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Ferroptosis plays a critical role in different types of cancers, but the prognostic impact of ferroptosis in cutaneous melanoma
remains lacking. *erefore, ferroptosis-related genes (FRGs) were firstly obtained from the FerrDb database and the differentially
expressed FRGs were identified by the “limma” algorithm. Next, the prognostic differentially expressed FRGs were screened out by
univariate Cox regression, which were subsequently used to cluster melanomas into two subtypes (clusters A and B). Besides, the
Boruta algorithm and principal component analysis (PCA) were performed to build a 15-FRGs indicator, which can robustly
predict patients’ overall survival (OS) and be considered as an independent prognostic factor in melanoma. *e melanoma
patients were further divided into high- and low-FRGs score groups. *e high score group have a good prognosis, with higher
T cell immune infiltrating and lower mutation frequencies in NRAS, KRAS, and NF1. Finally, we discovered that many immune
processes and several chemotherapy drugs were closely associated with FRGs score. *us, our study provides a novel ferroptosis-
associated classifier and indicator to predict the prognosis of melanoma. Besides, we identified several potential chemotherapy
drugs to induce ferroptosis and could supply additional effective treatments.

1. Introduction

Melanoma is a highly lethal cutaneous tumor which origi-
nates from the malignant transformation of melanocytes.
Although melanoma takes 5% incidence in all skin-related
cancer patients, it causes an overall mortality rate of 80%.
Due to the absence of early symptoms, melanomas are
frequently diagnosed at an advanced stage and only 10% of
patients have 5-year survival [1, 2]. Currently, the traditional
system for melanoma treatment and prognostic prediction,
such as Clark level, tumor stage, and histological type, is
growingly becoming difficult to illustrate the diversity of
clinical outcomes [3]. Molecular features such as gene
transcription, translation, and many posttranslational

modifications lead to heterogeneity of cutaneous melanoma
[4]. *us, it is urgently required to explore the new bio-
markers for classification and early predicting the prognosis
of melanoma.

Ferroptosis is defined as a new type of programmed cell
death based on iron, which is characterized by the accu-
mulation of lethal lipid peroxides and intracellular reactive
oxygen species (ROS) production [5]. In recent years, many
significant studies have demonstrated that ferroptosis is a
participant in a large number of pathological processes,
especially in the proliferation and growth of cancer cells
[6, 7]. *e activation of ferroptosis suppressed the devel-
opment of many chemotherapy-resistant cancers, which
indicated that ferroptosis may be a promising therapeutic
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target for cancer treatment [8]. Except for induction agents of
ferroptosis, various genes have also been identified as drivers or
suppressors of ferroptosis [9]. For example, the downregulation
of SLC7A11 and SLC3A2 induces the activation of ferroptosis
and leads to antitumor efficacy [10]. Besides, the prognostic
value of ferroptosis-related genes has been demonstrated in
much cancer research. For instance, Liu et al. developed a 19-
ferroptosis-related gene signature to predict the survival of
glioma patients [11]. Lou and Ma constructed a novel 7 fer-
roptosis-associated prognostic genes’ indicator for uveal mel-
anoma [12]. Zhang et al. identified 15 ferroptosis-related
mRNAs therapeutic targets for the treatment of ovarian cancer
[13]. Similarly, ferroptosis-associated studies are increasing to
reveal its significance in the progression of cutaneous mela-
noma [14]. Zhang et al. proved that the silence of miR-9
promotes ferroptosis in melanoma cells. Basit et al. reported
thatmitochondrial complex I inhibitor is an important agent to
induce ferroptosis in melanoma cells [15]. However, a com-
prehensive analysis of the ferroptosis-related gene in the
prognosis of cutaneous melanoma patients remains lacking.
Fortunately, the availability of public, large-scale datasets such
as *e Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases provided numerous transcriptome
profiles to investigate the landscape of ferroptosis-related genes.

*erefore, in this research, we comprehensively evalu-
ated the features of ferroptosis-related genes in cutaneous
melanoma according to the TCGA and GEO RNA-Seq
datasets. Based on the expression level of ferroptosis-related
genes, melanoma patients were successfully classified into
tumor subtypes with different clinical characteristics and
survival events. Next, we constructed a prognostic signature
with 15 ferroptosis-related genes, which well predicted the
survival outcome of melanoma patients. Finally, several
chemotherapy drugs were identified from the CellMiner
database [16], which intimately associated ferroptosis sig-
nature and afforded alternative therapies for system treat-
ment of melanoma.

