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SUMMARY

Osteoporosis is characterized by low bone mineral density (BMD). The advancement of high-

throughput technologies and integrative approaches provided an opportunity for deciphering the

mechanisms underlying osteoporosis. Here, we generated genomic, transcriptomic, methylomic,

and metabolomic datasets from 119 subjects with high (n = 61) and low (n = 58) BMDs. By adopting

sparse multiple discriminative canonical correlation analysis, we identified an optimal multi-omics

biomarker panel with 74 differentially expressed genes (DEGs), 75 differentiallymethylatedCpG sites

(DMCs), and 23 differential metabolic products (DMPs). By linking genetic data, we identified 199 tar-

geted BMD-associated expression/methylation/metabolite quantitative trait loci (eQTLs/meQTLs/

metaQTLs). The reconstructed networks/pathways showed extensive biomarker interactions, and a

substantial proportion of these biomarkers were enriched in RANK/RANKL, MAPK/TGF-b, and

WNT/b-catenin pathways and G-protein-coupled receptor, GTP-binding/GTPase, telomere/mitochon-

drial activities that are essential for bone metabolism. Five biomarkers (FADS2, ADRA2A, FMN1,

RABL2A, SPRY1) revealed causal effects on BMD variation. Our study provided an innovative frame-

work and insights into the pathogenesis of osteoporosis.

INTRODUCTION

Osteoporosis is a chronic progressive disorder characterized by low bone mineral density (BMD) and dete-

rioration of bone microarchitecture, resulting in increased bone fragility and susceptibility to fracture (Ka-

nis, 2002). The prevalence of osteoporosis in the aging population is over 20% in the United States, and it is

becoming an increasingly serious public health problem in the elderly (Wright et al., 2014). Previous genetic

studies have indicated that BMD is under strong genetic influence, with estimates of heritability ranging

from 0.50 to 0.85 (Ralston and de Crombrugghe, 2006; Ralston and Uitterlinden, 2010). In the past decade,

researchers have interrogated a wide variety of biological components (e.g., genetic variation, gene

expression, and DNA methylation) and uncovered a number of risk biomarkers for BMD. Nonetheless,

most of the prior studies have been focused on identification of biomarkers in a single molecular level

through univariate statistical methods (e.g., t test, ANOVA, or linear model) and rarely integrated evi-

dences frommultiple omics levels. Consequently, so far, the specific functional roles of these identifiedmo-

lecular biomarkers are largely unknown, and their in vivo biological interaction and causal mechanisms are

not explored.

The advancement of high-throughput technologies, such as whole genome sequencing (WGS), RNA-

sequencing (RNA-seq), reduced-representation bisulfite sequencing (RRBS), and liquid chromatography-mass

spectrometry (LC-MS), has dramatically increased our ability to comprehensively interrogate diverse molecular

features at different omics levels.Meanwhile, several statistical integrative approacheshave recentlybeendevel-

oped for combining the molecular biomarkers identified from separate analyses of each omics (Liu et al., 2013;

Gunther et al., 2012; Rohart et al., 2017), which lead to the discovery of crucial biological insights in a holistic

manner and substantially enhance our understanding of molecular networks/pathways underlying the develop-

ment of human complex diseases. In particular, LeCao and her colleagues (Singh et al., 2019; Rohart et al., 2017)

recentlyproposedasparsemultiplediscriminativecanonical correlationmethodthatenables featureselection in

multi-omics datasets and answers cutting-edge integrative questions in system biology. This method provided

several attractive properties: (1) it allows relax assumptions about data distribution and thus is highly flexible to

answer topical questions across various biology-related fields; (2) it is computationally efficient to handle large
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Figure 1. The Overall Workflow for Identifying Osteoporosis Biomarkers and Their Biological Interaction and

Causal Mechanisms

The workflow consisted of four phases. Phase 1: individual transcriptomic, methylomic, and metabolomic analyses. Phase

2: SMDCCA integrative analysis of DEGs, DMCs, and DMPs. Phase 3: targeted QTL analyses followed by interaction

network analyses, as well as functional annotation and classification analyses. Phase 4: MR analyses. PBMs, peripheral
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datasets, where the number of biological markers is much larger than the number of samples; (3) it implements

dimension reductionbyprojecting thedata into a smaller subspacewhile capturing the correlation structure and

highlighting the largest sources of variation from the data, resulting in a powerful explanation of the biological

system under study.

Genetic variation has a substantial impact on multiple genomic contexts and/or molecular/cellular phenotypes

in humans (Pierce et al., 2018; Albert and Kruglyak, 2015; Lemire et al., 2015; McVicker et al., 2013; Kraus et al.,

2015), such as transcript abundance (Pierce et al., 2018; Albert and Kruglyak, 2015), DNA methylation (Pierce

et al., 2018; Lemire et al., 2015), histone modification (McVicker et al., 2013), and metabolites (Kraus et al.,

2015). Whole-genome association scans to detect regions that harbor such variants for gene expression (known

as expression quantitative trait locus, eQTL), DNA methylation (meQTL), and metabolite product (metaQTL)

have been conducted inmultiple human cell/tissue types (GTEx Consortium et al., 2017). Interestingly, previous

studies have shown that many QTLs may appear to influence multiple molecular phenotypes. For instance, sin-

gle nucleotide polymorphisms (SNPs) associated with expression of nearby genes were often associated with

methylation of nearby CpG sites (Pierce et al., 2018). These commonQTLs in multiple phenotypesmay suggest

a potential shared biological mechanism by which the common causal variant influences both gene expression

and DNAmethylation en route to eventually influencing phenotypes. Nonetheless, the precise mechanisms un-

derlying these genetic associations remain poorly understood because of short of the study approaches. Thus,

analytical approaches for dissecting the complex biological processes are needed to prioritize the plausible

functional variants for further studies. Notably, Mendelian randomization (MR) analysis has been widely used

to assess potential causal relationships of genetic/environmental risk factors and diseases (Davey Smith andHe-

mani, 2014). Recently, MR analysis has been adopted to inspect the causality of biomarkers in disease etiology,

utilizing multiple independent SNPs identified by QTL analysis (QTL SNPs) as instrumental variables (Taylor

et al., 2019; Yao et al., 2018; Chen et al., 2018). As an example, by applying eQTLs as genetic instruments,

Chen et al. recently revealed a causal relationship between LINC00339 gene expression and BMD variation

(Chen et al., 2018).

In this work, we performed multi-omics integrative analyses with the largest datasets so far in the bone field

to identify osteoporosis biomarkers aswell as their biological interaction and causalmechanisms. A simple over-

view of our workflow is illustrated in Figure 1. Briefly, our approach consisted of four phases. First, we

performed individual transcriptomic, methylomic, and metabolomic analyses in 119 Caucasian female subjects

with high (n = 61) and low (n = 58) BMDs to identify potential differentially expressed genes (DEGs), differentially

methylated CpG sites (DMCs), and differential metabolic products (DMPs) for osteoporosis risk. The basic char-

acteristicsof the study subjectswere summarized inTableS1. Second,we integrated the identifiedDEGs,DMCs,

and DMPs via a sparse multiple discriminative canonical correlation analysis (SMDCCA) to retrieve prominent

osteoporosis biomarkers that not only reliably distinguish the high-BMDand low-BMDgroups, but also arehigh-

ly correlatedspanningdifferentbiological layers. Third,weused targetedQTLanalyses to test theeffectsofSNPs

on prominent osteoporosis biomarkers in each omics, followed by interaction network analyses, as well as func-

tional annotation and classification analyses, to assess the biological importanceof the identified biomarkers. At

last, by applyingMR analyses using the multiple independent QTL SNPs as instrumental variables, we assessed

the causality of the functionally classified biomarkers in BMD variation and inspected whether the identified bio-

markers are causally related to one another (e.g., by functional regulation) with the purpose of gaining insights

into the in vivo molecular functional mechanisms of the etiology of osteoporosis. In aggregate, we identified

several osteoporosis biomarkers and reconstructed multi-omics networks/pathways that maymediate variation

in risk of osteoporosis in vivo in humans.Our study pioneered an innovative integrative approach, and the results

illuminated the advantages of multi-omics integrative analysis and provided valuable insights into the patho-

genic mechanisms of osteoporosis.

RESULTS

Multi-omics Integration with Supervised SMDCCA

A total of 25,342 genes, 17,462,566 CpG sites, and 4,209 metabolites were measured in 61 subjects with

high BMD and 58 subjects with low BMD, of which 18,774 genes, 763,265 CpG sites, and 2,608 known

Figure 1. Continued

blood monocytes; DEGs, differentially expressed genes; DMCs, differentially methylated CpG sites; DMPs,

differential metabolic products; SMDCCA, sparse multiple discriminative canonical correlation analysis; IV,

instrumental variable; MR, Mendelian randomization.
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metabolites were selected (Methods) for subsequent analyses. We identified a total of 1,594 DEGs with

false discovery rate (FDR) < 0.05, 1,219 DMCs (q < 0.05 with methylation difference large than 10%), and

204 DMPs (p < 0.05) by comparing the high-BMD and low-BMD groups in prevailing single-omics analyses.

By multi-omics integrative analysis on DEGs, DMCs, and DMPs via SMDCCA approach, we identified an

optimal multi-omics biomarker panel for discriminating high-BMD and low-BMD groups (classification er-

ror rate of 0.1, Figure S1). This optimal multi-omics biomarker panel was composed of three components

(Table S2) involving a total of 74 DEGs, 75 DMCs, and 23 DMPs (henceforward termed prominent osteopo-

rosis biomarkers). We observed moderate correlations between DEGs and DMCs/DMPs and a few weak

correlations between DMCs and DMPs (Figures 2 and S2). Notably, a substantial proportion of DEGs

were found to be correlated with both DMCs and DMPs. For instance, gene expression of HAUS2 has pos-

itive correlation with DNAmethylation at CpG sites Chr1:5874307 (NPHP4) but is negatively correlated with

metabolite threonine. Interestingly, there is a significant interaction between HAUS2 and NPHP4 with a

combined interaction score of 0.905 (Szklarczyk et al., 2019). However, the specific functional roles of thre-

onine and mechanisms underlining the connection between these correlations are unclear.

