems, United States)
for the next 3 day. On day 6, embryoid bodies were attached
to feeder-free fibronectin-coated culture flasks in Neurobasal
Medium supplemented with 2% B-27, 1% N-2, 1% GlutaMax-I,
100 nM EDN3, 25 ng/ml BMP4, and 50 ng/ml SCF. The cells
that grew were fed on alternating days for maintenance and
expansion until differentiation occurred (day 12). From day 2 and
12 onward, 3 µM CHIR99021 (Stemgent, United Kingdom) was
added to the medium.
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Quantitative Reverse
Transcription-Polymerase Chain
Reaction (qRT-PCR)
RNA was removed from samples using Trizol reagent (Sangon,
China) following the company’s directions, and 1 µg of RNA
was reverse-transcribed utilizing the PrimeScriptTM II 1st Strand
cDNA Synthesis Kit (Takara, Japan). All of the qRT-PCR analyses
were performed on a Step One plus Real-Time PCR System
(ABI) with 2 × SYBR Master Mix (Yeasen, China). The relative
expression levels of the target genes were calculated using the
2−11Ct method, and GAPDH was utilized as the internal
control (the primers are shown in Supplementary Table 1). Each
experiment was repeated thrice, and the average value was taken
as the experimental result. The statistical significances for all of
the RT-qPCR data were analyzed with unpaired Student’s t-tests.

Western Blot (WB)
Cell extracts that were representative of three independent
experiments were prepared from NCCs in a SOX10 mutant and
a normal control, and the extracted proteins were analyzed. The
antibodies used for Western blot included rabbit anti-SOX10
(Abcam, United Kingdom), mouse anti-GAPDH (Good Here,
AB-M-M001) as a primary antibody, HRP-labeled Goat Anti-
Rabbit IgG (Beyotime, China), and HRP-labeled Goat Anti-
Mouse IgG (Beyotime, China) as a second antibody.

Alkaline Phosphatase (AP) Staining
An AP Staining Kit (Beyotime, China) was used to assess
alkaline phosphatase (AP) activity following the manufacturer’s
protocol. The images were assessed using a Nikon 300 inverted
confocal microscope.

Immunofluorescence Staining
The iPSCs were fixed in 4% paraformaldehyde for 20 min at
room temperature and then permeabilized using 1% Triton X-
100 (Sigma, United States) for 10 min. Following blocking with
5% bovine serum albumin (BSA) (Sangon, China) for 1 h at room
temperature, the samples were incubated overnight with the
primary antibodies in PBS solution with 5% BSA at 4◦C. The next
day, secondary antibodies were incubated at room temperature
for 1 h. DAPI (Beyotime, China) was used for nuclear
counterstaining, and images were observed and photographed
using an Olympus confocal microscope and camera. Details
about the antibodies are shown in Supplementary Table 2.

Teratoma Assay
The iPSCs (1 × 107 cells) were gathered and injected
subcutaneously into the dorsal flanks of 8-week-old male nude
mice (Charles River, China). Approximately 8–10 weeks after
injection, teratomas had formed. They were then dissected and
fixed in 4% paraformaldehyde, and then embedded in paraffin.
Tissue sections were stained using hematoxylin and eosin.

RNA Sequencing
Two stages of triple replicates (three independent inducing from
one source of iPSC) from two samples were obtained (iPSCs and

induced neural crest cells (iNCCs) from the normal control and
the SOX10 mutant) for extracting total RNA for further analysis.
Total RNA was extracted and RNA integrity was evaluated
using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100
system (Agilent Technologies, United States). One microgram of
RNA per sample was utilized for cDNA library preparation with
the NEBNext R© UltraTM RNA Library Prep Kit from Illumina R©

and processed according to the manufacturer’s directions. The
library quality was evaluated with the Agilent Bioanalyzer 2100
system. The library preparations were sequenced on an Illumina
Novaseq platform, and 150 bp paired-end reads were generated.
After being checked for quality control, sequencing reads were
mapped to the reference genome with Hisat2 v2.0.5 (Kim et al.,
2015), and the raw data were deposited into the GEO database
(No. GSE176101).

Bioinformatic Analysis of RNA-Seq
The raw reads were cleaned by removing reads that had adapters,
reads that contained poly-N, and reads of low quality. The
resulting clean reads were aligned to the reference genome using
Hisat2 v2.0.5, and FeatureCounts v1.5.0-p3 (Liao et al., 2014) was
used to quantify the read numbers mapped to every gene and
calculate the per kilobase of exon per million fragments mapped
(FPKM) to every gene. The differentially expressed genes (DEGs)
were analyzed with the DESeq2 method using the online tool
NetworkAnalyst 3.01 (Zhou et al., 2019). DEGs had an adjusted
P-value < 0.05 and | log2 (fold-change) | > 1. Gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway-enrichment analyses of all of the DEGs were conducted
with the online tool DAVID v6.8 (Huang da et al., 2009).
GO terms and KEGG pathway terms with an adjusted P-value
of < 0.05 were considered to be significantly enriched. The
protein-protein interaction (PPI) was analyzed using STRING
v11.02 (Szklarczyk et al., 2019), with the SOX10 gene and DEGs
uploaded onto STRING with the minimal interaction score set
to > 0.4. Cytoscape 3.6.1 software was used to construct the PPI
network.