2. Materials and Methods

2.1.DatasetsAcquisitionandAnalysis. *eRNA-Seq datasets
and clinical features referred to in this study were acquired
from the publicly available databases. *e normal skin tissue-
matched melanoma tumor dataset (TCGA-GTEx) was
downloaded from the Xena website (https://xena.ucsc.edu/
public-hubs/). *e RNA expression datasets that contained
GSE15605, GSE3189, and GSE46517 were derived from the
GEO database (https://www.ncbi.nlm.nih.gov/geo). *en, the
data form of gene expression for these datasets was converted
to TPMs (transcripts per kilobase million). Next, “ComBat”
algorithmwas performed to reduce the batch effect andmerge
these datasets into a large cohort. Besides, another two
melanoma datasets (GSE19345 and GSE65904) with survival
information were selected out for outside validation analyses.

2.2. Ferroptosis-Related Genes. In total, 177 ferroptosis-re-
lated genes (FRGs) consisting of 108 driver genes and 69
suppressor genes were downloaded from the FerrDb website

(https://www.zhounan.org/ferrdb) which deposited regula-
tors and markers of ferroptosis collected from the PubMed
database [17]. After removing the overlapped genes, 173
FRGs were finally selected out for further analysis.

2.3. Differently Expressed FRGs. Samples in the large cohort
were classified into normal and tumor groups. “Limma” R
package was used to screen the differently expressed FRGs
with adjusted P< 0.05 and |log 2 fold change (FC)| ≥0.5.
Next, Gene Ontology (GO) enrichment analyses were re-
spectively performed to explore the underlying molecular
mechanism in upregulated and downregulated FRGs.

2.4. FRGs-Associated Subtype Identification. Univariate Cox
regression analysis was used to screen the prognostic value of
differently expressed FRGs in the TCGA-SKCM dataset,
where P< 0.05 was regarded as statistically significant. Af-
terward, we utilized the consensus clustering method to
generate the final clustering of patients based on the
prognostic FRGs. Principal component analysis (PCA) was
performed to distinguish patient clusters distribution in the
first two principal components. Moreover, we also explored
interactive correlation among these prognostic FRGs. To test
the stability of FRGs for classification, patients in GSE19345
and GSE65904 datasets were accordingly classified and
verified.

2.5. Feature Selection and FRGs Score Construction.
Furthermore, the Boruta algorithm was performed to select
the important features from the identified prognostic FRGs.
*ese important FRGs were further recruited to PCA cal-
culation and the principal component 1 (PC1) was extracted
to represent the signature score. Finally, we constructed
FRGs associated prognostic model in TCGA-SKCM datasets
and the formula is listed as follows: FRGs score �

driver +  PC1 driver +  PC1 suppressor. *e FRGs score
of each patient was calculated based on the formula and next
normalized range from 0 to 1. *ese patients were classified
into high or low score groups by best cutoff value. *e
Kaplan–Meier survival analysis was used to compare the
different outcomes between high- and low score groups. To
prove the robustness of the result, the FRGs signature was
further validated in GSE19345 and GSE65904 datasets.
Besides, to evaluate the prognostic value of FRGs score,
multivariate cox regression for the overall survival (OS) time
was performed on the traditional clinical factors and the
FRGs score in multiple datasets. *e hazard ratios (HR) and
95% confidence intervals (95% CI) of the prognostic factors
were calculated.

2.6. SomaticMutation Profile Analysis. *e mutation profile
of the TCGA-SKCM dataset was deposited in the form of
Mutation Annotation Format at *e Cancer Genome Atlas
(TCGA) data portal (https://gdac.broadinstitute.org), which
was analyzed and summarized by using the “Maftools”
package. Firstly, the mutation landscape of low- and high-
FRGs score subgroups was illustrated by oncoPrint plots.
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*e top 10 most frequently mutated genes, as well as several
well-known mutants in melanoma such as BRAF, NRAS,
KRAS, HRAS, and NF1 between low- and high- FRGs score
subgroups, were investigated. Besides, tumor mutational
burden (TMB), which was defined as the number of mu-
tations per megabase of the panel sequences examined, was
calculated by Maftools. Next, the correlation between TMB
and FRGs scores was also explored.

