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Aims Aortopathies are a series of disorders requiring multiple indicators to assess risk. Time-averaged wall shear stress 
(TAWSS) is currently considered as the primary indicator of aortopathies progression, which can only be calculated 
by Computational Fluid Dynamics (CFD). However, CFD’s complexity and high computational cost, greatly limit its ap-
plication. The study aimed to construct a deep learning platform which could accurately estimate TAWSS in ascending 
aorta.

Methods 
and results

A total of 154 patients who had thoracic computed tomography angiography were included and randomly divided into 
two parts: training set (90%, n = 139) and testing set (10%, n = 15). TAWSS were calculated via CFD. The artificial in-
telligence (AI)-based model was trained and assessed using the dice coefficient (DC), normalized mean absolute error 
(NMAE), and root mean square error (RMSE). Our AI platform brought into correspondence with the manual segmen-
tation (DC = 0.86) and the CFD findings (NMAE, 7.8773% ± 4.7144%; RMSE, 0.0098 ± 0.0097), while saving 12000-fold 
computational cost.

Conclusion The high-efficiency and robust AI platform can automatically estimate value and distribution of TAWSS in ascending aor-
ta, which may be suitable for clinical applications and provide potential ideas for CFD-based problem solving.
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Introduction
Aortopathies are a group of disorders characterized by aneurysms and 
dilation of the aorta, which can eventually lead to catastrophic rupture 
or dissection.1 Surgical therapy is currently the most common treat-
ment for aortopathies, with the greatest aneurysm diameter serving 
as an intervention indicator.2 However, it has been reported that at least 
half of patients who developed acute aortic syndrome had an aortic size 
that fell below the threshold for surgical intervention.3 As a result, re-
searchers are working to develop a variety of evaluation indicators to 
predict the risk of adverse events in patients with aortopathies.

Haemodynamics indexes, particularly wall shear stress (WSS), de-
fined as the parallel frictional force exerted by blood flow on the 
endothelial surface of the arterial wall, have been identified as poten-
tially useful metrics to evaluate the risk of aortopathies.4

Time-averaged wall shear stress (TAWSS), defined as the WSS aver-
aged over the cardiac cycle, is regarded as an important indicator of 
aneurysm progression. Studies indicated that increased TAWSS of 
ascending aortic aneurysms was associated with adverse vascular re-
modelling and mechanotransduction,5 being correlated with rupture 
properties in ascending aortic aneurysm.

TAWSS in ascending aorta cannot be measured directly, so it must 
be combined with computational fluid dynamics (CFD) technology.6

Some studies have used CFD to obtain aortic geometries7 from 
medical imaging data (e.g. MRI, CT, etc.) and estimate haemodynam-
ics parameters that regarded as pathological characteristics of the 
progression, rupture risk and efficacy evaluation of aortic aneurysm.8

However, the cost of modelling cardiovascular haemodynamics with 
available computational resources is prohibitive to incorporating 
CFD into clinical practice.9 Obtaining precise haemodynamic para-
meters, such as TAWSS with low cost is crucial for aortic disease.

The development of artificial intelligence (AI), particularly deep 
learning (DL), enhances our abilities to address the above chal-
lenges.10 Previous studies have proved that DL can reduce calcula-
tion costs in CFD while maintaining accuracy.11,12 However, many 
previous studies have used simplified models, constant boundary 
conditions to reduce computational cost, which resulted in predic-
tion biases.13,14 Few studies have included automatic segmentation 
into DL-based CFD analysis, which may increase time costs and con-
tribute to human interference. Therefore, it is necessary to find a 
new, rapid, and high precision AI-based platform that can automatic-
ally identify medical images and predict TAWSS.

In this study, we designed a rapid, end-to-end, and pixel-wise 
AI-based platform, containing automatic segmentation platform of aor-
tic wall and TAWSS estimation platform, to estimate the distribution of 
TAWSS in ascending aortas via our own personalized dataset (Figure 1). 
This platform, to the best of our knowledge, was the first to provide a 
completely end-to-end, efficient, and accurate TAWSS estimation algo-
rithm, which may be more suitable for clinical applications and provide 
potential ideas for CFD-based problem solving via DL.

Methods
Data
A total of 185 individuals with normal aorta or aortopathies aged 18 years 
or older were recruited from our centre from 2017 to 2021, with 154 

passed quality control (79 normal and 75 aortopathies). Two experi-
enced clinicians investigated and included raw chest and total aortic com-
puted tomography angiographies (CTAs) with the diagnosis of normal 
ascending aorta (maximum diameter of ascending aorta 
< 35 mm without abnormal aorta, such as acute aortic syndrome or dis-
section), dilation (maximum diameter of ascending aorta ≥ 35 mm), and 
other aortopathies, such as acute aortic syndrome and dissection. 
Supplementary material online, Figure S1 depicted the inclusion and ex-
clusion of patients’ data.