Statistical Analyses
Data are reported as the mean ± standard deviation (SD) of
independent experiments. Statistical analyses were conducted
using the Wilcoxon signed-rank test or a one-way analysis of
variance (ANOVA) with Prism Graphic software. P < 0.05 was
considered to be statistically significant.

RESULTS

Clinical Findings
The proband was 9 years of age and showed brilliant blue
bilateral irides, patchy depigmented areas on his forehead, and
a white forelock since birth (Figure 1A). The proband was
unresponsive to external audio stimuli and unable to speak.
Ear injury, otitis media, and contact with ototoxic drugs were

1http://www.networkanalyst.ca
2https://string-db.org/
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FIGURE 1 | Family history and clinical features of the proband. (A) The proband showed bilateral brilliant blue irides, patchy depigmented areas on forehead and
white forelock. (B) The pedigree indicates that only Family II-1 had the WS-associated phenotypes, which are marked in black. (C) ASSR of the left ear: 100, 110,
and 110 dB at 0.5, 1, and 2 kHz, respectively, the other frequencies showed no response. ASSR of the right ear: 110 and 90 dB at 1 and 2 kHz, respectively, the
other frequencies showed no response. (D) Enlarged vestibule and semicircular canal abnormalities on both sides are shown on high-resolution axial CT in the
red square.

not detected. Skin depigmentation was noted, eyesight and
intelligence were normal, there was no dystopia cantorum (the
W index < 1.95), and no digestive system or skeletal muscle
abnormalities were observed. His parents and brother had no
pigmentary abnormalities in their skin, hair, or eyes, and they
showed no other WS-associated phenotype (Figure 1B).

The audiologic examination of the proband revealed profound
bilateral sensorineural HL: there were no bilateral otoacoustic
emissions and all of the bilateral ABR thresholds were over 105 dB
nHL (the thresholds for ASSR for both ears are shown in detail
in Figure 1C). Temporal bone CT scans revealed an enlarged
vestibule on either side, left horizontal semicircular canals fused
with the vestibule, and right horizontal semicircular canals
enlarged and shortened; there were no obvious abnormalities in
the shape and size of the bilateral cochleae (Figure 1D). The
proband was diagnosed with WS2 based on the WS diagnostic
criteria (Liu et al., 1995).

Identification of Mutations and
Pathogenicity Analysis
Following screening for all of the WS-related and congenital
hearing loss disease-causing genes, the proband was found to

carry a heterozygous mutation of guanine (G) to adenine (A)
in position 336 (c.336G > A) of the third exon of SOX10.
This led to a substitution of the 112th codon (p.Met112Ile).
Based on the standards and the guidelines of the American
College of Medical Genetics and Genomics (ACMG), this
variant is considered pathogenic and was initially identified
by Chaoui et al. (2011). Mutations were not found in 100
unrelated healthy control subjects. The proband’s parents and
brother had normal phenotypes and carried no corresponding
mutations as determined by Sanger sequencing, demonstrating
that the mutations occurred de novo (Figures 2A,B). No
further mutations connected to WS were determined in the
proband. Intriguingly, the Met112 residues in SOX10 are
highly conserved across various vertebrate species (Figure 2C),
indicating the functional importance of this amino acid
(Scheithauer et al., 1988).

iPSCs Derived From an Idiopathic WS
Patient With a SOX10 Mutation Were
Generated and Characterized
To better understand the pathogenic mechanism subserving WS,
we established an iPSC line from dermal fibroblasts from the
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FIGURE 2 | Mutation analysis and amino acid coding diagram. (A) DNA sequencing profile revealed that the SOX10 mutation c.336G > A (p.Met112Ile) was found
in the proband (II-1) and not in his father (I-1), mother (I-2), or brother (II-2). The arrow indicates the area of the base substitution. (B) Schematic diagram of the
SOX10 gene. The black arrow indicates the mutation site. D, Dimerization domain; HMG, high mobility group domain; E, Conserved domain of SOX8/9/10; TA
transactivation domain. (C) Protein sequence alignment of vertebrate SOX10; note the highly conserved Met112 residues across various species. * represents the
same amino acid at the same site among different species.

proband with the SOX10 mutation using previously described
methods. We also established one normal control iPSC line from
an unrelated healthy individual.