Next, we examined the regulatory status for regions containing the 75 DMC prominent osteoporosis bio-

markers. Our results showed that 51 (68.0%) DMCs were mapped to the DNaseI hypersensitivity cluster; 28
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Figure 2. Circos Plot for Prominent Osteoporosis Biomarkers Selected in the Optimal Multi-omics Biomarker

Panel

Circos plot displays the different types of osteoporosis biomarkers in the first component on a circle, with links between

each omics indicating the positive (brown) or negative (black) correlations with cutoff r = 0.4. The blue line and orange line

represent the high-BMD and low-BMD groups, respectively.
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(37.3%) DMCs were assigned to the H3K27ac chromatin mark, which was often observed near active reg-

ulatory elements; and 39 (52.0%) DMCs also showed gene expression signals in multiple tissues from

GTEx RNA-seq data (Figure 3A, Table S3). In addition, there were 28 DMCs at sites that were predicted

to be fast-evolving (PhyloP score < �1) and 6 DMCs at sites that were predicted to be conserved (PhyloP

score >1) (Table S3). Interestingly, a previous study has indicated that the methylation-PhyloP correlation is

dependent on the sequence context (Chuang and Chen, 2014), although the exact mechanisms are still un-

clear. Therefore, the functional properties of these DMC biomarkers are worth further exploration.

Targeted eQTL, meQTL, and metaQTL Analyses

To assess the genetic effects on the prominent osteoporosis biomarkers (74 DEGs, 75 DMCs, and 23

DMPs), we performed targeted eQTL, meQTL, and metaQTL analyses by utilizing WGS data generated

from the same subjects. At significance threshold of FDR = 0.05, we detected 6,778 SNP-DEG pairs, corre-

sponding to 64 DEGs and 4,401 eQTL SNPs (eSNPs). Significant associations were also detected at 2,062

Figure 3. Functional Enrichment of Osteoporosis Biomarkers

Venn diagrams showing the functional enrichment of DMCs (A), BMD-associated QTL SNPs (B), and common QTLs (C) in

different potential regulatory elements. The detailed results can be found in Tables S3, S5, and S8.
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meQTL SNPs (meSNPs) for 42 DMCs and 1,380 metaQTL SNPs (metaSNPs) for 23 DMPs (Table 1). Notably,

a total of 199QTL SNPs, including 67 eSNPs, 126 meSNPs, and 6metaSNPs, were associated with BMD (p <

5.0310�8) in previous genome-wide association studies (GWASs) (Kemp et al., 2017; Morris et al., 2019)

(Figure 3B, Table S4), supporting their impact on the BMD phenotype. Among the 67 BMD-associated

eSNPs, 59 (88.1%) SNPs were predicted to alter transcription factor (TF) binding motifs and 50 (74.6%)

SNPs were annotated to enhance histone marks (Figure 3B, Table S5). Similar enrichment for potential reg-

ulatory elements were also observed for the 126 meSNPs and 6 metaSNPs associated with BMD (Figure 3B,

Table S5). Remarkably, we detected 28 highly correlated (linkage disequilibrium, LD r2 > 0.8) BMD-associ-

ated eSNPs for biomarker FADS2. These eSNPs lie in the gene cluster of MYRF, FEN1, FADS1, and FADS2

at the 11q12.2 locus, of which 3 eSNPs were mapped to transcription start sites (TSSs) of FEN1 (rs174538)

and FADS2 (rs5792235, rs99780), 1 eSNP rs1535 mapped to FADS2 enhancer, and 1 eSNP rs174562 over-

lapped with both TSS and enhancer of FADS1/FADS2 in a wide variety of cell/tissue types (Figure 4). Inter-

estingly, these 5 eSNPs also showed the top five highest functionality scores among the 28 eSNPs (Fig-

ure S3, Table S6) through 3DSNP prioritization analysis (Lu et al., 2017). This result is supported by a

previous functional study, which demonstrated the influence of rs174538 on the expression of FEN1 and

its enzyme activity (Yang et al., 2009).

Next, we attempted to identify common QTLs across DEGs, DMCs, and DMPs. A total of 448 potential

eSNPs were also associated (p < 5.0310�5) with methylation at 48 DMCs, which corresponded to 883 SNP-

DEG-DMC combinations (Table S7). For example, SNP rs2236373 is associated with gene expression of

BMP3 (p = 3.45310�6) andDNAmethylation at CpG siteChr16:75279661 (p = 4.42310�5) in BCAR1 gene. Inter-

estingly, both biomarkers were reported to be associated with bone-related signaling pathways, such as WNT

pathway (Kokabu and Rosen, 2018) and RANK/RANKL pathway (Robinson et al., 2009). Similarly, we identified

451 SNP-DEG-DMP combinations and 148 SNP-DMC-DMP combinations (Table S7). Functional annotation an-

alyses showed that many of these multi-marker QTLs were predicted to alter TF binding motifs and/or mapped

to other putative regulatory regions (Figure 3C, Table S8), suggesting that a substantial number of genetic var-

iants may havemulti-level effects on functional biomarkers across different omics levels, possibly through regu-

lation via complex functional network/modules across multi-omics layers.

Functional Interaction Network of the Prominent Osteoporosis Biomarkers

Through STRING interaction analysis (Szklarczyk et al., 2019), we revealed functional interactions among

the 74 DEGs and/or 75 DMCs (corresponding to 61 DMC-annotated genes) that were identified in the

optimal multi-omics biomarker panel (Figures 5 and S4). Notably, by integrating 74 DEGs and 61 DMC-an-

notated genes together, we revealed a complex interaction network (Figure 5), which may indicate the po-

tential regulatory relationships between gene expression and DNA methylation biomarkers in bone

metabolism.

Furthermore, by integrating the STRING interaction results with the known biological functions (through

literature review) of each prominent osteoporosis biomarker (74 DEGs, 61 DMC-annotated genes, and

23 DMPs), we assigned these biomarkers into different signaling pathways or functional activities related

to bone metabolism. Finally, we identified 29 DEGs, 38 DMCs-annotated genes, and 8 DMPs that may

interactively act upon several critical bone-related signaling pathways/activities in osteoblasts and/or os-

teoclasts (Figure 6), such as RANK/RANKL pathway, MAPK/TGF-b pathway, WNT/b-catenin pathway, G

protein-couple receptor activity, GTP binding/GTPase activator activity, and telomere/mitochondrial

activity.

Type of Analysis Significant SNP-Biomarker Pairs QTL SNPs Biomarkers

eQTL 6,778 4,401 (327) 64

meQTL 2,387 2,062 (75) 42

metaQTL 1,559 1,380 (96) 23

Table 1. Patterns of eQTLs, meQTLs, and metaQTLs

Note: The association between SNP and biomarker was tested with a linear regression model in R packageMatrix eQTL. The

significance threshold was defined as FDR <0.05. QTL SNPs: The SNPs identified by QTL analysis. Biomarkers: DEGs, DMCs,

and DMPs. The number in the bracket indicated the independent SNPs after LD pruning (r2 < 0.1).
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MR Analysis

The finding of functionally classified biomarkers prompted us to investigate their causal biological mech-

anisms in BMD variation. Focusing on the prominent osteoporosis biomarkers assigned to signaling path-

ways/activities critical for bone metabolism (Figure 6), we conducted MR analysis and identified five bio-

markers (DEG biomarkers FADS2, ADRA2A, FMN1, RABL2A, and DMC biomarker CpG_4:124356866 at

SPRY1) that may have putative causal effects on BMD variation (Table 2). Interestingly, gene expression

of FADS2 has a robust causal effect on BMD variation based on either median-based method or inverse-

variance weighted (IVW) method (p < 0.001). Previous GWASmeta-analysis has shown that the genetic var-

iants in FADS2 were associated with BMD (Kemp et al., 2017). Furthermore, our QTL analysis revealed that

these variants have significant effects on FADS2 expression (FDR <0.05, Table S4). Collectively, these re-

sults provided convergent and compelling evidence for the significance of genetic regulation of FADS2

expression in bone metabolism.

Furthermore, we assessed whether DEGs, DMCs, and DMPs within the same signaling pathway/activities

are causally related to one another. As an example, we selected two biomarkers from RANK/RANKL

pathway (Figure 6), namely, DEG biomarker ADCY3 and DMC biomarker NFATC1 (CpG_18:77225621).

ADCY3, inducted by RANKL, encodes a membrane-associated enzyme that catalyzes the formation of sec-

ondary messenger cAMP in response to G protein-coupled receptor activity. NFATC1, a ubiquitous TF in

many cell types, is a well-known master regulator of both osteoblastogenesis and osteoclastogenesis (Fro-

migue et al., 2010; Kim and Kim, 2014) and has been demonstrated to play crucial roles in regulating bone

homeostasis and bone mass (Winslow et al., 2006; Lee et al., 2009). Previous studies have shown that the

expression of NFATC1 was markedly elevated in ADCY3-silenced cells since the elevation of intracellular

cAMP culminates the PKA-mediated phosphorylation and subsequently inhibits gene expression of

NFATC1 (Yoon et al., 2011; Sheridan et al., 2002). Nevertheless, no interaction was reported in STRING

interaction network. Notably, in our study, MR analyses revealed a significant causal effect of gene expres-

sion of ADCY3 on DNA methylation of CpG_18:77225621 at NFATC1 based on either median-based

Figure 4. Chromatin-State Annotation of 28 BMD-Associated eSNPs for Biomarker FADS2

The chromatin state annotation tracks were generated by the 18-state ChromHMM model from the Roadmap Epigenomics Project under the human

reference genome assembly GRCh37 (hg19) and visualized in the UCSC Genome Browser. eSNP rs174538, rs5792235, rs99780, and rs174562 were mapped

to transcription start site (TSS); eSNP rs1535 and rs174562 were mapped to enhancer in a wide variety of cell/tissue types.
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method or IVW method with p < 0.001 (Table 3). Interestingly, NFATC1 was identified not only through a

DMC (CpG_Chr18:77225621) (Figure 7A), but also as a DEG (p = 4.37310�2), although it did not quite (but

close to) reach the adjusted threshold for integrative analysis (Figure 7B). Remarkably, functional annota-

tion analysis revealed that DNA methylation biomarker CpG_Chr18:77225621 was linked to regulatory re-

gions, such as TSSs, transcription regions, enhancer histone marks, and DNaseI hypersensitivity cluster

(Figure 7C, Table S3). GTEx RNA-seq data also showed extensive gene expression signals of NFATC1

across multiple human cell/tissue types (Figure 7D). Taken together, these results suggested that DNA

Figure 5. A Functional Interaction Network for DEGs and DMC-Annotated Genes

DMCs were assigned to their nearest gene/gene cluster based on the human reference genome assembly GRCh37

(hg19). Connections are based on co-expression and experimental evidence with a STRING v11.0 summary score above

0.4. Each color-filled node denotes a querying gene; edges between nodes indicate protein-protein interactions between

protein products of the corresponding genes. Different edge colors represent the types of evidence for the association

(Szklarczyk et al., 2019). Note: * represents DEGs.
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methylation changes in NFATC1 may regulate its gene expression activity and ultimately regulates bone

metabolism.

