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In study designs with repeatedmeasures formultiple subjects, populationmodels capturingwithin- and between-subjects variances
enable efficient individualized prediction of outcome measures (response variables) by incorporating individuals response data
through Bayesian forecasting. When measurement constraints preclude reasonable levels of prediction accuracy, additional
(secondary) response variables measured alongside the primary response may help to increase prediction accuracy. We investigate
this for the case of substantial between-subjects correlation between primary and secondary response variables, assuming negligible
within-subjects correlation. We show how to determine the accuracy of primary response predictions as a function of secondary
response observations. Given measurement costs for primary and secondary variables, we determine the number of observations
that produces, withminimal cost, a fixed average prediction accuracy for amodel of subjectmeans.We illustrate this with estimation
of subject-specific sleep parameters using polysomnography and wrist actigraphy. We also consider prediction accuracy in an
example time-dependent, linear model and derive equations for the optimal timing of measurements to achieve, on average, the
best prediction accuracy. Finally, we examine an example involving a circadian rhythmmodel and show numerically that secondary
variables can improve individualized predictions in this time-dependent nonlinear model as well.

1. Introduction

Significant steps forward in the analysis of repeated-measures
data were made with the introduction of linear and non-
linear mixed-effects models [1–3], which distinguish within-
subjects variance (from multiple measurements in each sub-
ject) versus between-subjects variance (from multiple sub-
jects being measured). Distinguishing these types of variance
can also be thought of as explicitly modeling random error in
the data. This can be useful in understanding how different
individuals are from one another as compared to how
different multiple measurements are for given individuals. In
research on sleep and sleepiness, for example, breakthroughs
made possible by mixed-effects models include elucidation
of the dose-response effects of sustained sleep restriction on

sleep architecture and neurobehavioral impairment [4, 5]
and demonstration of the trait characteristics of individual
differences in vulnerability to sleep loss [6]. In recent years,
mixed-effects model approaches to statistical regression and
analysis of variance have becomewidely available in statistical
software packages. They are nowadays the methodology of
choice for many repeated-measures investigations in sleep
research and other fields of study.

A further advance was the introduction of a model
individualization technique called Bayesian posterior distri-
bution estimation or Bayesian forecasting. This technique
was first used in sleep research to overcome a shortcoming
of biomathematical models of fatigue and performance.
Existing models did not account for individual differences in
sleep regulation and vulnerability to sleep loss and therefore
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Figure 1: Lapses of attention on a psychomotor vigilance test (PVT) for a subject in a study involving 88 h of total sleep deprivation under
controlled laboratory conditions. In each of the six plots, different amounts of subject data are assumed known (black dots), and the Bayesian
forecasting procedure is applied to the known data to construct predictions of PVT number of lapses for a 24 h interval immediately following
themost recent collected data point at time 𝑡. For the 24 h interval, 95%prediction intervals (vertical bars) are shown, alongwith the remainder
of the data for comparison (gray dots). The beginning of the 88 h sleep deprivation period, 𝑡

0
, was at 07:30. Graphs taken from [7] with

permission.

did not accurately predict performance for given individuals.
Bayesian forecasting addressed this shortcoming by utilizing
the separation of within- and between-subjects variance in
model parameters as enabled by mixed-effects modeling
[2]. In Bayesian forecasting, the between-subjects variance
of model parameters serves as Bayesian prior information.
Measurements from a new individual, not previously studied,
are combined with the prior information to efficiently derive
model parameters tailored to the new individual, thereby
yielding a subject-specific mathematical model [2, 7, 8].
As a bonus, the Bayesian forecasting technique also yields

quantitative estimates of the accuracy of individualized pre-
dictions made with the subject-specific mathematical model
[9].

In a published example, Bayesian forecasting was imple-
mented for the two-process model of sleep regulation [10, 11]
to predict performance impairment of selected individuals
undergoing a period of total sleep deprivation (see Figure 1).
Comparisons with the individuals’ actual data revealed that
the model parameters converged efficiently to those that
best characterized each individual, and the response predic-
tions were significantly more accurate than could have been
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achieved with the original, nonindividualized two-process
model [7].

In Bayesian forecasting, individualized parameter esti-
mates are derived from the posterior distributions of the
parameters in question after combining prior distributions
with the measurement(s) from the individual, and individu-
alizedmodel predictions for future outcomes or responses are
obtained following estimation of the posterior distribution of
the expected responses at given times. A variety of methods
are available for obtaining parameter estimates and response
predictions once posterior distributions have been estimated.
We employ the Bayesian mean squared error (BMSE) [12]
and make use of the Bayesian minimum mean squared
error (MMSE) estimator [13, 14], which produces unbiased
point estimates that minimize the BMSE [15]. The BMSE of
parameter estimates and response predictions is dependent
on the amount of data available for the individual at hand and
the magnitude of between-subjects variance captured in the
Bayesian prior distributions.

In cases where between-subjects variance is relatively
large, such as performance responses to sleep loss [6, 16],
measurement data for the individual at hand aremore critical
for making accurate individualized response predictions.
Sparseness of such measurement data (e.g., due to practical
or cost-based limitations) can result in unacceptably low
levels of accuracy. For example, Bayesian forecasting could
be used to develop a drowsy driver warning system based
on a mathematical model of fatigue and performance [17, 18]
calibrated to predict lateral lane deviation, using camera-
based measurements of lane position to individualize the
model for the driver.However, when lanemarkers are covered
with snow and cameras are unable to determine vehicle
position relative to the lane, the individualization effort
becomes less effective.

To address this limitation, we consider the use of sec-
ondary variables to increase data availability, boost response
prediction accuracy, and/or reduce data collection costs for
individualized response prediction. For example, in the case
of a drowsy driver warning system, camera-based mea-
surements of lateral lane deviation serving as the primary
response variable could be augmented with in-car secondary
variables such as steering wheel variability or driver eyelid
closure assessments. However, individualization of predic-
tions based on two or more measurement variables would
only be straightforward if individual differences in responses
on these variables are equivalent (cf. [19]). Generally, this is
not what the evidence shows. As a case in point, trait indi-
vidual differences in vulnerability to performance impair-
ment due to sleep loss vary considerably across outcome
variables [6, 20], such that the most vulnerable individuals
based on one variable are not necessarily also the most
vulnerable individuals based on another variable. Therefore,
when considering two or more response variables as the
basis for individualized prediction, it is essential to account
statistically for the level of congruence between the response
variables.

Here we develop a multivariate statistical framework for
individualized prediction of sleep or performance variables,
based on Bayesian forecasting with measurements of a

primary response variable, augmented with one or more
measurements of secondary response variables.The response
variables are assumed to follow equivalent dynamics over
time, such that they can be described by the same model
framework after appropriate scaling. This is a reasonable
assumption in the case of, for example, models describing
sleep variables measured repeatedly across multiple nights
[21] and models describing performance changes over time
in response to sleep loss [22]. We make use of multivariate
Bayesian prior distributions of the primary and secondary
variables, assumed to have been assessed in advance bymeans
of mixed-effects modeling [2] or other suitable techniques.
Thebetween-subjects correlation(s) between the primary and
secondary variables, used here to account for the level of
congruence between the response variables, is assumed to
have been estimated as part of the covariance matrix of
the multivariate Bayesian prior distributions. The between-
subjects correlation(s) are assumed to be at least moderately
strong, lest the secondary variables contain essentially no
information about the primary response variable that rises
above the level of measurement noise.

Our focus in this paper is on prediction accuracy in the
multivariate Bayesian forecasting technique. We develop the
technique by first considering the details of making individ-
ualized response predictions and estimating their accuracy
for a simple univariate intercept model. To demonstrate how
secondary, correlated responses can be used to make more
accurate individualized predictions, we expand the intercept
model to include both primary and secondary responses.
Assuming fixed costs of data collection for each of the
responses, we show how to optimize data collection given
a desired level of accuracy for predictions of the primary
response variable.