Both the SOX10 mutant and normal control iPSC lines
exhibited a typical pluripotent stem cell-like morphology and
grew as compact colonies with clearly defined borders and
edges. The cells had large nuclei, prominent nucleoli, and a
high nuclear-to-cytoplasmic ratio (Figure 3A). We confirmed
that the SOX10 mutant and normal control iPSC lines expressed
endogenous pluripotent genes to a high degree as measured
by qPCR (Figure 3B). In addition, immunocytochemistry was
conducted to investigate the expression of stem cell markers
at the protein level. These cells were found to be positive for
nuclear (OCT3/4, NANOG, and SOX2) and surface (SSEA4
and TRA1-60) markers of pluripotency, in addition to staining
for AP (Figures 3A,C). We then examined the differentiation
potential of these iPSC lines. Both lines had the ability to
differentiate into the three germ layers (ectoderm, mesoderm,
and endoderm) in the teratoma assay (Figure 3F); these iPSC
lines presented a normal karyotype (Figure 3D). These findings

indicated that the reprogramming of the fibroblasts caused no
alterations in the chromosomal or genetic markers. Furthermore,
genotyping confirmed the expected compound heterozygous
SOX10 mutation (c.336G > A) in the iPSC line from the WS2
patient (Figure 3E).

SOX10 Deficiency Results in Altered
Gene Expression Patterns in iPSCs
To investigate differential gene expression in this WS patient’s
iPSCs resulting from SOX10 mutation, we implemented RNA-
Seq analysis of the iPSCs from a normal control. Triplicate RNA
samples were isolated from the patient-derived iPSCs and an
unrelated control cell line cultured under normal conditions.
They were then analyzed using RNA-Seq, and differential gene-
expression analysis was performed with DESeq2. A total of 405
genes were found to be differentially expressed between the
patient and the pooled control iPSC line based on the differential
expression criteria (adjusted P-value < 0.05 and | log2 (fold-
change) | > 1). A heatmap using the FPKM value of the
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FIGURE 3 | Induction and characterization of SOX10 mutant and normal control iPSCs. (A) The SOX10 mutant and normal control iPSC clones with typical
embryonic stem cell-like and positive alkaline phosphatase staining. Bar, 100 µM. (B) qPCR analysis of pluripotency markers in both iPSC lines showed significantly
upregulated expression of OCT4, SOX2 and NANOG, in contrast to fibroblasts. (C) Immunofluorescence staining in both iPSC lines showed expression of
pluripotency markers OCT4, NANOG, TRA-1-60, SOX2, and SSEA-4. Bar, 100 µM. (D) Karyotyping analysis showed normal chromosomal structure and numbers
in both iPSC lines. (E) Sanger sequencing confirmed the mutation in SOX10 in iPSC lines. (F) H&E stainings of teratomas generated from subcutaneous injection of
both iPSC lines in NOD/SCID mice. Tumor sections represent differentiated structures as noted. Bar, 100 µM.
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DEGs was generated and row normalization was executed using
scale function (Figure 4A). Among the DEGs, there were 144
genes (35.6%) that displayed significantly augmented expression
in the SOX10 mutant iPSCs, while 261 genes (64.4%) showed
significantly diminished expression (Figures 4B,C).

To investigate whether the DEGs of the SOX10 mutant
iPSCs were enriched in specific functionally related gene groups
and signaling pathways, we utilized Gene Ontology (GO)
and KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway-enrichment analyses. The significantly enriched
GO terms included terms connected to DNA-templated
transcription, transcription from RNA polymerase II promoter,
multicellular organism development, and negative regulation
of angiogenesis (Figure 5). Interestingly, GO enrichment
for biological process identified inner ear morphogenesis
enriched in the DEGs, and these related genes are listed in
Table 1. Additionally, no DEGs of SOX10 mutant iPSCs were
significantly enriched in the KEGG pathways. Altogether,
SOX10 deficiency led to subtle transcriptional perturbation with
respect to the affected genes and their mRNA levels, and the

SOX10 mutant iPSCs had the ability to undergo morphologic
differentiation in a manner similar to those derived from
the control iPSCs.

Differentiation of Mutated SOX10
Patient-Derived iPSCs to NCCs
Following the investigation of the impacted of lowered SOX10
expression on WS patient-derived iPSCs at the pluripotent
stage, we narrowed our study to examine differentiating the
iPSCs to iNCCs as a more relevant, disorder-specific cell type.
We followed a previously established protocol to differentiate
patient-derived and WT iPSCs into neural crest cells (this
protocol is described in the “Materials and Methods” sections
of these publications, and results showed that activation of
the WNT pathway induced neural border genes and neural
crest markers that mimicked normal neural crest development)
(Chambers et al., 2011; Figure 6A). Our findings indicated
an apparent minor delay in neural crest induction in SOX10
mutant iPSCs. In addition, despite being initially plated at the

FIGURE 4 | Differentially expressed genes in SOX10 mutant iPSCs. (A) The heatmap showed hierarchical clustering analysis of DEGs in SOX10 mutant iPSCs. The
FPKM values of DEGs were normalized by scale function and compared between the SOX10 mutant iPSCs and normal control. Red and blue indicate genes with
high and low expression levels, respectively. (B) Volcano plot showing the expression change of each gene and their significance. Red dots represent the expression
of genes in SOX10 mutant iPSCs significantly up-regulated compared to normal control. Blue dots represent the expression of genes in SOX10 mutant iPSCs
significantly down-regulated compared to normal control. (C) Of the DEGs, 144 genes were up-regulated and 261 genes were down-regulated.
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FIGURE 5 | GO enrichment analysis of differentially expressed genes in SOX10 mutant iPSCs. A total of 18 GO terms were significantly enriched. Nine terms were
significantly enriched based on biological process, three terms were significantly enriched based on cellular components, and six terms were significantly enriched
based on molecular function.
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TABLE 1 | Differentially expressed genes in patient iPSC enriched in inner ear morphogenesis.