2.7. Immune Cells Infiltration and Immune Checkpoint Reg-
ulators Association. In order to investigate the association
between FRGs score and immune status, the proportion of
22 kinds of immune cells in the tumor microenvironment
was calculated via the CIBERSORTalgorithm. Samples with
CIBERSORT P< 0.05 were included in the correlation
analysis between FRGs score and immune cells. In addition,
to explore the potential biological phenotypes between high-
and low-FRGs score groups, the expression data of immune
checkpoint regulators was extracted and analyzed with FRGs
score.

2.8. Gene Set Enrichment Analysis. To explore the signaling
pathways enrichment for different FRGs score phenotypes in
melanoma, Gene Set Enrichment Analysis (GSEA) was
performed between low- and high-FRGs score groups. *e
cancer hallmark database (h.all.v7.0.symbols) and KEGG
database (c2.cp.kegg.v7.0.symbols) were applied in GSEA to
investigate the signaling pathways correlated with different
subgroups of melanoma. *e adjusted P< 0.05 were used to
sort the significant pathways enriched in each phenotype.

2.9. Chemotherapy Drugs Prediction. To explore the likeli-
hood of chemotherapeutic drugs, the CellMiner database
(https://discover.nci.nih.gov/cellminer/) was performed to
assess the correlation between FRGs score and drug response
[16]. Firstly, the expression profiles of FRGs in NCI-60 cell
lines and the drug activity were downloaded from the
CellMiner database. Next, the FRGs score of each cell line
was estimated and normalized accordingly. Finally, the
Spearman test was applied to calculate correlation coeffi-
cients and P< 0.05 and |Correlation|> 0.25 were considered
statistically significant.

2.10. Statistical Analysis. Statistical analyses in our study
were conducted using R software version 3.6.0 with pack-
ages. *e consensus clustering method was applied by the
ConsensusClusterPlus package. Boruta algorithm was
conducted by “Boruta” package, CIBERSORTalgorithm was
estimated by “CIBERSORT” package, GSEA was performed
by using “clusterProfiler” package. *e best cutoff values of
each dataset were computed by using the “survminer”
package. *e Kaplan–Meier and Cox regression analyses
were deployed by “survival” package. “prcomp” function in
R was used to estimate PCA. *e Spearman coefficient
examined the correlation analyses. Wilcoxon tests were used
to compare the difference in subgroups. *e chi-square test
analyzed the association between the FRGs score subgroups

and somatic mutations. P< 0.05 or adjusted P< 0.05 sug-
gests statistical significance in all tests.

3. Results

3.1. Differently Expressed FRGs. A total of 870 samples were
merged into a large cohort from the meta-cohort (TCGA-
SKCM, GSE15605, GSE3189, and GSE46517), which con-
sisted of 579 melanoma samples and 291 normal skin
samples. *e ComBat algorithm was performed to reduce
the batch effect generated from the different platforms, and
the PAC plot showed that the clusters based on the removal
batch effect placed more together than before removal
(Figure 1(a)). According to the selection standard, 99
differently expressed FRGs were screened out from the
large cohort, where 74 FRGs were significantly upexpressed
and 25 FRGs were significantly downexpressed in mela-
noma (Figure 1(c)). *e heat map of differently expressed
FRGs is illustrated in Figure 1(b).*e significantly enriched
signal pathways in the GO database are manifested in
Figure 1(d).