We then consider a linear approximation of the homeo-
static component of the two-process model [11] and derive
a closed form equation of the BMSE to quantify prediction
accuracy in this time-dependent model. For this example, we
study the problem of optimizing the timing of measurements
in order to enhance the individualized prediction accu-
racy most efficiently. Finally, we consider more complicated
bivariate models, both linear and nonlinear, for which the
BMSE cannot be determined in closed form. For these
models, we describe a process of numerically assessing the
BMSE for individualized prediction based on a primary
response variable in Bayesian forecasting augmented with
measurements of a secondary response.

2. Subject-Specific Bayesian Models

First we discuss a modeling framework for Bayesian forecast-
ing. Consider a response variable 𝑦, dependent on a subject-
specific trait parameter 𝜃. Let 𝑖 be an index for individual,
ranging from 1 to 𝑁, and let 𝑗 be an index for observations
ordered by time, nested within individual. Suppose that the
response variable can be modeled by

𝑦
𝑖𝑗
= 𝑓 (𝑡

𝑖𝑗
, 𝜃
𝑖
) + 𝜖
𝑖𝑗
, (1)
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where 𝑓(𝑡
𝑖𝑗
, 𝜃
𝑖
) represents the model function, 𝑡

𝑖𝑗
represents

a fixed measurement time, 𝜃
𝑖
represents a random subject-

specific parameter, and 𝜖
𝑖𝑗
represents additive measurement

error. We assume that the distributions for 𝜃
𝑖
and 𝜖

𝑖𝑗
are

known. Equation (1) and the distributions of 𝜃
𝑖
and 𝜖

𝑖𝑗

constitute a population model.
Limiting our focus to a particular individual, we may

remove the subscript 𝑖 and model the subject’s responses as

𝑦
𝑗
= 𝑓
𝑗
+ 𝜖
𝑗
, (2)

where 𝑓
𝑗
is used to denote 𝑓(𝑡

𝑗
, 𝜃).

Suppose that a total of𝑚 responses (𝑦
1
, . . . , 𝑦

𝑚
) have been

measured for the individual at hand, and let 𝑗∗ denote the
index of a response 𝑦

𝑗
∗ at some future time 𝑡

𝑗
∗ . We consider a

prediction (estimator) of the expected response 𝐸[𝑦
𝑗
∗ | 𝜃] =

𝑓
𝑗
∗ , which we denote as 𝑓

𝑗
∗ . Our interest is in constructing

𝑓
𝑗
∗ such that the expected accuracy for an arbitrary, given

individual from the population is minimized.
We define the accuracy using the squared error (𝑓

𝑗
∗ −

𝑓
𝑗
∗)
2. The expected accuracy, which is referred to as the

Bayesian mean squared error (BMSE), is thus given by

M
𝑓
𝑗
∗

≡ BMSE (𝑓
𝑗
∗) ≡ 𝐸 [(𝑓

𝑗
∗ − 𝑓
𝑗
∗)
2

] , (3)

where the expectation is taken with respect to the marginal
probability density function (pdf) of 𝑦

1
, . . . , 𝑦

𝑚
and 𝜃.

We refer to the prediction that minimizes the BMSE as
a minimum mean squared error (MMSE) prediction. After
observing data from a particular individual, 𝑦

1
, . . . , 𝑦

𝑚
, and

constructing the MMSE prediction 𝑓
𝑗
∗ , we seek to assess

the expected accuracy of this particular prediction. This can
be done with confidence intervals on 𝑓

𝑗
∗ , obtained from

quantiles of the posterior distribution of 𝜃 | 𝑦
1
, . . . , 𝑦

𝑚
. In

the following sections, we describe specific types of models
and investigate the BMSE and the MMSE that minimizes it.

3. Univariate Random Intercept Model

We consider a random intercept model obtained from (2) by
letting 𝑓

𝑗
= 𝜃:

𝑦
𝑗
= 𝜃 + 𝜖

𝑗
, (4)

𝜃 ∼N (𝜇, 𝛿
2
) , (5)

𝜖
𝑗
∼N (0, 𝜎

2
) , (6)

where 𝑗 = 1, . . . , 𝑚. For a particular individual, the expected
response at time 𝑡

𝑗
∗ is

𝐸 [𝑦
𝑗
∗ | 𝜃] = 𝑓

𝑗
∗ = 𝜃. (7)

It follows that the MMSE prediction of 𝐸[𝑦
𝑦
∗ | 𝜃] is

𝑓
𝑗
∗ = 𝜃, (8)

where 𝜃 is theMMSE of 𝜃.The estimator 𝜃 (and therefore𝑓
𝑗
∗)

is given by [23]:

𝜃 = 𝜐𝑦 + (1 − 𝜐) 𝜇, (9)

where 𝑦 is the sample mean of the measured responses and

𝜐 =
𝛿
2

𝛿
2
+ 𝜎
2
/𝑚
. (10)

The variance of the posterior distribution of 𝜃 | 𝑦
1
, . . . , 𝑦

𝑚

(and therefore 𝑓
𝑗
∗ | 𝑦
1
, . . . , 𝑦

𝑚
) is [23]:

Var (𝜃 | 𝑦
1
, . . . , 𝑦

𝑚
) =
𝜎
2

𝑚
(
𝛿
2

𝛿
2
+ 𝜎
2
/𝑚
) . (11)

Furthermore, the BMSE of 𝜃 (and therefore 𝑓
𝑗
∗) is given by

[23]:

M
𝜃
= Var (𝜃 | 𝑦

1
, . . . , 𝑦

𝑚
) . (12)

The MMSE prediction 𝑓
𝑗
∗ (given by (8) and (9)) repre-

sents a trade-off between knowledge about the population
and knowledge about the subject at hand. This trade-off is
embodied by the weighting factor 𝜐 in (10). When no data
are available for the subject at hand, 𝜐 = 0, resulting in
a prediction made at 𝑓

𝑗
∗ = 𝜇, where 𝜇 is, in this case,

representative of the population mean 𝐸[𝜃] as well as the
population mean response 𝐸[𝑦

𝑗
∗]:

𝐸 [𝑦
𝑗
∗] = 𝐸 [𝜃] = 𝜇. (13)

As we begin to collect subject-specific data, the weighting
factormoves towards the value 𝜐 = 1, resulting in a prediction
that converges to the subject-specific sample mean as data
collection continues.

Likewise, when no data are available for the subject at
hand, the expected accuracy of the prediction is M

𝑓
𝑗
∗

= 𝛿
2.

The term 𝛿2 is, in this case, representative of the population
variance as well as the variance in mean response over the
population:

Var [𝐸 [𝑦
𝑗
∗ | 𝜃]]

= 𝐸 [(𝐸 [𝑦
𝑗
∗ | 𝜃] − 𝐸 [𝐸 [𝑦

𝑗
∗ | 𝜃]])

2

]

= 𝐸 [(𝐸 [𝑦
𝑗
∗ | 𝜃] − 𝐸 [𝑦

𝑗
∗])
2

] = 𝐸 [(𝜃 − 𝜇)
2
]

= 𝛿
2
,

(14)

where the expectation 𝐸[𝑦
𝑗
∗ | 𝜃] is evaluated with respect to

the conditional distribution of 𝑦
𝑗
∗ | 𝜃, and all other expecta-

tions are evaluated with respect to the marginal distribution
of𝑦
𝑗
∗ . Per (12), as we begin to collect subject-specific data, the

expected accuracy of the prediction improves (i.e., the BMSE
decreases, where smaller is better).
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Figure 2: MMSE predictions of the expected response 𝑓
𝑗
∗ from

the univariate random intercept model specified in (4), and corre-
sponding 95% confidence intervals, determined by incorporating
simulated observations 𝑦

𝑗
iteratively. The individualized Bayesian

forecasting predictions begin at the population mean expected
response 𝜇 = 0 when no individual data are used and converge to
the subject’s expected individualized response𝑓

𝑗
∗ = 𝜃 = 1.4 as more

subject-specific data are collected.