In addition, DEG biomarker ADRA2A, a key player in G protein-coupled receptor activity, was highly asso-

ciated with ADCY3 (evidence score 0.919) in STRING interaction network. Interestingly, ourMR analysis also

showed a significant causal impact of ADRA2A gene expression on BMD variation (Table 2). Therefore, we

were interested in testing whether ADRA2A by itself or together with ADCY3 also has a causal effect on

NFATC1 DNA methylation. Indeed, we identified a significant causal effect of ADRA2A gene expression

or combined effects of ADCY3 and ADRA2A expression on DNA methylation of NFATC1 (Table 3). In

contrast, we also conducted reversed causality analysis (e.g., test the causal effect of DNA methylation

of NFATC1 on ADCY3 and/or ADRA2A gene expression) and found no significant results (data not shown).

DISCUSSION

Recent development in high-throughput profiling technologies and integrative analysis of multi-omics

data offered advanced and powerful approaches to dissect complex biological problems. In this study,
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Figure 6. Biomarkers in Bone-Related Signaling Pathways/Activities

The 29 gene expression (DEGs), 38 DNA methylation (DMC-annotated genes), and 8 metabolic (DMPs) biomarkers that may interactively act upon several

critical bone-related signaling pathways/activities in osteoblasts and/or osteoclasts. The purple line indicates interaction identified in the STRING

interaction network, and the gray line indicates the association reported in the literature. The known osteoporosis biomarkers reported in previous GWASs

or functional studies were marked in bold italics. * Several polypeptide members of TGF-b/TGF-b receptor and their coactivators (TGFB1I1, TGFBR3, and

TGFBRAP1) were differentially expressed in single-omics analysis. DOPEY2 (CpG_Chr21:37635103) was also identified as a DNA methylation biomarker.
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we pioneered an innovative approach by synthesizing the state-of-the-art methods recently developed and

performed multi-omics analyses integrating gene expression and DNA methylation data in bone-related

cells, as well as serum metabolomics data. We initially identified 74 DEGs, 75 DMCs (in 61 genes), and

23 DMPs for BMD variation (Table S2). There are a set of osteoporosis biomarkers in addition to biomarkers

that are known to be associated with BMD. We then investigated the effects of genetic variants on these

prominent osteoporosis biomarkers via targeted QTL analysis in each omics and identified hundreds of po-

tential QTL SNPs shared by different omics, which may suggest their common biological mechanisms in

pathogenesis of osteoporosis. Furthermore, we reconstructed the integrative networks/pathways in

bone metabolism via STRING interaction analysis combined with functional annotation and classification

analyses and revealed that a substantial proportion of these biomarkers not only interacted with each

other, but also were enriched in several well-known signaling pathways or functional activities (Figure 6)

that are crucial for osteoblastogenesis and osteoclastogenesis, such as RANK/RANKL pathway, MAPK/

TGF-b pathway, and WNT/b-catenin pathway, as well as G protein-coupled receptor activity, GTP bind-

ing/GTPase activator activity, and telomere/mitochondrial activity. By considering the perplexing relation-

ship between functionally classified biomarkers, we implemented MR analysis to investigate their potential

causality. Our MR results further provided supporting evidence that several gene expression and DNA

methylation biomarkers have causal effects on the final BMD variation or were causally related to one

another. In aggregate, our multi-omics data integration captured the complexity of the prominent inter-

play among different omics and pointed out a list of candidate biomarkers that may help refine biological

hypotheses and propose biological validations for future studies. Furthermore, the integration framework

taken here can be adopted to other complex traits/disorders and further extended to incorporate addi-

tional types of omics data (e.g., proteomics, lipidomics, andmetagenomics) to enhance our understanding

of the pathogenesis of human diseases.

In addition to the osteoporosis biomarkers that have been discussed in the results, several other prominent

osteoporosis biomarkers that participated in well-known signaling pathways or functional activities of bone

metabolism (Figure 6) should also be concerned and highlighted. Briefly, there are 18 genes, including 5

DEGs (ADCY3, DNASE1, HAUS2, GATA1, and FMN1) and 13 DMC-annotated genes (MN1, SPRY1,

KCNQ1, NFATC1, ITPKB, BCAR1, NPHP4, MFHAS1, GAS6, PDE9A, RTEL1-TNFRSF6B, MFN2-TNFRSF8-

TNFRSF1B, and ESPN), annotated in RANK/RANKL pathway. MN1 acts as a transcriptional activator of

the osteoclastogenic cytokine RANKL and plays a crucial role in the formation of the membranous bones

in the skull during mammalian development (Zhang et al., 2009). Disruption of MN1 in calvarial osteoblasts

resulted in altered morphology, decreased growth rate, impaired motility, and attenuated 1,25(OH)2D3/

VDR-mediated transcription, as well as reduced alkaline phosphatase activity and mineralized nodule for-

mation (Zhang et al., 2009). SPRY1 encodes a growth factor regulator for marrow progenitor cells and pro-

motes osteoblast differentiation at the expense of adipocytes (Urs et al., 2012). A recent transgenic mouse

model revealed that miR-21, a regulator of osteoclastogenesis, can affect RANK/RANKL signaling pathway

by targeting SPRY1 (Hu et al., 2017). Genetic variants in SPRY1 have also been associated with osteoporosis

in Korean women (Jin et al., 2013).

We identified 2 DEGs (PIM1, BMP3), 6 DMC-annotated genes (MAPK11, PMEPA1, GSDMD, ADAMTSL2,

ADAMTS17, and POFUT2-COL18A1), and 1 metabolite biomarker LysoPC (16:0) in MAPK/TGF-b pathway.

PIM1 is a member of the serine/threonine kinase family and can significantly decreases MAP3K5 kinase ac-

tivity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK, which subsequently

Causal Biomarker Simple Median Weighted Median IVW MR-Egger Intercept

FADS2 <0.001 <0.001 <0.001 0.23 0.92

ADRA2A 0.014 0.014 0.044 0.216 0.057

FMN1 0.032 0.023 0.005 0.154 0.626

RABL2A 0.123 0.105 0.185 0.041 0.078

CpG_4:124356866 (SPRY1) 0.043 0.078 0.026 0.21 0.026

Table 2. Significant Causal Biomarkers for BMD Variation

Note: significant results (p < 0.05) are marked in bold.
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reduces caspase-3 activation and cell apoptosis (Gu et al., 2009). Importantly, PIM1 can also regulate

RANKL-induced osteoclastogenesis via NF-kB activation and NFATC1 induction (Kim et al., 2010). BMP3

encodes a secreted ligand of the TGF-b superfamily of proteins. It is one of the most abundant bone

morphogenetic proteins in demineralized bone matrix. BMP3 suppresses osteoblastogenesis and nega-

tively regulates bone density by modulating TGF-b receptor availability to other ligands (Wu et al.,

2016). Remarkably, we indeed observed the negative regulation of BMP3 gene expression on BMD levels

(p = 2.59310�5, Figure S5A). Several polypeptide members of TGF-b/TGF-b receptor and their coactiva-

tors (TGFB1I1, p = 2.80310�3; TGFBR3, p = 1.26310�5; TGFBRAP1, p = 7.77310�4) were also differentially

expressed between the high-BMD and low-BMD groups (Figures S5B–S5D). MAPK11, also known as p38-b,

is one of the four p38 MAPKs that play a crucial role in osteoblast differentiation and bone development

and maintenance (Hu et al., 2003). A recent study showed that MAPK11 can also enhance osteoclastogen-

esis and bone resorption (He et al., 2014). PMEPA1 encodes a transmembrane protein that contains a Smad

interacting motif (SIM). PMEPA1 has a significant role in osteoclastogenesis (Funakubo et al., 2018) and can

also act as a TGF-b signaling regulator in osteoblast proliferation (Fournier et al., 2015). ADAMTSL2 is

directly involved in TGF-b bioavailability and plays a key role in osteoblast and skeletal development (Le

Goff et al., 2008).

In addition, there are 2 DEGs (RBP1, LIMD1) and 4 DMC-annotated genes (GNAS, ILKAP-PER2, SMYD3,

and UBE3C-DNAJB6) inWNT/b-catenin pathway. RBP1 can act as a RUNX2 coactivator and promotes oste-

oblastic differentiation (Monroe et al., 2010). LIMD1 encodes a scaffold protein that has been implicated in

the regulation of osteoclastogenesis through an interaction with the p62/sequestosome protein (Luderer

et al., 2008). LIMD1 protein can also influence osteoblast differentiation and function; as such, Limd1(�/�)

calvarial osteoblasts displayed increased mineralization and accelerated differentiation (Luderer et al.,

2008). Furthermore, there is a significant increase in nuclear beta-catenin staining in differentiating

Limd1(�/�) calvarial osteoblasts (Luderer et al., 2008), suggesting that LIMD1 is a negative regulator of ca-

nonical WNT signaling in osteoblasts. The GNAS gene is a complex imprinted locus that produces multiple

transcripts (such as Gsa, XLAS, NESP55) through the use of alternative promoters and alternative splicing. A

recent study by Ramaswamy et al. (Ramaswamy et al., 2017) demonstrated that Gnas inactivation in mice

negatively affects cortical bone quality and strength, with mutation of the paternal allele causing more se-

vere effects than maternal mutations. These effects of Gsa deletion on bone maintenance were exerted

through enhanced osteoclast differentiation and increased bone resorption, mediated by Gsa signaling

via cAMP/PKA and WNT/b-catenin pathways (Ramaswamy et al., 2017). SMYD3 encodes a histone methyl-

transferase that functions in RNA polymerase II complexes by an interaction with a specific RNA helicase

(Hamamoto et al., 2004) and controls a WNT-responsive epigenetic switch (Wang et al., 2018).