3.2. Construction of the FRGs Classifier. Firstly, the prog-
nostic value of these differently expressed FRGs was esti-
mated by using univariate Cox regression analysis in TCGA-
SKCM. *e forest plot revealed that 16 FRGs that contained
9 driver and 7 suppressor genes were significantly associated
with OS time (P< 0.05) (Figure 1(e)).*e expression level of
these FRGs in TCGA-SKCM was extracted for subsequent
analysis, and the heat map of correlation demonstrated that
these FRGs were strongly and positively associated with each
other (Figure 1(f )). Next, we divided the melanoma patients
into cluster A and cluster B based on the expression of
corresponding FRGs (Figure 2(a)). *e Kaplan–Meier
curves suggested that the melanoma patients in cluster B
have a poor survival outcome than the patients in cluster A
with log-rank P � 0.02 (Figure 2(d)). *e stratified analysis
for clinical variables indicated that vital status, metastatic
status, clark level, and age in clusters A and B have sig-
nificant differences. No correlations were observed in other
variables such as gender, tumor stage, and race (Figure 2(a)).
Moreover, patients in GSE65904 (Figure 2(b)) and
GSE19345 (Figure 2(c)) datasets were classified accordingly
and the Kaplan–Meier analyses indicated a similar result.
Compared to patients in cluster A, cluster B had significantly
shorter OS time with log-rank P � 0.035 in GSE65904
(Figure 2(e)) and GSE19345 (Figure 2(f )). We further ex-
plored the association between two clusters and the clinical
characteristics of melanoma patients in GSE65904 and
GSE19345, respectively. We astonishingly found that age
and vital status were also correlated with FRGs classifier.
Lastly, PCA plots proven that the FRGs classifier can suc-
cessfully divided melanomas into subtypes with different
clinical outcomes (Figure 2(g)).

3.3. Construction of the FRGs Score. To acquire the optimal
gene indicator of FRGs in melanoma, we firstly used Boruta
algorithm to screen FRGs based on the importance of genes.
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Figure 1: Selection of the prognostic value of differently expressed ferroptosis-related genes (FRGs). (a) *e principal component dis-
tribution of datasets (TCGA-SKCM, GSE15605, GSE3189, and GSE46517) in before and after removal batch effect. (b) Heat map of
differently expressed FRGs in the meta-cohort (TCGA-SKCM, GSE15605, GSE3189, and GSE46517). Rows represent FRGs and columns
represent samples; red and blue indicate higher expression and lower expression. (c) Volcano plot of differently expressed FRGs in meta-
cohort (FRGs with logFC≥ 2 were labeled). (d) Gene Ontology (GO) enrichment analysis of the upregulated and downregulated FRGs. (e)
Forest plots of 16 prognostic differently expressed FRGs. (f ) Correlation analysis of 16 prognostic differently expressed FRGs. ∗P< 0.05;
∗∗P< 0.01.
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Nest, 15 FRGs (WIPI1, ATG13, EGFR, MAPK8, ELAVL1,
ABCC1, HMGB1, ATM, PANX1, RB1, PML, FH, ACSL3,
TMBIM4, and ZFP36) remained through this step and were
subjected to FRGs score estimation. Based on the formula
for FRGs score calculation, a FRGs score for each patient in
TCGA-SKCM dataset will be generated. *en, by applying
the best cutoff value, melanoma patients were divided into
high score group (n� 212) and low score group (n� 146) in
the TCGA-SKCM dataset. *e distributions of the FRGs
score, FRGs score subgroup, age subgroup, gender, Clark

level, tumor stage, vital status, and metastatic status of
patients in the TCGA-SKCM dataset are illustrated in
Figure 3(a). *e stratified analyses indicated that age, vital
status, and metastatic status were intimately correlated with
FRGs score. *e Kaplan–Meier curves showed that patients
in high score group have a longer survival time than low
score with a log-rank test of P � 0.012, 95% CI� 0.502–0.925
(Figure 3(d)). In addition, to prove the robustness of the
result, validation analysis was performed in GSE65904 and
GSE19345 datasets. *e patients in GSE65904 and
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Figure 3: Clinical variables associated with the ferroptosis-related genes (FRGs) score in melanoma. (a)*e association between FRGs score
and clinical variables (age, gender, Clark level, tumor stage, vital status, and metastatic status) in TCGA-SKCM. (b)*e association between
FRGs score and clinical variables (age, gender, tissue, tumor stage, and vital status) in GSE65904. (c) *e association between FRGs score
and clinical variables (age, gender, tumor stage, and vital status) in GSE19345. ∗P< 0.05; ∗∗P< 0.01. (d) Kaplan–Meier (KM) analysis of the
prognostic model for the 15-FRGs predictor in TCGA-SKCM. (e) KM analysis of the prognostic model for the 15-FRGs predictor in
GSE65904. (f ) KM analysis of the prognostic model for the 15-FRGs predictor in GSE19345. (g) *e FRGs score distribution of subtype
(cluster A and cluster B in TCGA-SKCM, GSE19345, and GSE65904 datasets.
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GSE19345 were classified into high score group or low
score group according to TCGA-SKCM. *e distribu-
tions of the FRGs score, FRGs score subgroup, age
subgroup, gender, tumor stage, and vital status of patients
in GSE65904 and GSE19345 were, respectively, man-
ifested in Figures 3(b) and 3(c). Stratified analyses also
suggested that age and vital status were closely associated
with FRGs score. More interestingly, the Kaplan–Meier
curves revealed that significant differences of survival
time exist in the high score and low score groups re-
gardless in GSE65904 (log-rank P � 0.052, 95%
CI � 0.406–0.998) (Figure 3(e)) or GSE19345 (log-rank
P � 0.045, 95% CI � 0.215–0.949) (Figure 3(f )). Besides,
the violin plots manifested that the FRGs score in the
cluster A subgroup was generally higher than that in the
cluster B subgroup.