To illustrate how predictions in this model depend on
the amount of subject-specific data collected, we conducted
a simulation of model (4) for a particular individual. For this
example, the parameter 𝜃 for the individual was chosen far
from the populationmean (when compared to themagnitude
of the population variance), in order to make the transition
from the population mean to the true expected response
𝑓
𝑗
∗ large enough so as not to be obscured by measurement

noise in the example.We assumed the population parameters
𝜇 = 0 and 𝛿 = 1 and chose the subject-specific parameter
value 𝜃 = 1.4. We simulated 𝑚 = 10 data points for
the individual, with a standard deviation of measurement
error of 𝜎 = 1. The MMSE prediction 𝑓

𝑗
∗ was calculated

by incorporating observations 𝑦
𝑗
iteratively. Figure 2 shows

𝑓
𝑗
∗ plotted against the number of data points used. The

variance of the posterior distribution for 𝑓
𝑗
∗ from (11) was

used to construct confidence intervals on 𝑓
𝑗
∗ . As expected,

for the individual considered, the prediction 𝑓
𝑗
∗ began at the

population mean and moved to the true expected response
with shrinking confidence interval as more simulated data
were collected.

4. Bivariate Subject-Specific Bayesian Models

When subject-specific data are sparse, individualized pre-
dictions may not, on average, reach acceptable levels of
accuracy. Accuracy may be improved by including data
from a secondary subject-specific data source. However,

individual differences in one response variable may not be
identical to individual differences in another (e.g., [6, 21]).
Therefore, data from a secondary response variable may not
simply be used as a substitute for the primary response
variable. Rather, to improve prediction accuracy on the
primary response by incorporating data from the secondary
response, the between-subjects correlation between the pri-
mary and secondary response variables must be taken into
account.

Here we derive the average accuracy of individualized
predictions of a primary response variable based on distinct
primary and secondary subject-specific response variables,
accounting for between-subjects correlation between the two
responses. Let 𝑖 be an index for individual, let 𝑟 be an index for
response type, and let 𝑗 be an index for observations ordered
by time, nested within individual and response type. Suppose
that the response 𝑦

𝑟𝑖𝑗
can be modeled by

𝑦
𝑟𝑖𝑗
= 𝑓 (𝑡

𝑟𝑖𝑗
, 𝜃
𝑟𝑖
) + 𝜖
𝑟𝑖𝑗
, (15)

where 𝑓(𝑡
𝑟𝑖𝑗
, 𝜃
𝑟𝑖
) represents the model function, 𝑡

𝑟𝑖𝑗
repre-

sents measurement time, 𝜃
𝑟𝑖
represents a random subject-

specific parameter associated with response type 𝑟, and 𝜖
𝑟𝑖𝑗

represents additive measurement error. Limiting our focus to
a particular individual, we may remove the subscript 𝑖 and
model the subject’s responses as

𝑦
𝑟𝑗
= 𝑓
𝑟𝑗
+ 𝜖
𝑟𝑗
, (16)

where 𝑓
𝑟𝑗
is used to denote 𝑓(𝑡

𝑟𝑗
, 𝜃
𝑟
). Suppose that a total of

𝑚
𝑟
responses have been observed for each response type 𝑟

for the individual at hand. In the next sections, we focus on
constructing the MMSE prediction for the expected primary
response, 𝑓

1𝑗
∗ .

5. Bivariate Random Intercept Model

We consider the bivariate random intercept model obtained
from (16) by letting 𝑓

𝑟𝑗
= 𝜃
𝑟
:

𝑦
𝑟𝑗
= 𝜃
𝑟
+ 𝜖
𝑟𝑗
, (17)

where 𝑟 = 1, 2. The scalar model can be converted to
vector form by concatenating the responses for each response
type,

y
1
= (

𝑦
11

.

.

.

𝑦
1𝑚
1

),

y
2
= (

𝑦
21

.

.

.

𝑦
2𝑚
2

),

(18)

and then concatenating the response vectors of different
types,

y = (
y
1

y
2

) . (19)
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A similar assembly of the measurement errors can be done so
that

𝜖
1
= (

𝜖
11

.

.

.

𝜖
1𝑚
1

),

𝜖
2
= (

𝜖
21

.

.

.

𝜖
2𝑚
2

),

𝜖 = (

𝜖
1

𝜖
2

) .

(20)

An assembly of the parameters can be accomplished by first
constructing the parameter vector,

𝜃 = (

𝜃
1

𝜃
2

) , (21)

and the design matrix,

H =

(
(
(
(
(
(
(

(

1 0

.

.

.

.

.

.

1 0

0 1

.

.

.

.

.

.

0 1

)
)
)
)
)
)
)

)

, (22)

so that the single individual model of (17) can be vectorized
as

y = H𝜃 + 𝜖. (23)

We consider the case where subject-specific traits and mea-
surement errors are both normally distributed,

𝜃 ∼N (𝜇,C
𝜃
) , (24)

𝜖 ∼N (0,C
𝜖
) , (25)

where 𝜇, C
𝜃
, and C

𝜖
are fixed population characteristics.

Correlations between primary and secondary response
variables y

1
and y

2
can be modeled as arising from a

correlation between 𝜃
1
and 𝜃
2
(between-subjects correlation)

or correlations between 𝜖
1
and 𝜖

2
(within-subjects correla-

tion). Here, we assume that response correlations arise from
between-subjects correlations:

C
𝜃
= (

𝛿
2

1
𝜌𝛿
1
𝛿
2

𝜌𝛿
1
𝛿
2
𝛿
2

2

) , (26)

where 𝜌 (−1 < 𝜌 < 1) represents the between-subjects cor-
relation between primary and secondary response variable
means and 𝛿2

𝑟
represents the between-subjects variance for

response variable 𝑟. Furthermore, we assume that measure-
ment errors are uncorrelated with response variable-specific
variance 𝜎2

𝑟
, so that correlations between the response vari-

ables arise only from the between-subjects components. For
subject-specific repeated-measures data with no covariates
for two response variables, it may be fair to consider the
error variance within subjects to be independent as long as
perturbations from the intercepts do not tend to be common
over both response types.

The error covariance matrix for response type 𝑟 is a
diagonal matrix with dimension 𝑚

𝑟
, where each nonzero

element is the type-specific error variance 𝜎2
𝑟
,

Σ
𝑟
= (

𝜎
2

𝑟
0 . . .

0 𝜎
2

𝑟
d

.

.

. d d

). (27)

The full error covariance matrix can then be built from the
type-specific blocks,

C
𝜖
= (

Σ
1

0
0 Σ
2

) . (28)

The bivariate Bayesian model we consider here is fully
characterized by (23)–(28).