No. Gene symbol Gene description Log 2 fold change Adjusted P-value

1 TBX1 T-box transcription factor 1 −3.8729 2.118E-70

2 GBX2 Gastrulation brain homeobox 2 −3.6959 1.398E-115

3 NTN1 Netrin 1 −1.8225 1.016E-34

4 PAX8 Paired box 8 −1.2506 4.331E-06

5 GATA3 GATA binding protein 3 1.1878 1.627E-05

6 SPRY2 Sprouty RTK signaling antagonist 2 −1.0997 2.516E-52

7 HMX2 H6 family homeobox 2 1.0354 2.367E-04

8 CHD7 Chromodomain helicase DNA binding protein 7 1.178 9.746E-100

identical density, less cells were noted in the mutant cultures
during 7 d of culture. By day 12, the majority of the areas of
the cultures had achieved confluency; in contrast, the patient-
derived NCCs were denser (Figure 6B). Immunofluorescence
analysis demonstrated that the neural crest (NC) differentiation
markers SOX10, SOX9, PAX3, HNK-1, and P75 were expressed
in both iNCC cell lines (Figure 6C). We then compared
the expression of NC-related genes (SOX9, PAX3, HNK-1,
P75, TWIST1, and TFAP2A including SOX10) on day 12
of the differentiation process between both types of iNCCs.
Under NC induction, the iNCCs derived from SOX10 mutant
iPSCs initiated significant down-regulation of the NC-related
genes at the mRNA level except SOX9, compare with control
(Figure 6D). Collectively, these observations indicated that
SOX10 haploinsufficiency—through the development of NCCs-
affected the proliferation and differentiation of NCCs, and
reduced their overall pluripotent potential.

Global Changes in Gene Expression in
the WS Patient-Derived iNCCs With the
SOX10 Mutation
RNA-Seq analysis was completed in triplicate for iNCCs from
the SOX10 mutant and normal control lines to evaluate cellular
differentiation at the gene-expression level between the iNCC
lines, and differential gene expression was determined. The
methods used for data analysis and sample pooling were the
same as the analysis conducted for the iPSCs in order to enable
a direct comparison. The heatmap created with the FPKM value
for global gene expression indicated that most of the gene-
expression patterns differed between the SOX10 mutant iNCCs
and controls (Figure 7A). DESeq2 identified a total of 1805 DEGs
(P-value < 0.05 and | log2 (fold-change) | > 1), among which
899 genes were downregulated in SOX10 mutant iNCCs while
906 genes were upregulated in patient iNCCs (Figures 7B,C).
The number of DEGs was four times higher in the former
relative to the iPSCs, indicating that the SOX10 mutation had
a much stronger impact on the transcriptome in differentiated
cells, which corresponded with the tissue-restricted phenotype.

GO and KEGG pathway-enrichment analyses were performed
on all the DEGs to determine whether specific subsets of genes
were differentially expressed in the patient iNCCs. In total, 78
GO terms were significantly enriched. Of them, 47 GO terms
were significantly enriched to biological process (BP), 19 GO
terms were significantly enriched to cellular component (CC),

and 12 GO terms were significantly enriched to molecular
function (MF) (the top 10 most enriched GO terms for BP,
CC, and MF are revealed in Figure 8A). The top 10 most
enriched GO terms for BP included multicellular organism
development, neuron migration, regulation of transcription
from RNA polymerase II promoter, ureteric bud development,
skeletal system development, chemical synaptic transmission,
and axon guidance. These results indicated that subsets of
genes involved in tissues and cell types, including peripheral
neurons and glial cells, melanocytes, secretory cells, and cranial
skeletal and connective cells, were overrepresented in the DEGs,
suggesting that they had strong links to defects in NCC
biology and the development of multiple NC-derived systems.
GO enrichment for BP also determined enriched functional
networks pertaining to inner ear morphogenesis and inner ear
development (the related DEGs in these two GO terms are
revealed in Tables 2, 3). KEGG pathway analysis identified 17
terms as significantly enriched, and the top-10 KEGG terms
included WNT signaling pathway, signaling pathways regulating
pluripotency of stem cells, basal cell carcinoma, dopaminergic
synapse, pathways in cancer, cholinergic synapse, axon guidance,
morphine addiction, neuroactive ligand-receptor interaction,
and glutamatergic synapse (Figure 8B).