3.4. Independent Prognostic Value of the FRGs Score. To
investigate the prognostic value for OS in multiple datasets,
clinical variables and FRGs score were conducted by mul-
tivariate cox regression analyses (Figure 4). *e forest plot
suggested that only the FRGs score stably remained inde-
pendent prediction for OS in TCGA-SKCM dataset
(HR� 0.080, 95% CI� 0.02–0.038, P � 0.001), GSE65904
dataset (HR� 0.640, 95%CI� 0.150–0.900, P � 0.039), and
GSE19345 dataset (HR� 0.090, 95%CI� 0.010–1.000,
P � 0.050).

3.5. Somatic Mutation in the FRGs Score Subgroup. To ex-
plore the potential association between somatic mutation
and FRGs score, theMutation Annotation Format in TCGA-
SKCM was processed by the “maftools.” Firstly, patients in
TCGA-SKCMwere classified into low- and high-FRGs score
groups. Next, the oncoPrint plots summaries of the top 20
gene mutation information of these two subgroups
(Figures 5(a) and 5(b)). *e top 3 genes with the highest
mutation frequencies in the high-FRGs score group were
TTN (75%), MUC16 (71%), and BRAF (53%), while those in
the low-FRGs score group were TTN (72%), MUC16 (66%),
and BRAF (43%).

*e most prevalent significantly mutated genes in
melanoma such as BRAF, NRAS, KRAS, HRAS, and NF1
were also explored; the results indicated that the high-FRGs
score group have lower mutation frequencies in NRAS,
KRAS, and NF1 compared to the low-FRGs score group
(Figure 5(d)). Moreover, the forest plot revealed that
OR52B4, RAPGEF5, YY1AP1, CCDC40, ATAD2B (highly
mutated in the high score) and SLC2A7, OR10C1, MMP20,
TRPV3, BCL6 (highly mutated in the low score) were sig-
nificantly different between the low- and high-score groups
(Figure 5(c)). Although spearman coefficient and subgroup
analysis suggested that the TMBs were not significantly
correlated with FRGs score (Figure 5(f)). Patients in the high
score group had relatively high mutation frequencies of
BRAF and indicated a good survival outcome in the
Kaplan–Meier analysis between mutant and wild type of
BRAF subgroups (Figure 5(e)).

3.6. Immune Cells Infiltration and Immune Checkpoint Reg-
ulators Association. To explore the association between
FRGs score and immune infiltration, the CIBERSORT al-
gorithm was firstly used to comprehensively estimate the
proportion of 22 immune cells in the immune microenvi-
ronment of melanoma. After the exclusion of low-quality
samples, 207 melanoma patients were filtered out for further
analysis. *e distribution levels of 22 immune cells for the
FRGs score subgroup in TCGA-SKCM are shown in
Figure 6(a). Next, the correlation analyses indicated that
FRGs score was positively correlated with Mast cells acti-
vated, NK cells activated, plasma cells, T cells CD8, T cells
follicular helper, and T cells gamma delta, while being
negatively associated with Dendritic cells activated and
resting, Mast cells resting, and NK cells resting (Figure 6(b)).
Subgroup analysis of 22 immune cells suggested that T cells
CD8, T cells follicular helper, macrophages M1, NK cells
activated, Mast cells activated and resting, and Dendritic
cells were significantly different between high- and low-
FRGs score groups (Figure 6(c)). Besides, to evaluate the
association between FRGs score and immune checkpoint
regulators, we selected the most prevalent immune check-
point-relevant genes such as GZMA, CD40, CD40LG,
LAG3, BTLA, PDCD1, IDO1, TIM3, CXCL9, CTLA4,
HAVCR2, CD8A, TIGIT, CD274, PRF1, TBX2, and TNF for
further analysis. We observed that almost all regulators were
negatively correlated with FRGs score (Figure 6(d)). Except
for regulators of TNF, IDO1, LAG3, and TBX2, all selected
immune checkpoint-relevant genes were significantly
overexpressed in the low-FRGs score group (Figure 6(e)).