As was the case for model (4), for a particular individual,
the expected primary response at time 𝑡

1𝑗
∗ is

𝐸 [𝑦
1𝑗
∗ | 𝜃] = 𝑓

1𝑗
∗ = 𝜃
1
. (29)

The MMSE prediction is

𝑓
1𝑗
∗ = 𝜃
1
. (30)

The MMSE estimator for model (23) is [23]:

�̂� = 𝜇 + (C−1
𝜃
+HC−1

𝜖
H)
−1

HC−1
𝜖
(y −H𝜇) . (31)

The MMSE estimator 𝜃
1
can be extracted as the first element

of �̂�.
The variance of the posterior distribution of 𝜃 | y is given

by

Var (𝜃 | y) = (C−1
𝜃
+HC−1

𝜖
H)
−1

. (32)

The variance of the posterior distribution of 𝜃
1
| y (and

therefore 𝑓
1𝑗
∗ | y) can be obtained by extracting the first

element from the diagonal of 𝜃 | y. The BMSE of the MMSE
estimator 𝜃 can be obtained from the parameter BMSEmatrix
M
𝜃
, which is given by [23]:

M
𝜃
= Var (𝜃 | y) . (33)
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Figure 3: BMSE (i.e., accuracy) of MMSE predictions of the
expected primary response 𝑓

𝑗
∗ for the bivariate random intercept

model specified in (23), as a function of the amount of data collected
on a secondary response variable (𝑚

2
), shown for different amounts

of data collected on the primary response variable (𝑚
1
). The figure

illustrates that the accuracy of individualized Bayesian forecasting
predictions improves progressively with just a few measurements of
the secondary response variable whenmeasurements of the primary
response variable are increasingly sparse.

The BMSE of 𝜃
1
(and therefore 𝑓

1𝑗
∗) can be obtained by

extracting the first element from the diagonal of M
𝜃
. Substi-

tuting (22), (26) and (28) into (33), we find that the BMSE for
𝜃
1
can be simplified as follows:

M
𝜃
1

= (
𝑚
1

𝜎
2

1

+
1

𝛿
2

1

+ 𝜆 (𝑚
2
))

−1

, (34)

where

𝜆 (𝑚
2
) =

𝜌
2
𝛿
2

2
/𝛿
2

1

𝛿
2

2
(1 − 𝜌

2
) + 𝜎
2

2
/𝑚
2

. (35)

Figure 3 illustrates the dependence of the BMSE of 𝑓
𝑗
∗ on

the number of observations from the primary and secondary
responses. For this illustration, the population parameters
were fixed at the values 𝛿

1
= 1, 𝛿

2
= 1, 𝜌 = 0.85,

𝜎
1
= 1, and 𝜎

2
= 1. The figure shows the decrease of the

BMSE as a function of the collection of secondary response
measurements, given different numbers of primary response
measurements. For a large number of primary response
measurements, little change in BMSE is derived from the
secondary response. However, for a small number of primary
response measurements, the BMSE decreases substantially
with just a few measurements of the secondary response.

To further illustrate the bivariate Bayesian forecasting
procedure, simulated subject-specific parameter pairs 𝜃 =
(𝜃
1
, 𝜃
2
) from the population distribution given by (24) with

1

2
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9 10

11

12
13

14 15

16
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1920

−1−2 1 20
𝜃1
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−1

𝜃
2 0

1

2

Figure 4: Subject-specific parameter pairs, simulated from a proba-
bility distribution specified by (24), fromwhich a simulated individ-
ual was selected for a bivariate Bayesian forecasting simulation. Each
number represents the parameter pair 𝜃 = (𝜃

1
, 𝜃
2
) for a different

simulated individual. The circled individual (#19) is used for the
illustration in Figure 5. The diagonal line shows where the points
would fall given a between-subjects correlation of 𝜌 = 1.

𝛿
1
= 1, 𝛿

2
= 1, and 𝜌 = 0.9 were generated for 𝑁 =

20 individuals, as shown in Figure 4. From this simulated
set, individual #19 (circled in Figure 4) with subject-specific
parameter vector 𝜃 = (−1.6; −2.0) was chosen to illustrate
the transition of the primary response prediction from the
population mean response to the true expected response
𝑓
1𝑗
∗ through Bayesian forecasting. For this individual, we

simulated errors from (25) using 𝜎
1
= √2, 𝜎

2
= √0.5, 𝑚

1
=

10, and 𝑚
2
= 10. Bivariate responses were then constructed

using (23).
The MMSE prediction 𝑓

1𝑗
∗ for individual #19 was iter-

atively determined after assuming only primary responses
were observed and after assuming pairs of primary and
secondary responses were observed. The iterative estimates
for both cases are shown in Figure 5, along with the simulated
data. The variance of the posterior distribution for 𝑓

1𝑗
∗ from

(32) was used to construct 95% confidence intervals on 𝑓
1𝑗
∗ .

For the individual considered, the predictions based on both
response variables (purple line) were more accurate than the
predictions based on only the primary response (blue line) for
the first few iterations of MMSE prediction. Note, however,
that while this behavior of the prediction accuracy is found
on average, as follows from (34) it is not necessarily true
for each and every individual to which the procedure may
be applied. Thus, caution is needed in relying on bivariate
Bayesian forecasting for improved prediction accuracy of
specific individuals; improved prediction accuracy can only
be counted on in the average over individuals.
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Figure 5: MMSE predictions of the expected primary response 𝑓
𝑗
∗

from the bivariate random interceptmodel specified in (23), and cor-
responding 95% confidence intervals (shaded areas) for individual
#19. The MMSE estimator 𝑓

𝑗
∗ was iteratively determined assuming

only primary responses were observed, as well as assuming both pri-
mary and secondary responses were observed. For the former case,
theMMSEwas iteratively determined by incorporating observations
𝑦
1𝑗
; for the latter case, the MMSE was iteratively determined by

incorporating pairs of observations (𝑦
1𝑗
, 𝑦
2𝑗
). Confidence intervals

were obtained from quantiles of the posterior distribution, which is
defined by the posterior mean (the MMSE estimator) (31) and the
posterior variance (32).

6. Data Collection Cost Minimization

When Bayesian forecasting is applied to individualize pre-
dictions, data must be collected to tailor the population
model to the individual at hand. In certain sleep research
applications, such as forecasting of sleep parameters across
nights or predicting performance deficits across periods of
sleep deprivation, and in a wide range of other biomedical
contexts, this requires creating multiple opportunities for
taking measurements.This may be an expensive proposition,
and reducing the number of measurement bouts needed
to obtain the necessary data could entail considerable cost
savings. By measuring secondary responses and incorpo-
rating these through bivariate Bayesian forecasting, it may
be possible to achieve a given level of prediction accuracy
at lower overall cost of data acquisition. Here we explore
this possibility in the case of the bivariate random intercept
model.

We consider a scenario in which the cost of collecting
an observation on the primary response is 𝑐

1
, the cost of

collecting an observation on the secondary response is 𝑐
2
, and

the total cost of data collection is the sum of primary and
secondary response costs accrued,

𝑐 = 𝑚
1
𝑐
1
+ 𝑚
2
𝑐
2
, (36)

where𝑚
1
, 𝑚
2
≥ 0. For this scenario, we determine howmany

observations 𝑚
1
and 𝑚

2
we may expect to have to collect

from each response type in order to minimize the total cost
of achieving, on average, a given prediction accuracy 𝜂2:

M
𝑓
1𝑗
∗

= 𝜂
2
. (37)

We can simplify the minimization problem by removing
either 𝑚

1
or 𝑚
2
from both the total cost equation and the

nonnegativity constraints on the number of data points.
Using 𝑓

1𝑗
∗ = 𝜃

1
(see (30)), it follows that the BMSE of

𝑓
1𝑗
∗ is equal to the BMSE of 𝜃

1
(i.e., M

𝑓
1𝑗
∗

= M
𝜃
1

). Fixing
M
𝑓
1𝑗
∗

= 𝜂
2 (37) therefore implies thatM

𝜃
1

= 𝜂
2, which can be

used with (34) to obtain a relationship between the number
of primary and secondary observations needed to meet the
average accuracy criterion 𝜂2:

𝑚
1
= 𝜎
2

1
(
1

𝜂
2
−
1

𝛿
2

1

− 𝜆 (𝑚
2
)) . (38)

We then substitute (38) into (36):

𝑐 = 𝑐
1
𝜎
2

1
(
1

𝜂
2
−
1

𝛿
2

1

− 𝜆 (𝑚
2
)) + 𝑐

2
𝑚
2
. (39)

The constraint 𝑚
1
≥ 0 can be equivalently formulated as an

upper bound on 𝜆(𝑚
2
):

𝜆 (𝑚
2
) ≤
1

𝜂
2
−
1

𝛿
2

1

. (40)

Consideration of this constraint is only necessary if there are a
certain number of measurements on the secondary response
for which it is possible to obtain the desired accuracy without
measurement of the primary response; that is,

lim
𝑚
2
→∞
𝜆 (𝑚
2
) ≥
1

𝜂
2
−
1

𝛿
2

1

. (41)

Substituting for 𝜆(𝑚
2
) from (35), this latter condition can be

reformulated as follows:

𝛿
2

1
(1 − 𝜌

2
) ≤ 𝜂
2
. (42)

Thus, 𝑚
2
has an upper bound when 𝜂2, the desired BMSE of

𝑓
𝑗
∗ , is not smaller than 𝛿2

1
(1−𝜌
2
), the minimum BMSE of 𝑓

𝑗
∗

which can be obtained using only the secondary response. It
follows that the constraint set for the minimization problem
is

0 ≤ 𝑚
2
≤

𝜎
2

2
(1/𝜂
2
− 1/𝛿
2

1
)

𝛿
2

2
(1 − 𝜌

2
) (1/𝛿

2

1
(1 − 𝜌

2
) − 1/𝜂

2
)

if 𝛿2
1
(1 − 𝜌

2
) ≤ 𝜂
2
,

0 ≤ 𝑚
2

otherwise.

(43)

If𝑚
2
exceeds its upper bound then the number of secondary

response measurements is more than what is minimally
needed to meet the average accuracy criterion (37).
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Figure 6: Illustration of three types of absolute minima of the total
cost of obtaining a fixed average prediction accuracy inside the
region defined by (43). Each plot shows the total cost 𝑐 = 𝑐

1
𝑚
1
+𝑐
2
𝑚
2

plotted against secondary response sample size𝑚
2
. For𝑚

2
given, the

primary response sample size𝑚
1
that obtains a fixed BMSE of 𝜂2 in

the expected primary response𝑓
𝑗
∗ is computed using (38).The lower

and upper boundaries of the region defined by (43) are shown with
solid vertical lines. (a) shows an interior point minimum, obtained
by letting𝜎

1
= 1.00.This type of solution occurs when theminimum

of the unconstrained cost function lies within the region defined
by (43). (b) shows a lower boundary solution, obtained by letting
𝜎
1
= 0.15. This type of solution occurs when the minimum of the

unconstrained cost function lies below the feasible region defined
by (43). (c) shows an upper boundary solution, obtained by letting
𝜎
1
= 3.00. This type of solution occurs when the minimum of the

unconstrained cost function lies above the region defined by (43).

The minimal cost solution occurs either on the boundary
of the region defined by (43) or at a local minimum in the
interior of this region. Figure 6 shows how different values of
the error variance 𝜎2 can result in either boundary or inte-
rior solution types. For this demonstration, the population
parameters are set at 𝜌 = 0.85, 𝛿

1
= 1.0, 𝛿

2
= 1.0, and

𝜎
2
= 0.5, the costs of measurement are assumed to be 𝑐

1
=

$500 and 𝑐
2
= $100, and the BMSE of 𝑓

𝑗
∗ is fixed at the value

𝜂
2
= 0.30.
In cases where the solution lies in the interior of (43) at a

local minimum, the solution must occur at critical points of
(39), which can be found by setting to zero the derivative of
the total cost with respect to𝑚

2
:

𝜕

𝜕𝑚
2

𝑐 (𝑚
2
) = −𝑐

1
𝜎
2

1

𝜕𝜆 (𝑚
2
)

𝜕𝑚
2

+ 𝑐
2
= 0, (44)

where

𝜕𝜆 (𝑚
2
)

𝜕𝑚
2

=
𝜎
2

2
𝜌
2
𝛿
2

2
/𝛿
2

1

(𝑚
2
𝛿
2

2
(1 − 𝜌

2
) + 𝜎
2

2
)
2
. (45)

Substituting the above expression for 𝜕𝜆(𝑚
2
)/𝜕𝑚
2
into (44)

and solving for 𝑚
2
, we obtain the following two critical

points:

𝑚
±

2
=

𝜎
2

𝛿
1
𝛿
2

2
(1 − 𝜌

2
)
(−𝛿
1
𝜎
2
± √
𝑐
1

𝑐
2

𝛿
2
𝜎
1


𝜌

) . (46)

The smaller critical point𝑚−
2
can be disregarded as a possible

solution since it is always less than zero.The second derivative
at𝑚+
2
,

𝜕
2

𝜕𝑚
2

2

𝑐 (𝑚
+

2
) =

2𝑐
2
√𝑐
2
/𝑐
1
(1 − 𝜌

2
) 𝛿
1
𝛿
2


𝜌

𝜎
1
𝜎
2

, (47)

is positive when |𝜌| < 1, which implies that the cost function
exhibits a local minimum at this point. If the local minimum
𝑚
+

2
is inside the region defined by (43) (see Figure 6(a)), then

the solution to the cost minimization problem is

�̂�
1
= 𝜎
2

1
(
1

𝜂
2
−
1

𝛿
2

1
(1 − 𝜌

2
)
(1 − √

𝑐
2
𝛿
2

1
/𝜎
2

1

𝑐
1
𝛿
2

2
/𝜎
2

2

𝜌
2
)) ,

�̂�
2
= 𝑚
+

2
,

(48)

where �̂�
1
is determined by substituting �̂�

2
into (38), and the

total cost is found from (36).
Alternatively, if 𝑚+

2
is below the lower boundary of the

region defined by (43) (see Figure 6(b)), then the minimal
cost solution involves collecting no data from the secondary
response.The conditions for which the secondary response is
not part of the minimal cost solution are as follows:

𝑐
2

𝑐
1

>
𝛿
2

2
/𝜎
2

2

𝛿
2

1
/𝜎
2

1

𝜌
2
, (49)

where 𝛿2
𝑟
/𝜎
2

𝑟
reflects the between-to-within variance ratio

for the 𝑟th response type. For this case, the solution which
achieves, on average, the level of accuracy 𝜂2 is found from
(38):

�̂�
1
= 𝜎
2

1
(
1

𝜂
2
−
1

𝛿
2

1

) ,

�̂�
2
= 0.

(50)

Finally, if 𝑚+
2
is above the upper boundary of the region

defined by (43) (see Figure 6(c)), then the solution for 𝑚
2

occurs at this boundary, where all the data are collected from
the secondary response and none from the primary response.
For this case, the solution is as follows:

�̂�
1
= 0,

�̂�
2
=

𝜎
2

2
(1/𝜂
2
− 1/𝛿
2

1
)

𝛿
2

2
(1 − 𝜌

2
) (1/𝛿

2

1
(1 − 𝜌

2
) − 1/𝜂

2
)
.