In order to identify the candidate target gene regulated by
SOX10 throughout inner ear development, we examined the
genes pertinent to inner ear development in the GO database (GO
terms were inner ear development and inner ear morphogenesis)
and proteins that interacted with SOX10 in the STRING database.
Fifty-nine proteins interacted directly with SOX10 (Figure 9).
The gene lists were combined with the DEGs to acquire the target
genes connected to inner ear development and morphogenesis.
Considering the association between decreased RNA expression
and possible SOX10-binding sites allowed us to reduce the list
of candidate genes to four: BMP2, LGR5, GBX2, and GATA3.
The potential SOX10-binding sites in the candidate genes were
predicted using the online JASPAR database (Table 4 shows the
predicted binding site details).

DISCUSSION

WS, the most common disorder resulting in syndromic hearing
loss (SHL) in the Chinese population, is a genetic disorder
with locus heterogeneity and variable expression of clinical
characteristics (Zhang et al., 2012; Li et al., 2019). The
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FIGURE 6 | Generation and characterization of SOX10 mutant iPSC-derived NCCs. (A) Schematic of the NCC differentiation protocol timeline. EB Medium:
KO-DMEM supplemented with 20% KSR, 1% GlutaMax-I, 1%NEAA. (B) Comparison of the cell images of the SOX10 mutant and control iPSC-derived NCC at
Days 0, 6, 7, and 12 following differentiation. Bar, 100 µM. (C) Immunofluorescence staining shows expression of NCC markers SOX10, PAX3, SOX9, HNK-1, and
P75. Bar, 50 µM. (D) RT-qPCR for evaluating expression of NCC markers. (∗represents p < 0.05, ∗∗ represents p < 0.01, ∗∗∗ represent p < 0.001 and ns
represents no significant).

mechanisms underlying phenotypic variability in WS are still
not fully understood (Bondurand et al., 2007; Pingault et al.,
2010). SNHL is defined as a pure tone threshold shift of
over 25dB, affecting more than 466 million people worldwide.
SNHL includes degenerative changes of cochlear hair cells (He
et al., 2017, 2021; Liu W. et al., 2019; Zhou et al., 2020;

Cheng et al., 2021; Fu et al., 2021), cochlear supporting cells (Lu
et al., 2017; Cheng et al., 2019; Tan et al., 2019; Zhang S. et al.,
2019; Zhang et al., 2020a; Zhang Y. et al., 2020; Chen et al., 2021),
and spiral ganglion neurons (Guo et al., 2016, 2020, 2021; Yan
et al., 2018; Liu et al., 2021). Sound is collected and conducted
by external and middle ear, then transformed into the electric
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FIGURE 7 | Differentially expressed genes in SOX10 mutant iNCCs. (A) The heatmap showed hierarchical clustering analysis of DEGs in SOX10 mutant iNCCs. The
FPKM values of DEGs were normalized by scale function and compared between the SOX10 mutant iNCCs and normal control. Red and blue indicate genes with
high and low expression levels, respectively. (B) Volcano plot showing the expression change of each gene and their significance. Red dots represent the expression
of genes in SOX10 mutant iNCCs significantly upregulated compared to normal control. Blue dots represent the expression of genes in SOX10 mutant iNCCs
significantly downregulated compared to normal control. (C) A total of 906 genes were up-regulated and 899 genes were down-regulated among the DEGs.

signals by cochlear hair cells (Wang et al., 2017; Liu Y. et al.,
2019; Qi et al., 2019, 2020; Zhang Y. et al., 2020); while spiral
ganglion neurons is function as the neural auditory transduction
cells (Sun et al., 2016; Guo et al., 2019, 2021; Liu W. et al., 2019;
Zhao et al., 2019). The cochlear hair cells are sensitive to aging,
acoustic trauma, ototoxic drugs, and environmental or genetic
influences (O’Donnell et al., 1988; Zhu et al., 2018; Fang et al.,
2019; Jiang et al., 2020; Qian et al., 2020; Lv et al., 2021; Zhang
et al., 2021). Previous studies have shown that oxidative stress
and cell apoptosis play important roles in hair cell loss (Sun et al.,
2014; Yu et al., 2017; Li et al., 2018; Gao et al., 2019; Zhang Y.
et al., 2019; Zhang et al., 2020b; Zhong et al., 2020).

SOX10 is a key transcription factor related to the migration
and differentiation of NCCs. Mutations in SOX10 result in
abnormal pigment distribution and deafness, and are the primary
cause of WS (Bondurand and Sham, 2013). SOX10 belongs to
the SOX family, which features a high-mobility group (HMG)
DNA-binding domain. The HMG domain (amino acids 102–181)
identifies and binds to the promoter sequence of a target gene
and induces conformational modifications in DNA throughout

transcriptional regulation (Harris et al., 2010; Schock and
LaBonne, 2020).