3.7. GSEA. GSEA was performed to investigate the different
signal pathways enriched in the high- and low-FRGs score
groups. Based on the selection standard and the ranked
pathways enriched in each phenotype, the top five pathways
were illustrated in the GSEA plot. We observed that cancer
hallmarks such as allograft rejection, coagulation, epi-
thelial–mesenchymal transition, inflammatory response,
and TNFA signaling via NFKB were all enriched in the low
score group (Figure 6(f )). *e KEGG results revealed that
the low score group was significantly correlated with
pathways such as arachidonic acid metabolism, complement
and coagulation cascades, cytokine-cytokine receptor in-
teraction, ECM receptor interaction, and hematopoietic cell
lineage (Figure 6(g)).

3.8. Chemotherapy Drugs Prediction. Currently, chemo-
therapy is effective for the treatment of melanoma. Herein,
the CellMiner database was used to predict sensitivity to
chemotherapy drugs. Eventually, we observed 10 drugs were
significantly correlated with FRGs score, which included
paclitaxel, nelarabine, dolastatin 10, actinomycin D, eribulin
mesylate, vinorelbine, vinblastine, chelerythrine, docetaxel,
and homoharringtonine (Figure 7(a)). Furthermore, the box
plots manifested that the estimated IC50 of paclitaxel,
vinorelbine, and vinblastine was significantly different be-
tween the high- and low-FRGs score groups (Figure 7(b)).
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4. Discussion

Cutaneous melanoma is a heterogeneous disease with high
metastases and death threat. *e prognosis of melanoma is
not only dependent on histological type but also relied on the
molecular classification of cancer, which is critical to
managing cancer with regard to diagnosis and therapeutic
choice [18]. In addition, the traditional classification in-
creasingly manifests ineffective and lack of benefits in
clinical treatment. Hence, researchers are sparing no effort
to investigate the novel molecular signature for better di-
agnosis and predicting prognosis. For example, BRAF
mutations were generally observed in various types of
cancer, including colon cancer, thyroid cancer, and mela-
noma [19–21]. *e subtype cancer of the BRAF mutant
usually benefits from inhibitors targeting this mutation.
Recently, a growing amount of research suggested that
ferroptosis working as a newly introduced cell death has
shown a huge perspective of application in cancer treatment
[22–24]. *erefore, we systematically analyzed the

ferroptosis-related genes (FRGs) to identify two tumor
subtypes with different clinical characteristics and establish a
stable and precise signature for prognostic prediction in
melanoma patients.

To our knowledge, this study is the first to explore the
landscape of ferroptosis-related genes in cutaneous mela-
noma based on large cohort analysis. *rough differently
expressed gene analyses, we observed that the most of FRGs
were up- or downexpressed in melanoma tissue. *is acti-
vation of FRGs indicated that ferroptosis plays an important
role in the progression of melanoma. Next, we performed
GO enrichment and found that these differently expressed
FRGs were positively correlated with oxidative stress
pathway, lipoxygenase, apoptotic signaling, and iron ion
binding, which reversely proven the reliability of our results.