G protein-coupled receptor activity includes 2 DEGs (ADRA2A, EFR3B) and 4 DMC-annotated genes

(HRH4, ACKR3, GPR78, and GPR124). GTP binding/GTPase activator activity includes 7 DEGs (METTL7A,

STX1A, ARHGAP26, RABL2A, RABL3, SRL, and DBF4) and 6 DMC-annotated genes (DOCK2, BAHCC1,

MICALL2-INTS1, RAB35, A4GALT-ARFGAP3, and TUBB6). For example, ADRA2A, a member of the G pro-

tein-coupled receptor superfamily, is involved in neuro-endocrine regulation of bone resorption (Mlakar

et al., 2015). ARHGAP26 encodes a GTPase-activating protein, and a mutation in this gene has recently

been determined to be associated with BMD (Kemp et al., 2017). Another interesting gene is DBF4, which

plays a central role in DNA replication and cell proliferation through nitrogen-containing bisphosphonate-

induced cytotoxicity (Bivi et al., 2009). Nitrogen-containing bisphosphonate can potently inhibit the preny-

lation and function of GTP-binding proteins required for osteoclast formation and now is firmly established

as first-line therapy for osteoporosis (Grey and Reid, 2006). TUBB6 plays a key role in GTP binding and has

been associated with BMD variation (Daswani et al., 2015). In addition, there are 8 DEGs (TERF1, MRPL10,

Causal Biomarker Simple Median Weighted Median IVW MR-Egger Intercept

ADCY3 <0.001 <0.001 <0.001 0.525 0.451

ADRA2A <0.001 <0.001 0.002 0.009 0.068

ADCY3 + ADRA2A <0.001 <0.001 <0.001 0.002 0.097

Table 3. Significant Causal Effects of Gene Expression of ADCY3 and/or ADRA2A on NFATC1 (CpG_18:77225621)

DNA Methylation

Note: significant results (p < 0.05) are marked in bold.
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NSUN4, C11orf83, PDSS2, PACS2, NDUFV3, and ALDH3B1), 6 DMC-annotated genes (PPARGC1A, ILKAP-

PER2, SIRT6, RTEL-TNFRSF6B, VARS2-GTF2H4, and MFN2-TNFRSF8-TNFRSF1B), and 3 metabolites

biomarkers ({4-((E)-2-(2,3,5-trihydroxyphenyl)ethenyl)phenyl}oxidanesulfonic acid, Acetyl-T2 toxin, and
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(A and B) Boxplot for NFATC1DNAmethylation (A) and gene expression (B) levels in high-BMD and low-BMDgroups. The

vertical axis in (A) represents DNA methylation level (M-value); the adjusted q-value was determined by R package

methylKit. The vertical axis in (B) represents the gene expression level [log2(TMM)]; p values for moderated statistics were

determined by R package limma.

(C) The chromatin-state annotation for DNA methylation biomarker CpG_Chr18:77225621 at NFATC1. The chromatin

state annotation tracks were generated by the 18-state ChromHMM model from the Roadmap Epigenomics Project

under the human reference genome assembly GRCh37 (hg19) and visualized in the UCSC Genome Browser.

(D) The gene expression signals of NFATC1 across multiple human cell/tissue types from GTEx RNA-seq data.

12 iScience 23, 100847, February 21, 2020



LysoPC (16:0)) associated with telomere/mitochondrial activity. TERF1 encodes a component of the telo-

mere nucleoprotein complex, which can regulate telomere elongation and plays a key role in aging-related

disease (Blasco, 2005). Previous study has shown that defects in telomere maintenance molecules impair

osteoblast differentiation and promote osteoporosis (Pignolo et al., 2008). PPARGC1A encodes a tran-

scriptional coactivator that mediates mitochondrial biogenesis and energy metabolism (Liang and

Ward, 2006). This coactivator interacts with PPARG, which permits the interaction of this coactivator with

multiple transcription factors (Vega et al., 2000). PPARGC1A can control skeletal stem cell fate and

bone-fat balance in osteoporosis and skeletal aging (Yu et al., 2018). Interestingly, WNT signaling can acti-

vate PPARGC1A expression and upregulate mitochondrial biogenesis; this upregulation contributes to the

osteoblastic differentiation (An et al., 2010). PER2 encodes a transcriptional repressor that forms a core

component of the circadian clock. It directly and specifically represses PPARG proadipogenic activity by

blocking PPARG recruitment to target promoters and thereby inhibiting transcriptional activation. PER2

is required for fatty acid and lipid metabolism and is involved as well in the regulation of circulating insulin

levels (Grimaldi et al., 2010). SIRT6 encodes amember of the sirtuin family of NAD-dependent enzymes that

are implicated in cellular stress resistance, genomic stability, aging, and energy homeostasis. A recent

study demonstrated that the way SIRT6 regulated osteoclast was predominantly through osteoblast para-

crine manner, rather than osteoclast-autonomous behavior, which provided a valuable insight into the

pathogenesis of osteoporosis due to SIRT6 mutation (Zhang et al., 2018). Metabolite Acetyl-T2 toxin is

the class of organic compounds known as trichothecenes. Trichothecene inhibition of protein synthesis

in the mitochondria allows reactive oxygen species (ROS) to build up in the cell, which inevitably leads

to oxidative stress and induction of the programmed cell death pathway, apoptosis (Fang et al., 2012). Ly-

soPC (16:0) is a lysophosphatidylcholine. Previous study showed that LysoPC-induced p38 MAPK signaling

pathway can control monocyte migration (Tan et al., 2009) and a novel lysophosphatidylcholine derivative

(SCOH) can inhibit osteoclast differentiation and bone resorption (Kwak et al., 2004). Moreover, lysophos-

phatidylcholine can produce mitochondrial ROS generation, increase intracellular free calcium concentra-

tion, activate active adenylate cyclase (e.g., gene expression biomarker ADCY3), and enhance glucose-

dependent insulin secretion via an orphan G protein-coupled receptor (Watanabe et al., 2006; Chaudhuri

et al., 2003; Soga et al., 2005). LysoPC(16:0) isolated from rats plasma was also proved to be related to oste-

oporosis (Liu et al., 2012).

Notably, there are two adjacent gene clusters RTEL1-TNFRSF6B and MFN2-TNFRSF8-TNFRSF1B

involved in multiple signaling pathways or functional activities. RTEL1 encodes a DNA helicase that in-

teracts with proteins in the shelterin complex and plays a key role in the stability, protection, and elon-

gation of telomeres (Deng et al., 2013). Interestingly, telomere deficiency can impair osteoblast differen-

tiation and promote osteoporosis (Pignolo et al., 2008). TNFRSF6B can suppress RANKL-induced

osteoclastogenesis via down-regulating NFATC1 and enhancing cell apoptosis (Cheng et al., 2013).

MFN2 encodes a mitochondrial membrane protein that participates in the maintenance and operation

of the mitochondrial network (Bach et al., 2003), which has been linked to osteoclast activity and bone

metabolism via an iron-related fundamental pathway (Ishii et al., 2009). A recent study reported that

MFN2 can facilitate osteoclastogenesis by regulating the calcium-calcineurin-NFATC1 axis as well

(Szklarczyk et al., 2019). TNFRSF8 and TNFRSF1B both are members of the TNF-receptor superfamily.

Genetic variants in TNFRSF1B gene have been associated with femoral neck BMD (Albagha et al.,

2002) and bone structure (Mullin et al., 2008).

We also identified eight unclassified osteoporosis biomarkers, including 2 DEGs (FADS2, CPM), 1 DMC-an-

notated gene GREM2, and 5 metabolite biomarkers (pipecolic acid, threonine, methylmalonic acid, N-lac-

toyl-tryptophan, and nicotinic acid), which have been reported in previous association studies. Genetic var-

iants in FADS2, CPM, and GREM2 have been associated with BMD variation in previous GWAS (Kemp et al.,

2017). Pipecolic acid is a normal human metabolite present in human blood; it has been associated with

both total hip and lumbar spine BMD phenotypes in TwinsUK population (Moayyeri et al., 2018). Interest-

ingly, we also identified two function-related metabolites (N-lactoyl-tryptophan, nicotinic acid). N-lactoyl-

tryptophan is lactoyl derivative of tryptophan. Tryptophan acts as the precursor of nicotinic acid (also

known as vitamin-B3). Previous study has indicated that tryptophan plays an essential role in osteoblastic

differentiation (Pallu et al., 2012). Recently, Michalowska et al. investigated the influence of tryptophan and

its metabolites on bone remodeling and observed significant changes of tryptophan levels in bone meta-

bolic diseases (Michalowska et al., 2015). Nicotinic acid occurs naturally in food. Several studies have exam-

ined the effect of nicotinic acid on bone metabolism. For example, there is a positive correlation between
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dietary intake of nicotinic acid and BMD in premenopausal Japanese women (Sasaki and Yanagibori, 2001).

The other study reported a significant inverse association of dietary nicotinic acid intake with hip BMD, but

there was no significant association with total body BMD (Carbone et al., 2019). These conflicting findings

deserve further serious investigation to better understand the effect of supplementation of nicotinic acid

on bone biology. Methylmalonic acid is a dicarboxylic acid that is a c-methylated derivative of malonate.