The non-sense mutation identified in the present study was
found in amino acid 112, which is located in the HMG domain
(DNA-binding region) and in the predicted nuclear localization
signals (NLSs), resulting in a substitution of the guanine in
position number 336 (Südbeck and Scherer, 1997). This SOX10
mutant was first identified by Chaoui et al. (2011) in three
independent families, and resulted from two different variations
at the nucleotide level: c.336G > A and c.336G > C). The
probands were associated with WS2 or PCW/PCWH based on
the observed variety of phenotypes. Functional analysis revealed
that the p.Met112Ile appeared to possess an increased monomer-
binding capacity, leading to reduced binding of the SOX10
mutant and reduced transactivation capacity toward the target
promoter (Chaoui et al., 2011). Nevertheless, the phenotypic
differences observed raise the potential for the individual genetic
background being influential, which is not uncommon in
neurocristopathies (Amiel et al., 2008). Since SOX10 gene is not
endogenous expressed at the iPSCs stage, we collected cells at the
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FIGURE 8 | GO enrichment analysis of differentially expressed genes in SOX10 mutant iNCCs. (A) Top 10 most enriched GO terms for biological processes, cellular
components, and molecular function. (B) Top 10 most enriched KEGG pathway terms are listed.

12th day of iNCC stage to perform qPCR and WB experiments
to analyze the influence of SOX10 mutation (Supplementary
Figure 1). The results suggest this mutation caused the decrease
of its RNA and protein expression levels in the patient-derived
iNCCs, thus it was speculated that it might cause functional
changes through insufficient haploid dose.

To the best of our knowledge, this is the first work to
document a disease model of iPSCs derived from a patient
with WS. There are currently several established SOX10 animal-
disease models that entail multiple species (Tachibana et al., 2003;
Dutton et al., 2009; Hao et al., 2018). However, there are still many
differences between the phenotypes of animal models and those
of humans due to the disparities in genetic background, timeline
of organ development, and underlying regulatory mechanisms
between the species; it is therefore still difficult to accurately

recapitulate human abnormalities such as WS in animals. Because
iPSCs can differentiate into a vast array of cell types, the present
system provides a powerful method to elucidate the disease
mechanisms and explore potential therapeutic interventions so
as to improve the well-being of patients (Chen et al., 2019; Zhang
et al., 2020a).

In the current work, we generated a human cell model for
WS with iPSCs harboring a SOX10 mutation, and differentiated
these iPSCs into NCCs as a specific and disease-relevant system
that could be used to investigate WS in vitro. WS patient-derived
fibroblasts were reprogrammed into SOX10-mutant iPSCs based
on the Yamanaka method (Takahashi and Yamanaka, 2006).
The SOX10-mutant iPSCs generated in this study could then
be further cultured with relatively high efficiency and showed
pluripotential characteristics, including pluripotency marker
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TABLE 2 | Differentially expressed genes in patient iNCCs enriched in inner ear morphogenesis.

No. Gene symbol Gene description Log 2 fold change Adjusted P-value

1 GATA3 GATA binding protein 3 −2.5587 1.457E-04

2 USH1G USH1 protein network component sans −2.4423 2.017E-02

3 TBX1 T-box transcription factor 1 −2.3788 4.440E-03

4 PRRX1 Paired related homeobox 1 −1.8414 1.492E-03

5 NTN1 Netrin 1 −1.8141 2.494E-04

6 GBX2 Gastrulation brain homeobox 2 −1.7589 1.016E-04

7 ITGA8 Integrin subunit alpha 8 −1.2744 2.697E-02

8 FGF9 Fibroblast growth factor 9 1.4407 1.599E-02

9 COL11A1 Collagen type XI alpha 1 chain 1.5271 8.154E-04

10 TFAP2A Transcription factor AP-2 alpha 1.648 3.069E-02

11 ZIC1 Zic family member 1 2.0873 3.878E-04

12 MAFB MAF bZIP transcription factor B 2.6142 4.558E-06

13 POU4F3 POU class 4 homeobox 3 3.2812 2.775E-06

14 NEUROG1 Neurogenin 1 3.7124 1.956E-16

TABLE 3 | Differentially expressed genes in patient iNCCs enriched in inner ear development.

No Gene symbol Gene_description Log 2 fold change Adjusted P-value

1 LGR5 Leucine rich repeat containing G protein-coupled receptor 5 −5.9869 9.649E-38

2 BMPER BMP binding endothelial regulator −5.0578 2.041E-21

3 SHH Sonic hedgehog signaling molecule −3.0073 4.947E-05

4 BMP2 Bone morphogenetic protein 2 −2.3362 6.027E-12

5 HOXA1 Homeobox A1 −2.1382 8.994E-03

6 MAF MAF bZIP transcription factor 1.5757 2.496E-04

7 CYTL1 Cytokine like 1 1.6092 4.109E-02

8 CXCL14 C-X-C motif chemokine ligand 14 1.8429 5.919E-06

9 PLPPR4 Phospholipid phosphatase related 4 1.93 1.373E-02

10 EYA4 EYA transcriptional coactivator and phosphatase 4 1.9746 6.097E-06

11 NEUROD1 Neuronal differentiation 1 3.0814 2.239E-04

12 PHOX2B Paired like homeobox 2B 3.3696 2.151E-04

expression and the potential for teratoma formation, suggesting
that the mutation in SOX10 did not directly affect the induction
and expression of the iPSCs.