Generally, a validity of classification is beneficial in
predicting the clinical effects of genotyping with regard to
treatment response [25]. *erefore, we identified two tumor
subtypes (clusters A and B) of melanoma via the mRNA
expression level of FRGs. Compare to the cluster A subtype,
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Figure 4: Multivariate Cox regression of ferroptosis-related genes (FRGs) score. Forest plot of multivariate Cox regression for FRGs score
and clinical characteristics in TCGA-SKCM, GSE65904, and GSE19345 datasets.
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Figure 5: Mutational landscape between high and low ferroptosis-related genes (FRGs) score groups in TCGA-SKCM. (a)*e oncoPrint of
top 20 mutant genes in the high-FRGs score group. (b) *e oncoPrint of top 20 mutant genes in low-FRGs score group. (c) Forest plots of
somatic variants between high- and low-FRGs score groups (∗∗P< 0.01; ∗P< 0.05). (d) *e oncoplots of mutants in BRAF, NRAS, KRAS,
and NF1 between high- and low-FRGs score groups. (e) Kaplan–Meier (KM) analysis to compare overall survival (OS) between BRAF
mutant and wild type. (f ) *e correlation and different analysis between FRGs score and tumor burden mutation (TMB).
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Figure 6: Tumor infiltrating landscape between high and low ferroptosis-related genes (FRGs) score groups in TCGA-SKCM. (a) *e
landscape of immune infiltration between high- and low-FRGs score groups. (b) Heat map of correlation analysis for the FRGs score and
immune infiltrating cells. (c) *e subgroup analysis of 22 immune infiltrating cells between high- and low-FRGs score groups. (d) *e
correlation analysis between FRGs score and the expression of immune checkpoints. (e) *e subgroup analysis of immune checkpoints
between high- and low-FRGs score groups; ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, and ∗∗∗∗P< 0.0001. (f ) Cancer hallmark enrichment plots
showed that allograft rejection, coagulation, epithelial-mesenchymal transition, inflammatory response, and TNFA signaling via NFKBwere
active in the low-FRGs score group. (g) KEGG enrichment plots manifested that arachidonic acid metabolism, complement and coagulation
cascades, cytokine-cytokine receptor interaction, ECM receptor interaction, and hematopoietic cell lineage were active in the low-FRGs
score group.
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Figure 7: Relationships between ferroptosis-related genes (FRGs) score and chemotherapeutic response. (a) Correlation between the FRGs
score and the IC50 value of drugs including paclitaxel, nelarabine, dolastatin 10, actinomycin D eribulin mesylate, vinorelbine, vinblastine,
chelerythrine, docetaxel, and homoharringtonine. (b) *e box plots of the estimated IC50 for paclitaxel, nelarabine, dolastatin 10, ac-
tinomycin D eribulin mesylate, vinorelbine, vinblastine, chelerythrine, docetaxel, and homoharringtonine between high- and low-FRGs
score groups. ∗P< 0.05.
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we observed that melanoma samples in cluster B have a
shorter survival time and were closely associated with older
age, higher Clark level, and high ratio of metastasis and
death. It suggested that distinct differences of clinical and
molecular characteristics existed in these two subtypes.
Besides, the significant correlation between FRGs and OS in
melanoma indicated that these prognostic FRGs were
possibly used to build a model to predict the survival of
patients. Afterward, we constructed and validated a robust
15-FRGs indicator to predict the prognosis of melanoma in
multiple independent datasets. Our prognostic indicator can
subsequently classify patients into subgroups with different
survival events, somatic mutations, and immune infiltra-
tions. Although no significant correlation was found be-
tween the TMB and FRGs score, high mutation of BRAF (53
vs. 43%) and lowmutation of NRAS (24 vs. 32%), NF1 (13 vs.
18%) were observed in the high-FRGs score group. *e
mutant of BRAF in melanoma patients has predicted a good
survival and the NRAS or NF1-mutant subtype of melanoma
was associated with poor outcomes [26]. Recently, many
studies have demonstrated that ferroptosis is intimately
correlated with tumor immunity [27]. Based on GSEA re-
sults, we also discovered that many immune processes such
as inflammatory response, TNFA signaling via NFKB, and
cytokine receptor interaction were enriched in the FRGs
score subgroup. It is logical to speculate that ferroptosis may
have a close relationship with immunity in melanoma.
Interestingly, we found that T cells (CD8+, follicular helper,
gamma delta), activated Mast cells, NK cells, and Plasma
cells were highly infiltrated in the high-FRGs score group,
while almost all immune checkpoint-relevant genes involved
in this study were highly expressed in low-FRGs score group.
Previous research has proven that high infiltration of CD8+
T cells (adaptive immune response) and prominent infil-
tration of activated Mast cells, NK cells, and Plasma cells
(native immune response) inmalignant melanoma indicated
a favorable prognosis [28]. Moreover, it is generally accepted
that the high expression of immune checkpoints such as
CTLA4, PD-1, BTLA, CD274, and LAG3 will benefit tumor
cells to escape immune surveillance, avoid immune-medi-
ated apoptosis, and finally lead to poor prognosis [29, 30].
Considered together, these results indicated that our indi-
cator is reasonable and consistent with previous findings.
More importantly, combined with multivariate cox re-
gression analysis, we observed that the score of the 15-FRGs
indicator can be considered as an independent prognostic
model to afford a robustly accurate prediction of OS in
melanoma patients.