Methylmalonic acid was found to induce osteoclastogenesis in a dose-dependent manner, and vitamin-

B12 deficiencymay lead to decreased bonemass by increased osteoclast formation due to increasedmeth-

ylmalonic acid level (Vaes et al., 2009). Threonine is an essential amino acid that is used in the biosynthesis

of proteins. A prior study has demonstrated that threonine canmodulate the growth and the differentiation

of osteoblasts cultured in vitro and confirmed the relationship between osteoporotic hip fracture and inad-

equate protein intake (Conconi et al., 2001). Notably, a recent metabolomic study has shown that threonine

is associated with BMD and can improve the power for osteoporosis classification in males (Wang et al.,

2019).

In summary, we conducted an innovative multi-omics integrative analysis and identified a set of osteopo-

rosis biomarkers as well as biological pathways/networks that may contribute to BMD variation. Our results

revealed valuable insights into the pathogenesis of osteoporosis and aided in generating hypotheses for

future functional studies.

Limitations of the Study

Several limitations of this study should be noted. First, our sample size is relatively small. However, our

study is the largest so far in the bone field for multi-omics analyses and we applied an extreme phenotype

sampling strategy with stringent inclusion and exclusion criteria, which is known to provide enhanced sta-

tistical power for association analysis compared with studies using comparable numbers of randomly

sampled subjects (Bjornland et al., 2018). Moreover, data from different omics levels can provide comple-

mentary and inherent validation information with each other, and thus, integrating multi-omics data can

partially compensate for the relatively small sample sizes (Hasin et al., 2017). But clearly, our results need

to be validated in future studies with large sample size. Second, we used a relatively homogeneous cell

type, peripheral blood monocytes (PBMs), as model cells for gene expression and DNA methylation anal-

ysis for osteoporosis. PBMs can act as osteoclast precursors, secrete cytokines essential for osteoclast dif-

ferentiation and function, and represent a major target cell of sex hormones for bone metabolism (Ko-

mano et al., 2006). Notably, several transcriptomic and proteomic studies in PBMs have revealed

significant insights into the pathogenic mechanisms of osteoporosis (Leung et al., 2011; Kotani et al.,

2013; Zhou et al., 2015). On the other hand, we acknowledge that the ideal model cells for osteoporosis

study are primary bone cells (e.g., osteoblasts, osteoclasts, and osteocytes). With the continuous devel-

opment of high-throughput multi-omics profiling technologies, particularly for single-cell sequencing

(Macaulay et al., 2017), we will be able to apply multi-omics analysis on human primary bone cells in

the near future. Third, the identified biomarkers and results of causal analysis exclusively depend on

computational modeling; hence, further experimental validation work should be conducted to confirm

the biological significance and causality of these osteoporosis biomarkers. Nonetheless, we want to

emphasize that traditional validation/further exploration using in vitro cells or in vivo mice models may

be useful in some cases but may not completely reflect human in vivo functional mechanisms in other

cases.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Figures 

 

Figure S1. Optimization of multi-omics biomarker panel size. Related to Figure 2. The 

optimal multi-omics biomarker panel size was assessed by classification error rate using a 5-fold 

cross-validation repeated 5 times. The horizontal axis represents size of components and the 

vertical axis represents classification performance. 
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Figure S2. Circos plot for multi-omics biomarkers. Related to Figure 2. Circos plot displays the different types of osteoporosis 

biomarker on a circle generated from the 2
nd

 component (A) and the 3
rd

 component (B), with links between omics indicating the 

positive (brown) or negative (black) correlations. The blue line and orange line represent high BMD and low BMD group, respectively.



 

 

 

 

Figure S3. Radar charts of rs5792235, rs99780, rs174538, rs174562, and rs1535. Related to Figure 

4. The six axes of the hexagon represent functionality levels (0-100) for enhancer status, promoter status, 

transcription factor binding site, motifs, evolutionary conservation, and 3D interacting genes, as 

suggested by 3DSNP. 
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Figure S4. A functional interaction network for DEGs (A) and DMC-annotated genes (B). Related 

to Figure 5 and Figure 6. DMC was assigned to their nearest gene/gene-cluster based on the human 

reference genome assembly GRCh37 (hg19) from Genome Reference Consortium. Connections are 

based on co-expression and experimental evidence with a STRING v10.0 summary score above 0.4. 

Each filled node denotes a gene; edges between nodes indicate protein-protein interactions between 

protein products of the corresponding genes. Different edge colors represent the types of evidence for 

the association.  
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Figure S5. Boxplot for BMP3 (A), TGFB1I1 (B), TGFBR3 (C), and TGFBRAP1 (D) expression in 

samples with different BMD status. Related to Figure 6. The horizontal axis represents high BMD 

and low BMD subgroups. The vertical axis represents the gene expression level [log2(TMM)], p-values 

for moderated statistics determined by R package limma. 



 

 

 

Supplemental Tables 

Table S1. The Basic Characteristics of the Study Subjects. Related to Figure 1. 

  Low BMD (n = 58) High BMD (n = 61) 

Age (years) ± s.d. 31.72 (5.19) 32.23 (5.26) 

Height (cm) ± s.d. 164.37 (6.61) 165.45 (6.42) 

Weight (kg) ± s.d. 59.67 (8.42) 81.75 (25.53) 

   
Note: BMD, bone mineral density; s.d., standard deviation. 



 

 

 

Table S2. Multi-omics Osteoporosis Biomarkers Identified by Integration Analysis across the First Three Components. Related to 

Figure 2. 

  Gene Expression (74 DEGs) DNA Methylation (75 DMCs) Metabolites (23 DMPs) 

1st Component 

35 DEGs: CPM, HAUS2, C1orf210, 

C15orf40, SRL, FADS2, SMIM11, 

LINC01021, SLC35E3, PRUNE2, ADCY3, 

EFR3B, MEIS3P1, FCF1, IM1, TMIGD2, 

GLB1L, DNASE1, PDSS2, TERF1, RABL3, 

ADRA2A, STX1A, RNF125, LUCAT1, 

KLHL30, CXorf36, BMP3, LOC643770, 

LOC100128288, GATA1, LOC100132077, 

SLC31A1, LINC00269, SCAMP1.AS1 

40 DMCs: CpG_Chr17:79428036, CpG_Chr20:59224823, 

CpG_Chr6:43253387, CpG_Chr1:12107664, CpG_Chr2:237482267, 

CpG_Chr20:56292879, CpG_Chr1:5874307, CpG_Chr18:12306431, 

CpG_Chr16:33935546, CpG_Chr22:28157746, CpG_Chr19:38717239, 

CpG_Chr21:46784300, CpG_Chr9:136440143, CpG_Chr1:246277899, 

CpG_Chr4:124356866, CpG_Chr4:8546951, CpG_Chr8:8647499, 

CpG_Chr19:31411607, CpG_Chr4:7241128, CpG_Chr19:1526496, 

CpG_Chr1:6497309, CpG_Chr7:157098234, CpG_Chr20:29611712, 

CpG_Chr17:46697414, CpG_Chr21:37635103, CpG_Chr10:88263638, 

CpG_Chr18:77225621, CpG_Chr20:62328427, CpG_Chr19:4183272, 

CpG_Chr8:37699658, CpG_Chr10:77165382, CpG_Chr19:48902944, 

CpG_Chr15:100663758, CpG_Chr1:240656533, CpG_Chr13:114544118, 

CpG_Chr7:1452993, CpG_Chr22:50709855, CpG_Chr20:62328471, 

CpG_Chr8:37699673, CpG_Chr18:76495193 

5 DMPs: Salicyluric acid, N1,N8-

Diacetylspermidine, Threonine, Heptanoylcarnitine, 

LysoPC(16:0) 

2nd Component 
5 DEGs: LLGL1, DBF4, PACS2, IYD, 

PNPLA3 

22 DMCs: CpG_Chr7:62574705, CpG_Chr19:49342328, 

CpG_Chr7:153128979, CpG_Chr20:62601743, CpG_Chr17:36996953, 

CpG_Chr20:57431283, CpG_Chr1:226823075, CpG_Chr16:33953237, 

CpG_Chr11:106025516, CpG_Chr22:43166179, CpG_Chr21:44073202, 

CpG_Chr6:30882761, CpG_Chr8:144641513, CpG_Chr14:70039024, 

CpG_Chr16:2742246, CpG_Chr4:155703006, CpG_Chr6:30882767, 

CpG_Chr6:30882780, CpG_Chr11:2537259, CpG_Chr6:168107249, 

CpG_Chr2:239134803, CpG_Chr14:70039021 

9 DMPs: Trans-2-Dodecenoylcarnitine, N-

Phenylacetylphenylalanine, Tryptophan, 

Methylmalonic acid, N-lactoyl-Tryptophan, 

Isopropyl beta-D-glucoside, Nicotinic acid, 3-

Methylcyclohexanethiol, PIPECOLATE 

3rd Component 

34 DEGs: FMN1, HLCS, METTL7A, 

NDUFV3, RABL2A, ZNF74, MTRNR2L10, 

MAN1C1, ANKRD22, MRPL10, UBIAD1, 

AHR, MTRNR2L6, CES2, RBM47, RBP1, 

SUPT7L, KRBA2, NSUN4, PPID, CSF2RA, 

ALDH3B1, ARHGAP26, DOPEY2, 

LOC646719, LIMD1, SIGLEC16, 

ARRDC3.AS1, GALNT6, DSC1, EMC1, 

S100PBP, MBOAT1, C11orf83 

13 DMCs: CpG_Chr12:131189685, CpG_Chr12:120541569, 

CpG_Chr20:26190198, CpG_Chr4:24065208, CpG_Chr1:48021766, 

CpG_Chr12:131173748, CpG_Chr5:169137783, CpG_Chr5:1659948, 

CpG_Chr1:5786650, CpG_Chr1:236662741, CpG_Chr18:22098784, 

CpG_Chr16:75279661, CpG_Chr14:101864613 

9 DMPs: Acetyl-T2 Toxin, Acetylcarnosine, 

CPA(18:1(11Z)/0:0),  

{4-[(E)-2-(2,3,5-

trihydroxyphenyl)ethenyl]phenyl}oxidanesulfonic 

acid, 2-Amino-4-oxo-6-(1',2',3'-trihydroxypropyl)-

diquinoid-7,8-dihydroxypterin, 13, 14-dihydro 

PGF2a, 5a-Androst-3-en-17-one,  Indacaterol, 3,4,5-

trihydroxy-6-{[1-(4-methoxyphenyl)pentan-3-

yl]oxy}oxane-2-carboxylic acid 

    Note: DEGs, differentially expressed genes; DMCs, differentially methylated CpG sites; DMPs, differential metabolic products 

  



 

 

 

Table S3. Functional Annotation for DNA Methylation Biomarkers. Related to Figure 3A. 