(51)
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Figure 7: Example of data collection cost minimization that
shows the number of observations on primary and secondary
responses needed to obtain a fixed BMSE in the MMSE prediction
of the expected primary response 𝑓

𝑗
∗ , for different values of

the between-subjects correlation between primary and secondary
response parameters. The solid curve represents the number of
measurements to collect from the primary response, �̂�

1
, and the

dashed curve represents the number of measurements to collect
from the secondary response, �̂�

2
. In this example, for 0.0 ≤ |𝜌| ≤

0.18, no data is to be collected from the secondary response, and
the number of data points to collect from the primary response is
obtained from (50). For 0.18 < |𝜌| ≤ 0.85, the number of secondary
observations increases and the number of primary observations
decreases with increasing correlation, as specified by �̂�

2
and �̂�

1
in

(48). For 0.85 < |𝜌| ≤ 1.0, observations are to be collected only
from the secondary response, the number of which is given by (51).
The equation numbers are indicated near the relevant pieces of the
curves.

Figure 7 illustrates the number of observations required
from primary and secondary responses to obtain a fixed
level of accuracy 𝜂2 on average for different values of the
between-subjects correlation 𝜌 between primary and sec-
ondary response parameters. For the example shown, the
populationmodel parameters and cost parameters were fixed
at 𝛿
1
= 1, 𝛿

2
= 1, 𝜎

1
= 1, 𝜎

2
= 0.5, 𝑐

1
= 5, and 𝑐

2
= 1, and the

desired level of accuracy was 𝜂2 = 0.30. The figure illustrates
the three cases described by (48), (50), and (51).

7. Example: Efficient Assessment of an
Individual’s Characteristic Wakefulness
after Sleep Onset

To illustrate the cost minimization approach outlined in
the previous section, we apply it in an example involving
the assessment of wakefulness after sleep onset (WASO) in
laboratory-based sleep studies. Here we define WASO as the
duration of intermittent wakefulness during a sleep period,

between the time of sleep onset and the time of final awak-
ening. WASO can be measured by polysomnography (PSG),
that is, measuring the sleep electroencephalogram (EEG)
and other physiological sleep signals and scoring sleep/wake
states, typically in 30 s epochs, based on those signals. PSG is
the gold standard procedure for sleep/wake assessment, but
it is labor-intensive and expensive to perform. WASO may
also be measured in the laboratory using wrist actigraphy
(i.e., wrist activity monitoring), which is considerably less
expensive. Although actigraphy is not considered a gold
standard for measuring WASO, the correspondence with
PSG-basedWASO is at least moderate in healthy populations
[24].

We base our example on data from 𝑛 = 33 subjects
(ages 22–38; 15 females) who spent between 6 and 13 nights
and days inside a controlled laboratory environment with
10 h in bed for sleep (22:00–08:00) each day. The Institu-
tional Review Board (IRB) of Washington State University
approved the research, and subjects gave written informed
consent. WASO was measured using both PSG (WASO-P)
and actigraphy (WASO-A). PSG recordings were performed
using digital equipment (Nihon Kohden, Foothill Ranch,
CA). Sleep stages and periods of wakefulness were scored in
30 s epochs using standard criteria [25], and WASO-P was
calculated from the scored records. Actigraphic recordings
were made with Motionlogger wrist actigraphs (Ambulatory
Monitoring, Inc., Ardsley, NY). Sleep and wakefulness were
assessed from the actigraphic records using the automated
algorithm of [26], which calculated WASO-A.

Let WASO-P be the primary response (as it is the
gold standard measure) and let WASO-A be the secondary
response. Assuming that WASO-P and WASO-A are nor-
mally distributed around distinct subject-specific means, we
apply the model defined by (23)–(28) to our example. We
anticipate that the subject-specific means for WASO-P and
WASO-A are positively correlated. We aim to determine a
cost-effective data collection scheme given a specific level of
desired accuracy in estimates of an individual’s meanWASO-
P. For illustration purposes, we assume a fixed cost of $1,250
per night for WASO-P and $150 per night for WASO-A. We
wish to estimate an individual’s meanWASO-P to an average
accuracy (i.e., √BMSE) of 𝜂 = 15min. Using the equations
derived in the previous section, we estimate the number of
nights of WASO-P and WASO-A that most cost-effectively
achieves the desired level of accuracy on average.

We have estimated the population model parameters
using the nlme package for R [27]. This package fits mixed-
effects models using the approach of [28]. The maximum
likelihood estimation method tends to underestimate vari-
ance parameters [29]; therefore, we estimate these parameters
using the restricted maximum likelihood method [6].

In our dataset, the overall means for WASO-P and
WASO-A were estimated as follows: 𝜇

1
= 54min±5min and

𝜇
2
= 32min ± 4min (estimate ± standard error), indicating

that WASO-A tended to underestimate the total amount
of WASO as compared to PSG. The estimated variability
between subjects for WASO-P and WASO-A was found to
be the same: 𝛿

1
= 𝛿
2
= 21min. There was a substantial
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correlation between subject means for WASO-P andWASO-
A: 𝜌 = 0.69 (95% confidence interval: [0.30, 0.90]).
The within-subject variation around the subject mean was
𝜎
1
= 32min for WASO-P and 𝜎

2
= 21min for WASO-A.

We determine from (43) that 𝑚
2
, the number of actigra-

phy nights, is not bounded above; that is, we cannot achieve
our accuracy with actigraphy alone. Further, we find from
(46) that 𝑚+

2
is within the feasible region defined by (43),

and, therefore, the solution to the cost minimization problem
is given by (48). Applying these equations, we achieve an
average accuracy of 𝜂 = 15min for minimal cost by
collecting 3.99 nights of actigraphy and 0.73 nights of PSG
(see Figure 8(a)). An approximately optimal solution in the
integer domain is found by the common practice of rounding
the optimal continuous solution to the nearest integer values
[30]. We verify through a grid search that the minimal cost
integer value solution neighbors the analytic solution and can
be obtained by rounding down to three nights of actigraphy
and up to one night of PSG.This yields a total cost of $1700. In
contrast, to achieve the same accuracy with PSG alone would
require 2.24, or in practice three nights of measurement, for
a total cost of $3750.

Note that the results are highly dependent on the esti-
mated between-subjects correlation and that the 95% con-
fidence interval for this correlation was large. The minimal
cost solution also depends on the level of accuracy that is
required; see Figures 8(b) and 8(c) for scenarios with an
average accuracy of 14min and 13min, respectively.

8. Linear Models with Time Dependency

For both the univariate and bivariate linear models, time
dependency can be introduced by adding time as a covariate.
This complicates the construction of a design matrix that
enables predictions with a given average accuracy. We show
that, in models with time dependency, the BMSE of a
predicted response depends on the times at which responses
aremeasured, and this dependency can be summarized by the
mean and variance of the measurement times.

To illustrate, we consider a linear approximation of a
time-dependent model known as the two-process model
of sleep regulation [10, 31]. It has been shown that, for a
range of sleep/wake scenarios, the two-process model can
describe temporal changes in waking cognitive performance
as the algebraic difference between two functions describing
physiological processes: the homeostatic pressure for sleep
and the circadian pressure for wakefulness [11]. Here we
focus solely on modeling the homeostatic pressure for sleep,
the dynamics of which are specified separately for sleep and
for wakefulness. The dynamics can be modeled using the
recursive formulation of [10]

𝑆
𝑡
=

{

{

{

𝑒
−Δ𝑡/𝜏

𝑑𝑆
𝑡−1

(sleep)

1 − 𝑒
−Δ𝑡/𝜏

𝑟 (1 − 𝑆
𝑡−1
) (wake) ,

(52)

where 𝑆
𝑡
represents the homeostatic pressure after the 𝑡th

time step of duration Δ𝑡, 𝑆
𝑡−1

represents the homeostatic
pressure at one time step before (i.e., at time (𝑡 − 1) ⋅ Δ𝑡), Δ𝑡

is typically fixed at 0.5 h, and 𝜏
𝑑
and 𝜏
𝑟
are time constants for

the decay and rise of the homeostatic process during sleep
and wakefulness, respectively.