The experimental scheme and related details of this study were con-
ducted following the Declaration of Helsinki and approved by the 
Institutional Ethics Committee of Sun Yat-sen Memorial Hospital of 
Sun Yat-sen University (SYSEC-KY-KS-2021-051). The requirement 
for informed consent in retrospective cohorts was waived. The 
Standards for Reporting of Diagnostic Accuracy reporting guideline 
was used for the reporting of this study.

Computational fluid dynamics analysis 
of ascending aorta
CFD analysis consists primarily of the following steps: manual aortic seg-
mentation and refining, the discretization technique of finite volume 
method (FVM), boundary condition setting, transient state CFD calcula-
tion and residual monitoring, result acquisition and post-processing.15–17

We used FVM discretization technique to simulate the ascending aorta 
from the sinotubular junction (STJ) to the beginning of the brachiocepha-
lic trunk in each case. All cases were treated as transient states with pre-
defined boundary conditions. For residual monitoring, root mean square 
(RMS) is utilized to ensure that the residual of each time step was smaller 
than 10−6. Figure 2 depicts the flow chart of the overall process and de-
tailed information were described in Supplementary material online, 
Figure S2.

Architecture of time-averaged wall shear 
stress estimation platform
Splitting of data set
For the automatic segmentation platform and the TAWSS automatic es-
timation platform, the entire dataset from 154 patients was divided into 
two parts: training set (90%, n = 139), and testing set (10%, n = 15).

Image pre-processing
To facilitate image segmentation, images were pre-processed by limiting 
CT intensities, normalizing, resampling and sorting18 (Supplemental 
material). All images were sorted along the z-axis and resized to 
512512 by the round interpolation.

The pre-processing in point clouds derived from aortic wall segmen-
tation included normalization and down-sampling to 10 000 points per 
case (Supplemental material), which can make a balance between the cal-
culation cost and accuracy.19 In addition, we expanded the data by using 
10 different initial points in down-sampling, which resulted in a tot×al of 
1390 point clouds.

Architecture segmentation network 
development
A U-net-based architecture was adopted for DL-based automatic seg-
mentation (Supplemental material).20,21 We used the following 
parameters for U-net model: initialized with random weights, number 
of epochs = 100, batch size = 16, RMSprop optimizer22 with learning 
rate = 0.01, and dice loss as evaluation. The network with the smallest 
dice loss was chosen and then each case’s point clouds were output.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
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Figure 1 The architecture of the platform. The purpose of this platform is to output the time-averaged wall shear stress values and distribution of 
the ascending aorta wall in the original computed tomography angiography image. Briefly, the network consists of two parts. The first part is auto-
matic extraction of the aortic wall, and the coordinate information for each point in the point cloud (right) is retrieved from the vessel wall (left). The 
second is the time-averaged wall shear stress automatic estimation platform. After extracting the coordinate information of ascending aorta wall 
from the first part, we carried out the time-averaged wall shear stress estimation of each point through the PointNet-based deep learning algorithm, 
and finally the time-averaged wall shear stress distribution and values of ascending aorta are output. CTAs, computed tomography angiographies; 
TAWSS, time-averaged wall shear stress.
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Architecture of time-averaged wall shear 
stress automatic estimation platform
High-density point clouds {Pi | i = 1, …, N} generated from segmentation 
were vectors that contained spatial coordinates (x, y, z) as well as hemo-
dynamic indexes such as TAWSS at that position. To analyze these cha-
otic, sparse, and linked point clouds, we adopted PointNet,23 a network 
that can recognize spatial information, detailed architecture of which 
were shown in Supplemental material.

For training, we utilized a 5-fold cross-validation to ensure that the hy-
perparameters were adequate. Hyperparameter tweaking and network 
fitting ability were gauged by comparing their average loss across all 
five validations (see Supplementary material online, Figure S6). We 
used the following parameters: initialized with random weights, batch 
size = 16, Adam optimizer with learning rate = 0.01,24 Cosine annealing 
decay as attenuation, and mean square error (MSE) as loss function.