In contrast to the normal control, the idiopathic SOX10
mutant iPSCs exhibited lowered efficiency in NCC induction
in vitro and defects in the expression of key genes in NCC
specification. Interestingly, unlike other NCC markers, the
expression of SOX9 was increased in the qRT-PCR of SOX10
mutated iNCC cells compared with the normal group. The
SOX transcription group consists of SOX9 and SOX10, and
they have a common bipartite transactivation mechanism.
In addition, they share some overlap in biological functions
(Haseeb and Lefebvre, 2019). The decrease of SOX10 expression
may lead to the compensatory increase of SOX9 expression.
Relative to the normal control, the transcriptomic analysis of
SOX10 mutant iPSCs revealed an overrepresentation of genes
in the embryologic development of the tissues principally
impacted in WS, such as pigmentation and skeletal and
neuronal development. We identified a total of 1,805 DEGs, of
which 899 (49.8%) were down-regulated. These results suggest
that SOX10 mutation have a wide range of effects on the
transcriptome, and that the target genes involved in the biological

process are enriched, suggesting that SOX10 mutation have
an impact on the proliferation and differentiation potential
of NCCs, which is also in accordance with previous studies
(Mollaaghababa and Pavan, 2003; Haldin and LaBonne, 2010;
Schock and LaBonne, 2020).

We noted that our analyses converged, suggesting potential
mechanisms of inner ear development as the proband showed
conspicuous bilateral inner ear malformations. In previous
studies, researchers demonstrated that, rather than resulting from
an NCC defect, inner ear malformations were directly induced
by a SOX10 mutation by causing endolymphatic collapse and
other abnormalities in the organ of Corti (Elmaleh-Bergès et al.,
2013; Locher et al., 2015; Hao et al., 2018). However, some
other researchers have explored the exact contributions of neural
crest lineages to the neurosensory components of the inner ear,
offering an important basis for investigating the potential NC
origins of the inner ear (Freyer et al., 2011). After examining
the GO and KEGG pathway enrichment analyses for the DEGs,
we determined that biological processes focused on inner ear
development and morphogenesis in both iPSCs and iNCCs,
suggesting that the mutation in SOX10 may have caused the inner
ear malformation in this WS patient.
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FIGURE 9 | Protein-protein interaction network of differentially expressed genes that interact with SOX10. The diamond represents SOX10. The circles indicate the
proteins that interact with SOX10. Red circles represent the genes enriched in the GO term inner ear development, and cyan circles represent the genes enriched in
the GO term inner ear morphogenesis. Lines represent the interaction relationship between two proteins.

TABLE 4 | The SOX10 potential binding sites predicted in the candidate genes.

Name Score Relative score Start End Strand Predicted sequence

BMP2 7.09699 0.91952059 395 400 + CTGTGT

LGR5 8.90979 0.999999997 669 674 + CTTTGT

GBX2 8.90979 0.999999997 328 333 + CTTTGT

GATA3 7.09357 0.919368595 111 116 + CGTTGT

While a growing body of evidence has revealed that SOX10
mutations can cause defects of the inner ear in humans, the target
genes and pathways regulated by SOX10 that are involved in inner
ear development have yet to be completely elucidated (Elmaleh-
Bergès et al., 2013; Wakaoka et al., 2013; Song et al., 2016; Xu
et al., 2016). We additionally performed a cluster analysis to
screen the PPI network pertaining to SOX10, and it revealed
four candidate genes that may be regulated by SOX10 during the
development of the inner ear: BMP2, LGR5, GBX2, and GATA3.

BMP2 (bone morphogenetic protein 2), a member of
the transforming growth factor-beta (TGF-β) superfamily,
possesses crucial functions in developmental processes, including
cardiogenesis, digit apoptosis, somite formation, neuronal
growth, and musculoskeletal development (Schlange et al., 2000;
Benavente et al., 2012; Christen et al., 2012; Gámez et al.,
2013). As mentioned in a literature review, BMP2 plays a
crucial role in the formation of three semicircular canals during
inner ear development (Hwang et al., 2019). The otic-specific
knockout of Bmp2 caused the lack of all semicircular canals
in a mouse model (Hwang et al., 2010). Additionally, bmp2b
was also shown to be necessary for maintaining canal structures
in zebrafish, as mutant bmp2b zebrafish lacked canals, which
is similar to the mouse mutants. Bmp2 is expressed in highly
conserved patterns in the canals’ genesis zones near the cristae,

as well as in the epithelium of the developing canals (Hammond
et al., 2009). Moreover, BMP2 takes part in the regulation of
NCC proliferation, migration, and differentiation—mimicking
the expression patterns of the SOX10 gene. Previous studies
showed that BMP2 is also required for enteric nervous system
development. The expression of BMP2 is significantly attenuated
in Hirschsprung’s disease patients—which results from defects
in NCCs colonizing the intestines—and leads to an absence of
enteric ganglia in the colon (Huang et al., 2019). In addition,
BMP2 selectively targets and stimulates tyrosinase (TYR) gene
expression and melanogenesis in differentiated melanocytes. It
has been reported that BMP2 treatment of neural crest cells
increases melanogenesis by encouraging the synthesis of melanin
and the BMP2 response-element localized upstream from the
TYR transcriptional start site (Bilodeau et al., 2001). SOX9
also encourages the expression of BMP2 by binding directly to
the BMP2 promoter, promoting its transcription (Xiao et al.,
2019). Therefore, we suggest that SOX9 and SOX10 comprise
a SOX-transcription group and share a bipartite transactivation
mechanism that implicates the direct regulation of BMP2 by
SOX10 (Haseeb and Lefebvre, 2019).