We divide the sleep/wake schedule into periods of sleep
and periods of wake, both indexed by 𝑘. Let 𝑆(𝑘)

0
represent the

initial homeostatic pressure for the 𝑘th period ofwakefulness.
It has been proposed that change over time in the model
is better modeled as linear rather than exponential [32].
For the purpose of the present example, we adopt this idea
and approximate the model over a period of continuous
wakefulness using a linear interpolation between the start and
end points of the wake period (see Figure 9).

Let 𝑦
𝑗
represent (hypothetical) measurements of the

build-up of homeostatic pressure for sleep during wake-
fulness. These data can be modeled using the following
approximation:

𝑦
𝑗
= 𝑆
(𝑘)

0
+

(1 − 𝑒
−𝑇
(𝑘)

/𝜏
𝑟) (1 − 𝑆

(𝑘)

0
)

𝑇
(𝑘)

𝑡
𝑗
+ 𝜖
𝑗
,

(53)

where 𝑡
𝑗
represents the amount of time elapsed since awaken-

ing,𝑇(𝑘) is used to denote the duration of the 𝑘thwake period,
and 𝜖
𝑗
represents normally distributed measurement error.

We consider the homeostatic process over a repeating
schedule consisting of 𝑇(𝑘) = 𝑇 = 16 h of wakefulness and
8 h of sleep. In this schedule, individuals maintain a steady
state for which the homeostatic pressure 𝑆(𝑘)

0
at the onset of

the wake period is constant across days; that is, 𝑆(𝑘)
0
= 𝑆
0
.This

allows us to derive the homeostatic pressure at the start of
wakefulness as a function of 𝜏

𝑟
and 𝜏
𝑑
:

𝑆
0
=

𝑒
−(24−𝑇)/𝜏

𝑑 (1 − 𝑒
−𝑇/𝜏
𝑟)

1 − 𝑒
−((24−𝑇)/𝜏

𝑑
+𝑇/𝜏
𝑟
)
. (54)

The equation for the homeostatic pressure during a particular
wake period can thus be written as

𝑦
𝑗
= 𝛼 + 𝛽𝑡

𝑗
+ 𝜖, (55)

where

𝛼 = 𝑆
0
, (56)

𝛽 =

(1 − 𝑒
−𝑇/𝜏
𝑟) (1 − 𝑆

0
)

𝑇
.

(57)

In matrix form, the model can be written as

y = H𝜃 + 𝜖, (58)

where the design matrix is given by

H = (

1 𝑡
1

.

.

.

.

.

.

1 𝑡
𝑚

), (59)
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Figure 8: Cost of collection and number of nights of actigraphy and polysomnography (PSG) which combined will yield a certain average
accuracy of wakefulness after sleep onset (WASO) parameter estimates. For illustration purposes, PSG and actigraphy are assumed to cost
$1250 and $150 per night, respectively. The cost of data collection is fixed on each diagonal dashed line (for illustrative purposes these are
only shown at fixed intervals) and increases as we collect more nights of PSG and actigraphy. Subject-specific WASO estimates of an average
accuracy of (a) 15min, (b) 14min, and (c) 13min are obtained on the solid curve. The point that minimizes the cost of obtaining the fixed
accuracy (open squares) is determined as the point on the fixed accuracy curve where the line tangent to the curve is parallel to the fixed cost
lines. For comparison the solution for obtaining the same average accuracy using only polysomnography is also shown (solid squares).

and the parameter vector is given by

𝜃 = (

𝛼

𝛽

) . (60)

Analogous to (5), but for two parameters, we assume the
following prior distribution on model parameters:

(

𝛼

𝛽

) ∼N(𝜇, (
𝛿
2

𝛼
0

0 𝛿
2

𝛽

)) . (61)

As in (6), we assume that the errors are independent realiza-
tions fromanormal distributionwith zeromean and variance
𝜎
2. Analogous to (11) and (12), the BMSE for the MMSE

prediction of the expected (primary) response 𝑓
𝑗
∗ at some

time 𝑡
𝑗
∗ in the univariate case is as follows (see Appendix A):

M
𝑓
𝑗
∗

=

1/𝛿
2

𝛽
+ 𝑚𝑠
2
/𝜎
2
+ 𝑚(𝑡 − 𝑡

𝑗
∗)
2

/𝜎
2
+ 𝑡
2

𝑗
∗/𝛿
2

𝛼

(1/𝛿
2

𝛼
+ 𝑚/𝜎

2
) (1/𝛿

2

𝛽
+ 𝑚(𝑠

2
+ 𝑡
2

) /𝜎
2
) − (𝑚𝑡/𝜎

2
)
2
,

(62)

where 𝑡 denotes the mean of these times,

𝑡 =
1

𝑚

𝑚

∑

𝑗=1

𝑡
𝑗
, (63)

and 𝑠2 denotes the variance of these times,

𝑠
2
=
1

𝑚

𝑚

∑

𝑗=1

(𝑡
𝑗
− 𝑡)
2

. (64)

Our task is to determine themeasurement times 𝑡
1
, . . . , 𝑡

𝑚

for this example that will minimize M
𝑓
𝑗
∗

. Equation (62)
shows that M

𝑓
𝑗
∗

depends on the measurement times only
through their mean 𝑡 and variance 𝑠2. Consequently, instead
of conducting an 𝑚-dimensional minimization of M

𝑓
𝑗
∗

over
all the measurement times 𝑡

1
, . . . , 𝑡

1𝑚
, we can write M

𝑓
𝑗
∗

as a function of 𝑡 and 𝑠2 and conduct a two-dimensional
minimization. In doing this, we find that M

𝑓
𝑗
∗

is minimized
both when 𝑠2 → ∞ (see Appendix B) and also, more
practically relevant, when

𝑡 =

𝑡
𝑗
∗ (𝜎
2
/𝑚 + 𝛿

2

𝛼
)

𝛿
2

𝛼

. (65)

The optimal mean measurement time for this example,
given by (65), lies slightly above the prediction time; in
the limit as 𝛿2

𝛼
→ ∞, M

𝑓
𝑗
∗

is minimized when the data
are collected at times such that 𝑡min = 𝑡𝑗∗ . If the prior
variance on the intercept is equal to the error variance (i.e.,
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Figure 9: Homeostatic pressure for wakefulness plotted over two
complete sleep/wake cycles for a repeating schedule with 16 h of
wakefulness and 8 h time in bed for sleep in each cycle. The dashed
line represents the homeostatic pressure for sleep as given by (52);
the solid line is a linear approximation based on interpolation
between the sleep/wake transition points.The parameter values 𝜏

𝑑
=

4.2 h and 𝜏
𝑟
= 18.2 h are taken from [10]. The initial condition (𝑆

0
)

is derived assuming steady state (54). Black bars indicate the 8 h
periods in bed for sleep.

𝛿
2

𝛼
= 𝜎
2), the effect of the Bayesian prior is equivalent to

increasing the value of 𝑡 that produces the minimumM
𝑓
𝑗
∗

by
𝑡
𝑗
∗/𝑚. This adjustment is the same as what would manifest

with no prior information on the intercept when adding an
additional measurement time, 𝑡

𝑚+1
= 0, to the design matrix

H.
The absolute minimum of M

𝑓
𝑗
∗

in (62) is not always
located in the feasible region in this example, as defined by
0 ≤ 𝑡
𝑗
≤ 𝑇, ∀𝑗 ∈ {1, . . . , 𝑚}. More specifically, the absolute

minimum of the unconstrained case is not located inside the
feasible region if and only if (see Appendix B):

𝑡min ≥ 𝑇. (66)

Under this condition we hypothesize that, within the feasible
region,M

𝑓
𝑗
∗

exhibits an absolute minimumwhen all the data
are collected at time𝑇.This is easy to show for the case of one
measurement time (i.e., 𝑚 = 1), and Appendix C contains a
proof for the case of two measurement times (i.e.,𝑚 = 2).