Definition of error functions
Dice coefficient (DC) was used to evaluate our performance of segmen-
tation.25 Then, we chose normalized mean absolute error (NMAE)26 and 
root mean square error (RMSE)27 as our error functions to evaluate the 
accuracy of the TAWSS estimation platform based on the evaluation cri-
teria in the literature. The error of the DL prediction relative to the 

ground truth was described using NMAE. See Supplemental material
for the calculation formula of the above indicators.

Statistical analysis
Statistical analysis was performed using Python version 3.8. Categorical 
variables were expressed as counts (percentage), and continuous vari-
able as mean ± SD or median [interquartile range (IQR)]. The 
Spearman correlation’s test between automatic estimation platform pre-
diction and ground truth (CFD result) were similarly evaluated. A P value 
< 0.05 was regarded as significant.

Result

Patients’ characteristics and result 
of computational fluid dynamics-based 
simulation modelling
A total of 154 patients were eligible for this study (see 
Supplementary material online, Table S1). Compared with group of 
aortopathies and normal controls, there were no statistically signifi-
cant differences among genders, ages, or devices. There was no 

Figure 2 The process of computational fluid dynamics analysis and time-averaged wall shear stress calculation. Shortly, we first labelled the mask 
of aorta, containing aortic root, aortic sinus, sinotubular junction, ascending aorta, arch, descending aorta and main branches (B) from raw computed 
tomography angiography (A). Then ascending aortas were cropped, smoothed and refined (C ). Tetrahedral meshes and six boundary-fitted prism 
layers for every case were generated (D). And boundary conditions were assigned to each case (E). Root mean ssquare was used to monitor the 
calculation process (F ). Only when the root mean square value for a timestep was less than 10−6 can we carry out the calculation for the next 
timestep. Lastly, the calculation results, including time-averaged wall shear stress, wall shear stress, and so on, were obtained after post-processing 
(G). CFD, computational fluid dynamics; CTA, computed tomography angiographies; RMS, root mean square; STJ, sinotubular junction; TAWSS, 
time-averaged wall shear stress; WSS, wall shear stress.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data


530                                                                                                                                                                                              L. Lv et al.

statistical difference between the training set and the test set either. 
After calculating, all the cases’ RMS of each time step were under 
10−6 and achieved convergence, which ensured the accuracy of 
ground truth. The residual monitoring plots and TAWSS distribution 
at different time points in one cardiac cycle among different diseases 
were depicted in Supplementary material online, Figure S3 and S4.

Results of automatic segmentation 
prediction
We examined the best weight on the test set after training the neural 
network and obtained DC of 0.86. Figure 3 depicted comparisons of 
the raw CTAs, manual labels, and automatic segmentations, while 
Supplementary material online, Figure S7 presented the voxel level 
consistency in a Bland-Altman plot between segmentation platform 
and ground truth.

At this point, we have successfully segmented the anatomy of the 
ascending aorta, which will replace manual segmentation, and we can 
convert the segmented images into point cloud.

Results of time-averaged wall shear 
stress automatic estimation platform
After about 6000 iterations, the loss function fully converged, result-
ing in a value of 0.003 (see Supplementary material online, Figure S6). 
By comparing the AI-predicted value and distribution of TAWSS in 
ascending aorta with the ground truth in diverse clinical states includ-
ing normal (Figure 4A), dilation (Figure 4B) and patient with significant 
aortic sinus (56 mm) and aorta (52 mm) dilatation with Marfan syn-
drome (Figure 4C) cases, we found that our platform performed well 
in predicting the value and distribution of TAWSS in both healthy in-
dividuals and aortopathies. See Supplemental material for detailed 
discussion of flow field characteristic distribution. Table 1 displayed 
the NMAE, RMSE and the correlation coefficient between the pre-
dicted value and the ground truth among the whole test, normal in-
dividuals and aortopathies. Then, by calculating the absolute value of 
the difference between the predicted value and the ground truth, we 
discovered that the error was less than 0.2 Pa in most areas, indicat-
ing that our model’s calculation results were accurate, but the error 
at the entrance and outlet were relatively large (over 0.5 Pa). In the 
limitations section below, we provided detailed explanations.

Deep learning improves computing 
performance
After training, it took 10.84 s/patient (0.09 s/slice) for segmentation 
and 1.43 s/patient to calculate TAWSS by using a computer with an 
Intel core i7-10700kf 3.8 Ghz and a NVidia GeForce GTX 3070 GPU, 
while the whole process manual calculation time for each patient 
cost about 280 min on the same environment. In comparison to 
the traditional CFD method, which requires repetitive manual anno-
tation and complex simulated derivation, our platform has a much 
lower computational cost.