PC CpG Sites Closest Gene/Gene Cluster Histone Mark Gene Expression Status DNaseI Status Transcription Factor Status 

Conservation 

by PhyloP 

(Mean) 

1 CpG_Chr1:12107664 

MFN2-TNFRSF8-

TNFRSF1B H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal   

1 CpG_Chr1:240656533 GREM2   Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -1.93 

1 CpG_Chr1:246277899 SMYD3 H3K27ac  Expression signal     -2.64 

1 CpG_Chr1:5874307 NPHP4     DNaseI hypersensitivity cluster   -0.85 

1 CpG_Chr1:6497309 ESPN   Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -2.83 

1 CpG_Chr10:77165382 ZNF503-AS2   Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -1.9 

1 CpG_Chr10:88263638 WAPAL   Expression signal DNaseI hypersensitivity cluster   -1.03 

1 CpG_Chr13:114544118 GAS6 H3K27ac  Expression signal   Transcription factor ChIP-seq signal -2.9 

1 CpG_Chr15:100663758 ADAMTS17   Expression signal     -4.43 

1 CpG_Chr16:33935546 NA     DNaseI hypersensitivity cluster     

1 CpG_Chr17:46697414 HOXB9 H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -1.3 

1 CpG_Chr17:79428036 BAHCC1   Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 3.21 

1 CpG_Chr18:12306431 TUBB6 H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 0.42 

1 CpG_Chr18:76495193 NA     DNaseI hypersensitivity cluster   -1.58 

1 CpG_Chr18:77225621 NFATC1 H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal   

1 CpG_Chr19:1526496 PLK5   Expression signal   Transcription factor ChIP-seq signal   

1 CpG_Chr19:31411607 NA           

1 CpG_Chr19:38717239 DPF1 H3K27ac  Expression signal DNaseI hypersensitivity cluster   -0.61 

1 CpG_Chr19:4183272 SIRT6     DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -1.19 

1 CpG_Chr19:48902944 GRIN2D H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -0.54 

1 CpG_Chr2:237482267 ACKR3   Expression signal DNaseI hypersensitivity cluster   -0.44 

1 CpG_Chr20:29611712 FRG1B H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 1.13 

1 CpG_Chr20:56292879 PMEPA1 H3K27ac    DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 1.13 

1 CpG_Chr20:59224823 LOC284757     DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -1.07 

1 CpG_Chr20:62328427 RTEL1-TNFRSF6B H3K27ac    DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 0.37 

1 CpG_Chr20:62328471 RTEL1-TNFRSF6B H3K27ac    DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal   

1 CpG_Chr21:37635103 DOPEY2   Expression signal     0.19 

1 CpG_Chr21:46784300 COL18A1-POFUT2   Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -1.42 

1 CpG_Chr22:28157746 MN1   Expression signal DNaseI hypersensitivity cluster   -1.57 



 

 

 

1 CpG_Chr22:50709855 MAPK11 H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -0.93 

1 CpG_Chr4:124356866 SPRY1           

1 CpG_Chr4:7241128 SORCS2   Expression signal     -1.82 

1 CpG_Chr4:8546951 GPR78     DNaseI hypersensitivity cluster   -1 

1 CpG_Chr6:43253387 TTBK1   Expression signal DNaseI hypersensitivity cluster     

1 CpG_Chr7:1452993 INTS-MICALL2 H3K27ac    DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -0.8 

1 CpG_Chr7:157098234 UBE3C-DNAJB6         -2.6 

1 CpG_Chr8:37699658 GPR124     DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 0.28 

1 CpG_Chr8:37699673 GPR124     DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 0.28 

1 CpG_Chr8:8647499 MFHAS1 H3K27ac  Expression signal DNaseI hypersensitivity cluster   -2.32 

1 CpG_Chr9:136440143 ADAMTSL2   Expression signal       

2 CpG_Chr1:226823075 ITPKB H3K27ac          

2 CpG_Chr11:106025516 AASDHPPT H3K27ac        -1.9 

2 CpG_Chr11:2537259 KCNQ1   Expression signal     -1.15 

2 CpG_Chr14:70039021 CCDC177   Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 0.6 

2 CpG_Chr14:70039024 CCDC177   Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 0.6 

2 CpG_Chr16:2742246 KCTD5 H3K27ac  Expression signal     -2.24 

2 CpG_Chr16:33953237 NA H3K27ac    DNaseI hypersensitivity cluster     

2 CpG_Chr17:36996953 C17orf98         0.2 

2 CpG_Chr19:49342328 PLEKHA4   Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 0.2 

2 CpG_Chr2:239134803 ILKAP-PER2   Expression signal DNaseI hypersensitivity cluster   -2.27 

2 CpG_Chr20:57431283 GNAS   Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -1.26 

2 CpG_Chr20:62601743 ZNF512B-SAMD10 H3K27ac    DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -2.2 

2 CpG_Chr21:44073202 PDE9A     DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 0.86 

2 CpG_Chr22:43166179 A4GALT-ARFGAP3 H3K27ac    DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 0.46 

2 CpG_Chr4:155703006 RBM46         -5.44 

2 CpG_Chr6:168107249 AL832737     DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -1.1 

2 CpG_Chr6:30882761 VARS2-GTF2H4 H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 2.67 

2 CpG_Chr6:30882767 VARS2-GTF2H4 H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal 2.67 

2 CpG_Chr6:30882780 VARS2-GTF2H4 H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal   

2 CpG_Chr7:153128979 NA           

2 CpG_Chr7:62574705 NA     DNaseI hypersensitivity cluster     

2 CpG_Chr8:144641513 GSDMD H3K27ac  Expression signal DNaseI hypersensitivity cluster   2.03 

3 CpG_Chr1:236662741 EDARADD-LGALS8           



 

 

 

3 CpG_Chr1:48021766 CMPK1         -0.54 

3 CpG_Chr1:5786650 NPHP4         -4.55 

3 CpG_Chr12:120541569 RAB35 H3K27ac  Expression signal     -0.79 

3 CpG_Chr12:131173748 RIMBP2         -1.37 

3 CpG_Chr12:131189685 RIMBP2           

3 CpG_Chr14:101864613 NA     DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal -2.7 

3 CpG_Chr16:75279661 BCAR1 H3K27ac  Expression signal DNaseI hypersensitivity cluster Transcription factor ChIP-seq signal   

3 CpG_Chr18:22098784 HRH4     DNaseI hypersensitivity cluster     

3 CpG_Chr20:26190198 LOC284801 H3K27ac    DNaseI hypersensitivity cluster     

3 CpG_Chr4:24065208 PPARGC1A         -0.89 

3 CpG_Chr5:1659948 LOC728613     DNaseI hypersensitivity cluster   -1.39 

3 CpG_Chr5:169137783 DOCK2   Expression signal DNaseI hypersensitivity cluster     

 

 

 



 

 

 

 

Table S6. Functional Importance of BMD-associated eQTLs for FADS2. Related to Figure 4. 

SNPs Functionality Score 

rs5792235 218.76 

rs99780 218.51 

rs174538 210.69 

rs174562 79.43 

rs1535 64.43 

rs174574 37.12 

rs4246215 22.98 

rs174564 20.29 

rs174541 20.2 

rs102275 16.77 

rs102274 16.14 

rs174554 14.82 

rs7394579 13.38 

rs174546 13.2 

rs174550 13.17 

rs174547 12.86 

rs174535 12.47 

rs174545 11.62 

rs174536 11.15 

rs174578 10.83 

rs174566 10.75 

rs174553 10.58 

rs174567 10.4 

rs57668028 10.34 

rs174576 10.3 

rs174533 10.11 

rs174577 8.73 

rs174537 8.23 



 

 

 

TRANSPARENT METHODS 

Subjects 

A total of 119 unrelated Caucasian females, aged 20-40 years, were recruited through Louisiana 

Osteoporosis Study (LOS) (Du et al., 2017, Zhao et al., 2018), a repertoire of more than 16,000 subjects 

(by the end of August 2019) collected for genomic, transcriptomic, methylomic, metabolomic, and 

metagenomic studies of complex diseases/traits, particularly for osteoporosis. All the subjects were 

living in New Orleans, Louisiana and its surrounding areas and were self-identified as being of 

European origin. Hip BMD of each participant was measured by Hologic Discovery-A DXA (dual 

energy X-ray absorptiometry) machines as the combined BMD of the femoral neck, trochanter, and 

intertrochanteric region. The measurement precision, as reflected by coefficients of variation for hip 

BMD, was approximately 1.0%. The 119 subjects included 61 with relatively high hip BMD (Z scores ≥ 

0.8) and 58 with relatively low hip BMD (Z scores ≤ -0.8). The BMD Z score was defined as the 

number of standard deviations a subject’s BMD differed from the mean BMD of their age-, gender-, and 

ethnicity-matched population. Therefore, the high and low BMD subjects were belonging to the top and 

bottom 20% distribution of hip BMD in the corresponding population, respectively. For each study 

subject, weight and height were measured using standard procedures, and lifestyle factors (e.g., exercise, 

alcohol consumption, smoking, etc.) and medical history were assessed by questionnaires. An extensive 

set of subject exclusion criteria was adopted for this study to exclude subjects with diseases/conditions 

that may potentially lead to alteration of gene expression, DNA methylation, and metabolite pattern in 

blood. The basic characteristics of the exquisitely selected study subjects were summarized in Table S1. 