LGR5 (leucine-rich repeat-containing G-protein coupled
receptor 5) is a target gene of the Wnt pathway and a known
indicator of endogenous stem cells in rapidly proliferating organs
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(Barker et al., 2007; Jaks et al., 2008). In addition, LGR5 plays
key roles in embryonic development and in the regeneration and
preservation of adult stem cells (Chaoui et al., 2011). In a pattern
emulating that of SOX10, LGR5 is widely expressed in NCCs at
early stages of embryonic development (Boddupally et al., 2016).
LGR5 is expressed in the apical poles of the sensory epithelium
of the cochlear duct and vestibular end organs, and has limited
expression in the hair cells of the organ of Corti during early
embryonic development (Chai et al., 2011). Previous research
has demonstrated that Lgr5 + cochlear supporting cells (SCs)
can regenerate hair cells (HCs) via direct differentiation and
mitotic regeneration (Wang et al., 2015). Differentially expressed
genes can be found between Lgr5+ progenitors and Lgr5-SCs that
may regulate the proliferation of the Lgr5+ progenitors and the
regenerative capacity of HCs (Cheng et al., 2017).

GBX2 (gastrulation brain homeobox 2) encodes a DNA-
binding transcription factor that plays critical roles in
embryogenesis. Several studies have concluded that GBX2
is needed for the development of the inner ear, especially
during the initial formation of the otic placode (Miyazaki
et al., 2006; Steventon et al., 2012, 2016). The Gbx2−/− mouse
displays several inner ear abnormalities, ranging from local
malformation to a complete loss of vestibular and cochlear inner
ear structures—including the absence of semicircular canals,
malformed saccule, and cochlear duct (Lin et al., 2005). Several
current studies have also depicted pivotal parts GBX2 plays in
the induction, migration, and patterning of NCCs by impacting
multiple facets of NC development (Li et al., 2009; Chervenak
et al., 2014; Roeseler et al., 2020). The loss of GBX2 function
also modulates the Slit/Robo-signaling pathway, leading to
abnormal NCC migration and abnormalities that as similar to
those in congenital diseases, such as DiGeorge syndrome and in

craniofacial malformations (Byrd and Meyers, 2005; Calmont
et al., 2009).

GATA3 belongs to the GATA family of transcription factors
and is a key regulator of auditory system development (Karis
et al., 2001; Appler and Goodrich, 2011). Its expression is found
in virtually all auditory cell types (Rivolta and Holley, 1998;
Lawoko-Kerali et al., 2002; Milo et al., 2009). In early inner ear
development from thembryonic otic placode, GATA3 regulates
the signaling of prosensory genes in a dynamic fashion and at the
same time, it directs the differentiation of cochlear neurosensory
cells (Duncan and Fritzsch, 2013; Moriguchi et al., 2018). Further
studies have provided evidence that GATA3 is also crucial for
the coordinated maturation of sensory hair cells and their
innervation (Bardhan et al., 2019). In humans, the expression of
GATA3 is localized to the cochlear duct and the spiral ganglion
between weeks 8 and 12 of gestation (Roccio et al., 2018); the loss
of GATA3 in inner hair cells leads to hearing loss and accounts
for some of the deafness connected to hypoparathyroidism and
renal anomaly (HDR) syndrome (Van Esch et al., 2000; Martins
et al., 2018). Researchers have also demonstrated that GATA3
plays critical roles in neural crest cell development and neuronal
differentiation in some cranial neural crest derivatives (George
et al., 1994; Lieuw et al., 1997; Lakshmanan et al., 1999).

In conclusion, in this work, we created a WS human iPSC
model with a SOX10 mutation, and allowed the differentiation
of iPSC into NCCs. Relative to normal controls, the WS
patient-specific iPSCs had a poor response to NCC induction
in vitro and a compromised differentiation potential in regard
to the NCCs’ fate. Transcriptional perturbation in NCC
differentiation in this model was revealed through the intensive
analysis of high-throughput RNA-seq results. In addition, we
identified numerous candidate genes that are highly likely

FIGURE 10 | The schematic diagram for the SOX10-regulated transcription of certain target genes during development and differentiation in neural crest cell.
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to be related to inner ear malformation in WS patients with a
SOX10 mutation (Figure 10). Because the molecular mechanisms
underlying the effect of SOX10 on inner ear development have
not been fully elucidated, our research offers a rich context for
investigating the molecular etiology of WS in regard to inner ear
malformations. Nevertheless, additional research is necessary in
order to verify the part that the determined target genes and their
pathways have in triggering inner ear malformations.
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