Discussion
In this study, we built a fast, end-to-end, and pixel-wise AI platform 
that can automatically estimate TAWSS of ascending aorta from 

CTA. Our platform had two major components: an automatic seg-
mentation platform that could generate 3D coordinate information 
of the aortic wall via CTA, and a TAWSS estimation platform which 
took the above-mentioned 3D coordinate and output TAWSS of 
each node. We demonstrated that the AI platform can properly 
and quickly estimate complex 3D hemodynamics, providing great ap-
plication value in scientific research and clinical fields.

TAWSS is an important potential metric for assessing the risk of 
aortopathies,8 which currently estimated from medical images due 
to the lack of direct measurement in vivo.6 Several studies have de-
monstrated that accurate simulation of hemodynamics can be con-
sidered the ground truth.28 Currently, CT is most frequently 
chosen as the initial test for the worldwide hospitals of all levels29

with reliable image quality, fast inspection, and low costs, which is 
suitable for the hemodynamic index calculation and model recon-
struction. To ensure authenticity and reliability of the original data, 
all images were derived from CTA of in our centre.

Several changes were made during the CFD process in this study 
to improve computational efficiency based on the relevant para-
meters reported in previous literature as well as the actual situation. 
For example, for our research, we segmented ascending aorta from 
the STJ to the beginning of the brachiocephalic trunk, which is cur-
rently used to describe the characteristics of the flow field of the hu-
man ascending aorta, analyze how different surgical methods such as 
the David procedure affect hemodynamics, and predict the out-
comes, demontrating that our models were available.30–32 Blood 
was a non-Newtonian fluid,29 but we idealized it as a Newtonian fluid 
in the ascending aorta [blood is incompressible in the ascending aor-
ta, the aortic wall is non-slip with a large diameter (>30 mm), and the 
deformation is negligible].17 The velocity–time curve at inlet and the 
pressure-time curve at outlet were simplified and re-fitted based on 
the numerical results reported in the literature15,17,29 to improve 
computational efficiency, mimic the hemodynamic characteristics 
of the aorta as much as possible, and avoid the risk of curve overfit-
ting caused by the limited cases in the references. In our study, we 
chose transient state and measurable turbulence model, which 
brought the boundary conditions and prediction closer to the real 
state in vivo.33,34 When compared to other similar studies that 
used real medical imaging data and patient-specific boundary condi-
tions, the value and distribution results of TAWSS in ascending aorta 
and aortopathies obtained by our CFD procedure were generally 
consistent with those reported in previous literature5,35 demonstrat-
ing the rationality, accuracy, and efficiency of modelling and calcula-
tion. Interestingly, some scholars believe that the rationale of 
integrating assumptions employed with surrogate models for the 
parameter calibration makes the approach robust, and the consist-
ency of our CFD results with previous studies validated this remark 
to some extent.36 Although a high-performance computer was of-
fered, it cost about 280 min to complete each case, which was far 
from satisfaction. It was necessary for us to find an accurate and 
fast TAWSS estimation strategy to meet the need of clinic practice.

Some studies tried to solve this kind of problem via DL. Maziar 
Raissi et al.12 designed Hidden fluid mechanics to solve Navier– 
Stokes equations and CFD problem, and this landmark work made 
it possible to address the problem of extracting the velocity and pres-
sure fields directly from the images. In the field of aortic CFD, Liang 
et al.26 firstly built a DL method to estimate the distribution of 

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac058#supplementary-data
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pressure in aorta, but it was only suitable for ideal aorta, not for the 
whole complex cardiovascular system, especially for aneurysm. 
Gaoyang Li et al.11 provided a new idea of point cloud-based DL net-
work. However, the ascending aorta had a high MSE, and the turbu-
lence model did not fit the ascending aorta’s haemodynamic 
properties. To address these flaws, we constructed a DL network 
based on the framework of PointNet, modified the network by add-
ing a Rectified Linear Unit layer and altered the prediction of prob-
ability to the TAWSS. After modification, the platform attained 
correspondence between the model geometry and its TAWSS dis-
tribution, which simplified the entire CFD calculation process a lot 
while ensured accuracy. Meanwhile, compared with previous studies, 
our model can accurately estimate TAWSS distribution and values 
under various disease conditions, such as aneurysm and Marfan syn-
drome, with strong generalization ability and wide application 
potential.