The stringent selection of the subjects was made feasible because of the large base LOS cohort. This 

study was approved by The Institutional Review Boards for Human Investigation at Tulane University 

(New Orleans, USA), and the signed informed-consent documents were obtained from all study 

participants. 



 

 

 

Subjects Inclusion and Exclusion Criteria 

Individuals must meet the following inclusion criteria to be eligible to participate in the study: 

1) Caucasian females 

2) Aged 20-40 years 

3) With at least one intact ovary 

4) Hip BMD Z-score ≥ 0.8 or ≤ -0.8 

 

We adopted the following exclusion criteria to minimize non-genetic influence on bone mass variation, 

so as to empirically enhance the chance to detect individual genetic factors for bone mass.  

1) Female subjects who are, or could be pregnant; 

2) Serious residuals from cerebral vascular disease;  

3) Diabetes mellitus, except for those controlled under medication;  

4) Chronic renal failure;  

5) Chronic liver failure;  

6) Alcohol abuses as defined by those who drink alcohol regularly and cannot control themselves 

and get drunk at least once a week;  

7) Chronic obstructive pulmonary disease (COPD); 

8) Corticosteroid therapy at therapeutic levels for more than 6 months duration;  

9) Treatment with anticonvulsant therapy for more than 6 months duration;  

10) Other metabolic or inherited bone diseases including hyper- or hypoparathyroidism, Paget's 

disease, osteomalacia, osteogenisis imperfecta, and hypochondrogenesis;  

11) Rheumatoid arthritis, except for minor cases that involve only hand joint and wrist;  

12) Chronic gastrointestinal disease including celiac disease, postygastrectomy, Crohn’s disease, 

ulcerative colitis, liver transplant, and cirrhosis;  



 

 

 

Given that PBMs are essential component of the immune system, we adopted the following additional 

exclusion criteria in order to minimize the effect of diseases or conditions, which may potentially lead 

to the transcriptomic and epigenomic profiling changes: 

1) Autoimmune or autoimmune-related diseases: systemic lupus erythematosus, multiple sclerosis, 

Graves disease, Hashimoto's thyroiditis, myasthenia gravis, Addison's disease, dermatomyositis, 

Sjogren's syndrome, Reiter's syndrome. 

2) Immune-deficiency conditions: AIDS, severe malnutrition, splenectomy, ataxia-telangiectasia, 

DiGeorge syndrome, Chediak-Higashi syndrome, job syndrome, leukocyte adhesion defects, 

panhypogammaglobulinemia, selective deficiency of IgA, combined immunodeficiency disease, 

Wiscott-Aldrich syndrome. 

3) Haematopoietic and lymphoreticular malignancies: leukaemias, lymphomas (Hodgkin's disease, 

non-Hodgkin's disease), myeloma, Waldenström's macroglobulinaemia, heavy chain disease, 

leukemic reticuloendotheliosis, mastocytosis, malignant histiocytosis.  

4)    Other diseases: influenza (within one week of recruitment), active periods of asthma. 

 

WGS Analysis 

DNA for WGS was extracted from the whole blood using the Gentra Puregene Blood Kit (Qiagen, 

USA). Concentration and quality of the entire extracted DNA were assessed using Nanodrop 1000 and 

the samples were kept at -80 °C until further use. Libraries for WGS were prepared with KAPA DNA 

LTP library preparation kit (KAPA Biosystem, USA) on Biomek FX Laboratory Automation 

Workstation (Beckman Coulter, USA). Briefly, 300 ng genomic DNA was used as input. The workflow 

consists of fragmentation of double stranded DNA, end repair to generate blunt ends, A-tailing, adaptor 

ligation and PCR amplification. Different adaptors were used for multiplexing samples in one lane. 

Library concentrations and quality were measured using Qubit ds DNA HS Assay kit (Life Technologies, 



 

 

 

USA) and Agilent Tapestation (Agilent, USA). WGS was conducted on Illumina HiSeq X-Ten with 150 

bp paired-end reads. Data quality check was done on Illumina sequencing analysis viewer (SAV). 

Sequence reads were trimmed using Cutadapt (version 1.11), aligned to the human reference genome 

assembly GRCh37 (hg19) using BWA-MEM (version 0.7.12-r1039), duplicates marked with Picard 

(version 1.129, http://picard.sourceforge.net) and coordinates sorted using Samtools 

(http://samtools.sourceforge.net, version 1.3). Single nucleotide variants (SNV) were detected using a 

dual calling strategy through qSNP (Kassahn et al., 2013) and GATK HaplotypeCaller (McKenna et al., 

2010). Variants were annotated with Ensemble v75 gene feature information. Variants were considered 

“called” and used in subsequent analysis if they passed the following filters: a minimum read depth of 8 

reads in each dataset; at least 4 reads containing the variant where the variant was identified on both 

strands and not within the first or last 5 bases. Variants that did not pass these filters were considered 

“low evidence” and discarded. 

Isolation of Monocytes, Their Genomic DNA, and Total RNA 

In the present study, we focused specifically on PBMs, which can act as osteoclast precursors and play 

important roles in regulating bone metabolism (Fujikawa et al., 1996, Lari et al., 2009). Briefly, 

peripheral blood mononuclear cells (PBMCs) were firstly separated from 60 ml freshly collected 

peripheral blood, by a density gradient centrifugation method using Histopaque-1077 (Sigma-Aldrich, 

USA). The PBMCs were washed repeatedly with 2 mM EDTA in PBS, before being dissolved in 0.5% 

BSA and 2 mM EDTA in PBS. PBMs were then isolated from the PBMCs with a Monocyte Isolation 

Kit II (Miltenyi Biotec Gmbh, Bergisch Glagbach, Germany) according to the manufacturer's protocol. 

The kit depleted unwanted cells (such as T and B cells) from PBMCs, leaving PBMs free of the surface-

bound antibody and beads with minimum disturbance. The isolated PBMs were visually checked for 

purity and counted under microscope. The genomic DNA used for RRBS and total RNA used for RNA-

http://samtools.sourceforge.net/


 

 

 

seq were extracted from the freshly isolated PBMs with the AllPrep DNA/RNA/miRNA Universal Kit 

(Qiagen, USA) following the manufacturer’s protocol and kept at -80 °C until further use. 

Transcriptomic Analysis by RNA-seq 

Libraries for RNA-seq were prepared with KAPA RNA Hyper kit with RiboErase (KAPA Biosystem, 

USA) as per the manufacturer's instructions. Briefly, 500 ng RNA was used as input. The workflow 

consists of rRNA removal, cDNA generation, and end repair to generate blunt ends, A-tailing, adaptor 

ligation and PCR amplification. Different adaptors were used for multiplexing samples in one 

sequencing run. Library concentrations and quality were measured using Qubit ds DNA HS Assay kit 

(Life Technologies, USA) and Agilent Tapestation (Agilent, USA). The libraries were pooled and 

diluted to 2 nM in EB buffer and then denatured using the Illumina protocol. The denatured libraries 

were diluted to 10 pM by pre-chilled hybridization buffer and loaded onto Illumina NextSeq 500 and run 

for 75 cycles using a single-read recipe according to the manufacturer's instructions. Data quality check 

was done on Illumina SAV. De-multiplexing was implemented with Illumina Bcl2fastq2 v 2.17 

program. Sequencing reads were aligned to the human reference genome assembly GRCh37 (hg19) 

using TopHat (https://ccb.jhu.edu/software/tophat/index.shtml, version 2.0.13), allowing only for unique 

alignments. RefSeq transcript annotations were obtained from the UCSC Genome Browser 

(http://genome.ucsc.edu/index.html), and read fragments aligned to known exons were counted per gene 

using Htseq (https://htseq.readthedocs.io/en/release_0.11.1/, version 0.6.1p1). All the analyses were 

conducted at the gene level. The RNA-seq raw counts were normalized by the trimmed mean of M-

values (TMM) method through the Bioconductor R package edgeR (Robinson et al., 2010). We calculate 

the counts per million of normalized data and then log2 transform them into the standard format. The 

RNA-seq data was pre-processed for differential gene expression analysis. The data was filtered for low-

expressed genes by removing genes with less than 1 count per million in more than 20 samples per 

https://ccb.jhu.edu/software/tophat/index.shtml


 

 

 

group. We applied the Bioconductor R package limma (Ritchie et al., 2015) with empirical Bayes 

moderation to detect DEGs between the high BMD and low BMD groups, with adjusted significance 

threshold of FDR = 0.05. 

Epigenome-wide DNA Methylation Analysis 

Epigenome-wide DNA methylation profiles were determined by RRBS according to previously 

published protocols (Chatterjee et al., 2012). Briefly, 100 ng genomic DNA isolated from PBMs was 

first digested overnight with MspI restriction enzyme (Thermo Scientific, USA), followed by end repair, 

adenylation and adapter ligation using NEXTflex Bisulfite-Seq Library Prep Kit and NEXTflex 

Bisulfite-Seq Barcodes (BioO Scientific, USA) with a modification of bead size selection to capture 

MspI fragments of 40-220 bp size. The resulting libraries were bisulfite converted using the EZ DNA 

Methylation-Gold kit (Zymo Research Corp, USA), followed by 20 cycles of PCR amplification using 

the NEXTflex Bisulfite-Seq U+PCR Master Mix and NEXTflex Primer Mix (BioO Scientific, USA). 

Different adaptors were used for multiplexing samples in one lane. Library concentrations and quality 

were measured using Qubit ds DNA HS Assay kit (Life Technologies, USA) and Agilent Bioanalyzer 

(Agilent, USA). Purified and quantified libraries were pooled at 6 samples per sequencing lane and read 

by 1×50 bp on Illumina HiSeq3000. Data quality check was done on Illumina SAV. De-multiplexing 

was performed with Illumina Bcl2fastq2 v2.17 program and standard fastq files were trimmed with 

cutadapt v1.3. Trimmed reads were aligned to the human reference genome assembly GRCh37 (hg19) 

and methylation calling were obtained using Bismark v0.10.0 (Krueger and Andrews, 2011). Output 

files were reformatted using a custom script. DMCs between the high BMD and low BMD groups were 

identified using the Bioconductor R package methylKit v1.8.1 (Akalin et al., 2012) for CpGs with ≥ 10X 

coverage in at least 40 samples per group. The significance threshold for DMCs was defined as adjusted 

q < 0.05 with more than 10% methylation difference. 