Based on the annotation of the FerrDb website, our 15-
FRGs indicator contained six suppressor genes (RB1, PML,
FH, ACSL3, TMBIM4, ZFP36) that inhibit ferroptosis and
nine driver genes (WIPI1, ATG13, EGFR, MAPK8,
ELAVL1, ABCC1, HMGB1, ATM, PANX1) which promote
ferroptosis. *ese genes are closely correlated with each
other in melanoma. All of them have been proven to be
associated with ferroptosis and even some of them have been
widely researched in melanoma. For example, the retino-
blastoma gene (RB1) regulated a series of malignant pro-
cesses in melanoma cells, such as cell proliferation,

differentiation, migration, and invasion [31]. Acyl-CoA
synthetase long-chain family member 3 (ACSL3) is crucial to
upregulate lipid caused by endoplasmic reticulum stress.
Chen et al. reported that ACSL1 plays a potential oncogenic
role in various tumors such as ovarian cancer, breast cancer,
and melanoma [32]. Daniela et al. proved that WIPI1 is a
melanoma-specific gene, which plays a key role inmelanoma
biology and could be regarded as a prognostic marker [33].
Moreover, it is well acknowledged that epidermal growth
factor receptor (EGFR) is overexpressed in many solid tu-
mors. Activation of EGFR will stimulate melanoma cells to
progress or metastasize and be resistant to BRAF inhibitors
[34, 35]. As for ATP binding cassette subfamily C member 1
(ABCC1), Chen et al. reviewed the previous literature and
suggested that ABCC1 is a family member of ABC trans-
porters and associated with the drug resistance of melanoma
cells [36]. In brief, much previous research has manifested
that these 15 genes may be closely correlated with ferroptosis
in melanoma development and afforded a significant insight
to construct a model based on FRGs.

Recently, ferroptosis is emerging as a promising ap-
proach for the treatment of cancer and especially tumor with
conventional drug resistance. *erefore, exploring the po-
tential chemotherapy drugs for inducing ferroptosis is a new
therapeutic target for melanoma treatment. *rough Cell-
Miner database analysis, we discovered that paclitaxel,
vinorelbine, and vinblastine were closely related to ferrop-
tosis and have significantly different IC50 values between
high- and low-FRGs score groups. Paclitaxel, as we know, is
a chemotherapeutic agent widely used to treat solid tumors
[37]. Even for the treatment of advanced melanoma, pac-
litaxel currently works as a second-line chemotherapeutic
drug and provides the last choice for clinicians [38].
Vinorelbine is a semisynthetic vinca alkaloid, which kills
tumor cells via mitotic apoptosis, autophagy, and inflam-
mation [39]. Helen’s team previously suggested that the
combination between vinorelbine and IL-2 is considered as
second-line therapy for metastatic melanoma [40]. Besides,
vinblastine is a new form of vinca alkaloid. *e combined
chemotherapy containing cisplatin, vinblastine, and dacar-
bazine was universally used in many clinical trials and
manifested encouraging results in advanced melanoma
[41–43]. Apart from the three chemotherapy drugs, we also
observed that seven drugs (nelarabine, dolastatin 10, acti-
nomycin D, eribulin mesylate, chelerythrine, docetaxel,
homoharringtonine) were closely associated with FRGs
score. Hence, it is reasonable to assume that these chemo-
therapy drugs may be regarded as supplementary therapies
or combined agents for the treatment of melanoma.

5. Conclusion

To sum up, our research provided a comprehensive analysis
of ferroptosis for melanoma classification and constructed a
robust 15-FRGs prognostic indicator which could be
regarded as an independent prognostic model in clinical
application. Furthermore, we also identified several potential
chemotherapy drugs to induce ferroptosis and could supply
additional effective treatments. *e patients with the high-
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FRGs score suggest a good survival outcome and may ac-
quire more chemotherapeutic benefits.
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