In previous DL studies, researchers provided rapid, end-to-end, 
identification networks for cardiovascular structures from 
CCTAs or MRI.21,37 However, there is few articles associated seg-
mentation networks with CFD in the procession of drawing geo-
metric models, and cardiovascular structures are usually identified 
by semi-automatic methods. These methods are time-consuming 
and dependent on the clinical experience of the operator, which 
meant the results varies between senior clinicians and junior clini-
cians. To solve these problems, we constructed a U-net-based 
automated segmentation network for wall of ascending aorta, 
which can meet the needs for subsequent network, such as fast, 

accurate, and low cost. In our study, aortic segmentation per-
formed consistently well in comparison to similar studies in most 
regions.38 The prediction results at the inlet and outlet, on the 
other hand, are relatively poor, owing to the considerable variance 
of the above regions and cardiac motion. Poor performance due to 
motion and artery ostium variation is a common issue in the field of 
cardiovascular deep learning, and it is inevitable in the absence of 
ECG-gated imaging data.39,40

As far as we know, our platform was the first-reported 
end-to-end, pixel-wise platform combining ascending aorta segmen-
tation with TAWSS estimation and can be widely used in clinical 
practice for high accuracy, convenient, and rapidity.

Study limitations
First is the lack of personalized or dynamic boundary conditions. 
Because of the lack of specific and individual patient flow data in 
our centre, exact values of the boundary conditions were derived 
from the published literatures.16,17 This would result in simulation re-
sults that do not perfectly reflect the dynamic changes in haemo-
dynamics. In our platform, we found some error predictions in the 
inlet and outlet, which may result from the re-fitted velocity–time 
curve and the haemodynamic characteristics at this location did 
not match the geometric characteristics completely. Moreover, the 
image data were from thoracic CTA in the absence of ECG-gated 
and prone to artefacts caused by heart motion, which led to bias. 
This bias implied that there were differences in the data distribution 

Figure 3 The results of ascending aorta automatic segmentation. The first line shows the raw computed tomography angiography of ascending 
aorta, and we manually labelled the wall of aorta (the second line). After training, the mask of aorta (the third line) and the aortic wall (the last line) 
can be extracted automatically. CTAs, computed tomography angiographies.
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for the neural network and required a higher data size for fitting the 
CFD results. Besides, the image quality in the ascending aortic plane 
was better than the STJ, caused the higher error of TAWSS estima-
tion in the STJ. In fact, poor performance due to motion and artery 
ostium variation is a common issue in the field of cardiovascular deep 
learning, and further exploration of practical solutions is still 
needed.39,40

Second, the present study retrospectively collected CTA data 
from a single centre before rupture event, and the number of en-
rolled patients was relatively small. However, based on deep learning, 

these platforms were greedy for data which meant our results must 
be verified in a larger cohort including the cost-effectiveness of the 
current approach.41

Conclusions
In this research, we built a fast, end-to-end, and pixel-wise AI plat-
form, containing automatic segmentation platform of aortic wall 
and TAWSS estimation, which can automatically estimate values 
and distribution of TAWSS in ascending aorta with various disease 

Figure 4 The results of time-averaged wall shear stress estimation platform. The figure shows the estimated results of patients with three dif-
ferent states. (A) A healthy volunteer (diameter of aorta = 32 mm). (B) An aneurysm patient (diameter = 47 mm), and (C ) a patient with significant 
aortic sinus (56 mm) and aorta (52 mm) dilatation with Marfan syndrome. The first column was the ground truth calculated from computational 
fluid dynamics. The second column was the results of this platform, both distribution and values of which had a good consistency with the ground 
truth. The third column was the error of each estimation. The final column had the Bland–Altman plots, reflecting the WSS derived using both CFD 
and deep learning techniques. This model had a high accuracy in time-averaged wall shear stress estimation along with various aortic diseases. CFD, 
computational fluid dynamics; TAWSS, time-averaged wall shear stress.
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Table 1 Accuracy of test data in time-averaged wall shear stress estimation platform

NMAEa RMSEb rc P

Total 7.8773%±4.7144% 0.0098 ± 0.0097 0.8124 ± 0.1639 < 0.001

Normal 8.6412%±4.7289% 0.0063 ± 0.0049 0.7777 ± 0.1702 < 0.001
Aortopathies 7.2087%±4.5987% 0.0128 ± 0.0117 0.8428 ± 0.1516 < 0.001

aNMAE, normalized mean absolute error. 
bRMSE, root mean square error. 
cr, the correlation coefficient between predicted value and ground truth.



An AI platform to estimate TAWSS in ascending aorta                                                                                                                               533

type from CTA. The high-efficiency and robust platform may be suit-
able for clinical applications and provide potential ideas for 
CFD-based problem solving via deep learning.
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