 

 

 

Metabolomic Analysis 

The LC-MS based metabolomics platform developed by Dr. Garrett’s lab in the Southeast Center for 

Integrated Metabolomics at University of Florida was used to perform the metabolomic analysis. The 

detailed experimental procedures have been previously described (Liu et al., 2017, Zhao et al., 2018). 

Briefly, each frozen serum sample (100 μL) after thawing at room temperature from -80 °C storage was 

mixed with 20 μL internal standard mix followed by vortex mixing for 20 s. In our protein precipitation 

procedure, the extracted serum sample (25 μL) was added 800 μL of acetonitrile:acetone:methanol 

(8:1:1, v: v: v) and centrifuged at 20,000 xg for 10 min at < 10 °C to remove proteins. The supernatant 

(250 μL) was then removed and placed into a new 1 mL Eppendorf tube and dried under a gentle stream 

of nitrogen (Organomation Associates, USA). For the removal of debris, the dried sample was 

reconstituted by mixing 100 μL of 0.1% formic acid and four injection standards T-Boc amino acids in 

water, and placed in an ice bath for 10-15 min followed by centrifugation at 20,000 xg for 5 min at < 

10 °C. The untargeted metabolomics profiling was conducted on a Thermo Q-Exactive Orbitrap mass 

spectrometer with Dionex UHPLC and autosampler. All the pre-processed samples were analyzed in 

positive and negative heated electrospray ionization with a mass resolution of 35,000 at m/z 200 as 

separate injections. Separation was achieved on an ACE 18-pfp 100 × 2.1 mm, 2 μm column with 

mobile phase A as 0.1% formic acid in water and mobile phase B as acetonitrile. The flow rate was 350 

μL/min with a column temperature of 25 °C. 4 μL was injected for negative ions and 2 μL for positive 

ions. A metabolomic data processing program, MZmine, was used for automatic peak detection, mass 

spectral deconvolution, peak alignment, filtering, baseline correction (Pluskal et al., 2010), and the 

metabolite identification was searched against the Human Metabolite Database (HMDB) 4.0 (Wishart et 

al., 2018) and an internal retention time library of over 600 compounds developed by Dr. Garrett’s lab 

(Liu et al., 2017). We removed metabolites with missing rates > 20% or coefficients of variation > 20% 

from further analyses. Metabolites with missing rates < 20% were imputed by the R package missForest 



 

 

 

(Stekhoven and Buhlmann, 2012). The log transformation and autoscale for each metabolite were 

implemented by using the R package specmine (Costa et al., 2016). The two samples t-test was applied 

to individual metabolite at the time to determine the DMPs for BMD with cutoff threshold of p = 0.05. 

Multi-omics Integration with SMDCCA 

Canonical correlation analysis (CCA) is a multivariate method for cross-data association detection. 

Given two omics data     
        

   , where   denotes the sample size and     denote the 

feature/variable sizes of       respectively, CCA searches the optimal linear combination (or loading 

vectors     
        

   ) of features in       with the highest Pearson correlation. The 

formulation of CCA is given in Eq. (1). 
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Sparse CCA (Parkhomenko et al., 2009, Witten and Tibshirani, 2009) was proposed to overcome 

overfitting when data is of relatively small sample size but large feature size, in which case the 

algorithm of conventional CCA fails due to the singular covariance matrix. Sparse CCA solves the 

overfitting problem by enforcing certain regularization constraints, e.g.,    norm regularization, on 

loading vectors      , as shown in Eq. (2). 
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controlling the sparsity of       .  



 

 

 

As a result of the sparsity of      , sparse CCA can be used as a method for feature selection (for 

biomarkers). Sparse CCA can also be extended to sparse multiple CCA, or generalized CCA, to combine 

three or more omics data. The formulation of generalized sparse CCA is given as follows 
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In this study, we used a supervised CCA method, namely sparse multiple discriminative CCA 

(SMDCCA), both to incorporate the label information (such as high or low BMD group) and to exploit 

the complimentary discriminative information of multi-omics data. SMDCCA in the work by Le Cao 

and her colleagues (Singh et al., 2019, Rohart et al., 2017), seeks the correlations between multi-omics 

and require the correlation to be phenotype related by incorporating label (such as group/disease) 

information into the model, as given by Eq. (4). 
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Where        is the phenotype data.  

Here, multi-omics integration with SMDCCA were performed via the Bioconductor R package 

mixOmics (Rohart et al., 2017) by utilizing potential osteoporosis biomarkers (DEGs, DMCs, and DMPs) 

identified from single-omics analysis. Contrary to the previous omics integrative methods, such as 

concatenation and the ensemble approaches (Gunther et al., 2012, Liu et al., 2013), supervised 

SMDCCA analysis can identify biomarkers composed of highly correlated features across the different 

types of omics, by modeling relationships between the omics datasets. The optimal multi-omics 

biomarker panel was identified by utilizing a grid search approach where, for any given combination of 

variables, we assessed the classification performance using a 5-fold cross-validation repeated 5 times. A 



 

 

 

circos plot was used to visualize the osteoporosis biomarkers in different omics types on a circle and 

their correlations between each omics. Those correlations were estimated by applying the latent 

components as a proxy (Gonzalez et al., 2012). 

Targeted QTL Analysis 

Targeted QTL analysis was conducted by the R package Matrix eQTL (Shabalin, 2012) for the identified 

DEGs, DMCs, and DMPs, respectively. Eligible variants were 9,265,832 autosomal SNPs with a minor 

allele frequency (MAF) > 0.01, genotype hard call rate > 0.95, and Hardy-Weinberg p > 1.0 × 10
-6

. Age, 

height, and weight were included as covariates. In addition, the first principal component of SNPs, 

viewed as continuous axes of variation that reflect genetic variation due to ancestry in the sample, was  

used to control for potential population stratification (Price et al., 2006). Matrix eQTL performs a 

separate test for each SNP and biomarker pair in each omics. SNPs showing a significant association 

(FDR < 0.05) with DEGs, DMCs, and DMPs were defined as eQTLs, meQTLs, and metaQTLs, 

respectively. To test whether genetic variant has effects on multiple biomarkers from different omics, we 

set the cutoff for statistical significance and included all potential eQTLs, meQTLs, and metaQTLs with 

p < 5.010
-5

. 

Interaction Network, Functional Annotation and Classification Analysis 

In an effort to explore the potential functional importance of the identified DNA methylation biomarkers, 

we evaluated the chromatin states, expression status, and DNaseI hypersensitivity cluster for regions 

containing the DMCs across a wide variety of cell line derived from ENCODE (V3) (Roadmap 

Epigenomics et al., 2015). In addition, to inspect the sequence evolutionary conservation (relating to 

functional importance) of DNA methylation biomarkers, we obtained PhyloP score for each DMC sites 

from the UCSC Genome Browser. As functional annotation and classification analyses were conducted 

on the gene level, we assigned each DMC to their nearest gene/gene-cluster, termed DMC-annotated 



 

 

 

gene, based on the human reference genome assembly GRCh37 (hg19). To construct functional 

interaction network of the identified gene expression and/or DNA methylation biomarkers, we 

implemented the STRING (version 11.0) interaction analysis with default settings (Szklarczyk et al., 

2019). STRING interaction analysis quantifies the genetic interaction based on physical and functional 

association, which was derived from five main data sources, e.g. genomic context predictions, high-

throughput lab experiments, co-expression, automated textmining, and previous knowledge in databases. 

To further investigate the functional importance of the identified osteoporosis biomarkers, we conducted 

a comprehensive scientific literature review in PubMed using the names of the biomarkers combined 

with keywords of “osteoporosis”, “BMD”, “bone”, “PBMs”, “osteoblast”, “osteoclast”, and “pathway”, 

and assigned these biomarkers into different signaling pathways or functional activities that are critical 

in bone metabolism. Finally, we reconstructed the biological networks/pathways in gene expression, 

DNA methylation, and metabolite levels by incorporating STRING interaction network. 

The QTL SNPs were annotated to candidate target genes using SNPnexus (Chelala et al., 2009) under 

NCBI RefSeq gene annotation system. We applied HaploReg (Ward and Kellis, 2012) to explore the 

potential functional importance of the identified QTL SNPs on regulatory chromatin states across 

diverse cell types, predicted effects on TF binding, and the effects on gene expression (eQTL hits). We 

also evaluated the sequence evolutionary conservation (PhyloP score) for each QTL SNP. Analysis of 

the LD around susceptibility QTL SNPs was performed by SNiPA (Arnold et al., 2015) with 1000 

Genomes reference panel (Phase 3 v5 under European population). 3DSNP prioritization analysis (Lu et 

al., 2017) was used to retrieve the total functionality score of candidate SNPs.  

MR Analysis 

To further investigate the potential causal effects of the significant biomarkers on BMD variation, we 

first selected candidate biomarkers via functional annotation and classification analysis, then we 



 

 

 

extracted QTL SNPs (p < 5.010
-5

) for each osteoporosis biomarkers and downloaded BMD summary 

statistics released from UK Biobank (Kemp et al., 2017), followed by LD assessment and data 

harmonization. By applying the multiple independent SNPs as instrumental variables, we conducted MR 

analysis using simple median, weighted median, IVW and MR Egger methods. In addition, we also 

assessed the causal effects of these functionally classified osteoporosis biomarkers among different 

omics. MR analysis was implemented through the R package MendelianRandomization v0.3.0 

(Yavorska and Burgess, 2017). 

Data and Code Availability 

All whole genome sequencing data, RNA sequencing data, reduced representation bisulfite sequencing 

data, and metabolite date in this manuscript has been deposited in dbGaP. The accession number for the 

data reported in this paper is dbGaP: phs001960.v1.p1. 
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