For 𝑚 > 2, we conducted a simulation study to search
for a counterexample (i.e., a case where the value of M

𝑓
𝑗
∗

when all data is collected at time 𝑇 is not the smallest
value of M

𝑓
𝑗
∗

within the feasible region). For the simulation
study, we simulated 10,000,000 times with the following
values:

𝛿
𝛼
∼ Uniform (0.001, 1) ;

𝛿
𝛽
∼ Uniform (0.001, 1) ;

𝜎 ∼ Uniform (0.001, 1) ;

𝑚 ∼ Discrete Uniform (1, 2, . . . , 100) ;

𝑡
𝑗
∗ ∼ Uniform(𝑇

𝛿
2

𝛼

𝜎
2
/𝑚 + 𝛿

2

𝛼

, 𝑇) .

(67)

Concerning the ranges of the variance components, note that
M
𝑓
𝑗
∗

is invariant to the scale of the response. This can be
demonstrated by scaling the variance matrices C

𝜃
and C

𝜖

by 𝑐
𝑦
and showing that the resulting M

𝑓
𝑗
∗

is then scaled by
the same factor 𝑐

𝑦
. The conclusion is that the shape of the

surface of M
𝑓
𝑗
∗

depends on the variance components only
through their relative magnitudes. Furthermore, we argue
that if any variance component is more than three orders
of magnitude greater than any other component, then it
would be advantageous to simplify the model by removing
the smaller component. As such, all cases for which this
model is reasonable can be covered within the range from
0.001 to 1 for each variance component. Further, concerning
the number of observations, we expect that if there is a
counterexample, it can be found somewhere in the range 1 ≤
𝑚 ≤ 100. Finally, the range for 𝑡

𝑗
∗ is determined specifically

so that the absolute minimum lies outside the feasible
region.

For each simulation, we compared M
𝑓
𝑗
∗

at the hypothe-
sizedminimum, where 𝑡

𝑗
= 𝑇, ∀𝑗 ∈ {1, . . . , 𝑚}, to a randomly

chosen time point, where each 𝑡
𝑗
is a realization from the

following distribution:

𝑡
𝑗
∼ Uniform (0, 𝑇) . (68)

For each of the 10,000,000 simulations, M
𝑓
𝑗
∗

at the hypoth-
esized minimum was indeed smaller than M

𝑓
𝑗
∗

at the
randomly chosen time point. Thus, we found no evidence
against our original hypothesis thatM

𝑓
𝑗
∗

exhibits an absolute
minimum if all the data are collected at time 𝑇. An analytical
proof is beyond the scope of this paper.

Wenow extend our analysis to consider a time-dependent
model with both primary and secondary responses. We
formulate the model as follows:

𝑦
𝑟𝑗
= 𝑠
𝑟𝑗
+ 𝜖
𝑟𝑗
= 𝛼
𝑟
+ 𝛽
𝑟
𝑡
𝑟𝑗
+ 𝜖
𝑟𝑗
. (69)

In matrix form, the model is

y = H𝜃 + 𝜖, (70)
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where the design matrix is given by

H =

(
(
(
(
(
(
(

(

1 0 𝑡
11
0

.

.

.

.

.

.

.

.

.

.

.

.

1 0 𝑡
1𝑚
1

0

0 1 0 𝑡
21

.

.

.

.

.

.

.

.

.

.

.

.

0 1 0 𝑡
2𝑚
2

)
)
)
)
)
)
)

)

, (71)

and the parameter vector is given by

𝜃 =(

𝛼
1

𝛼
2

𝛽
1

𝛽
2

). (72)

Let us assume the following prior distribution on model
parameters:

(

𝛼
1

𝛼
2

𝛽
1

𝛽
2

)∼N(𝜇,

(

𝛿
2

𝛼
1

𝜌𝛿
𝛼
1

𝛿
𝛼
2

0 0

𝜌𝛿
𝛼
1

𝛿
𝛼
2

𝛿
2

𝛼
2

0 0

0 0 𝛿
2

𝛽
1

𝜔𝛿
𝛽
1

𝛿
𝛽
2

0 0 𝜔𝛿
𝛽
1

𝛿
𝛽
2

𝛿
2

𝛽
2

)).

(73)

As in (28), we assume that the errors are independent
realizations from a normal distribution with zero mean and
𝜎
𝑟
(𝑟 = 1, 2). The BMSE of estimates of the primary response

at time 𝑡
1𝑗
∗ is given by

M
𝑓
1𝑗
∗

= hM
𝜃
h, (74)

where

h =(

1

0

𝑡
1𝑗
∗

0

), (75)

M
𝜃
=

(
(
(
(
(
(
(
(
(
(

(

1

𝛿
2

𝛼
1

(1 − 𝜌
2
)
+
𝑚
1

𝜎
2

1

−𝜌

𝛿
𝛼
1

𝛿
𝛼
2

(1 − 𝜌
2
)

𝑚
1
𝑡
1

𝜎
2

1

0

−𝜌

𝛿
𝛼
1

𝛿
𝛼
2

(1 − 𝜌
2
)

1

𝑎
2

2
(1 − 𝜌

2
)
+
𝑚
2

𝜎
2

2

0
𝑚
2
𝑡
2

𝜎
2

2

𝑚
1
𝑡
1

𝜎
2

1

0
1

𝛿
2

𝛽
1

(1 − 𝜔
2
)
+

𝑚
1
(𝑠
2

1
+ 𝑡
2

1
)

𝜎
2

1

−𝜔

𝛿
𝛽
1

𝛿
𝛽
2

(1 − 𝜔
2
)

0
𝑚
2
𝑡
2

𝜎
2

2

−𝜔

𝛿
𝛽
1

𝛿
𝛽
2

(1 − 𝜔
2
)

1

𝛿
2

𝛽
2

(1 − 𝜔
2
)
+

𝑚
2
(𝑠
2

2
+ 𝑡
2

2
)

𝜎
2

2

)
)
)
)
)
)
)
)
)
)

)

−1

, (76)

where 𝑡
1
denotes the mean of the primary measurement

times,

𝑡
1
=
1

𝑚
1

𝑚

∑

𝑗=1

𝑡
1𝑗
, (77)

𝑡
2
denotes the mean of the secondary measurement times,

𝑡
2
=
1

𝑚
2

𝑚

∑

𝑗=1

𝑡
2𝑗
, (78)

𝑠
2

1
denotes the variance of the primary measurement times,

𝑠
2

1
=
1

𝑚
1

𝑚
1

∑

𝑗=1

(𝑡
1𝑗
− 𝑡
1
)
2

, (79)

and 𝑠2
2
denotes the variance of the secondary measurement

times,

𝑠
2

2
=
1

𝑚
2

𝑚
2

∑

𝑗=1

(𝑡
2𝑗
− 𝑡
2
)
2

. (80)

Our task in the bivariate case of the example is to
determine the primary measurement times 𝑡

11
, . . . , 𝑡

1𝑚
1

and
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the secondarymeasurement times 𝑡
21
, . . . , 𝑡

2𝑚
2

that minimize
M
𝑓
1𝑗
∗

. Equations (74) and (76) show that M
𝑓
1𝑗
∗

depends on
the measurement times only through their response-specific
means and variances, 𝑡

1
, 𝑡
2
, 𝑠2
1
, and 𝑠2

2
. Consequently, it is

sufficient to minimize M
𝑓
1𝑗
∗

with respect to 𝑡
1
, 𝑡
2
, 𝑠2
1
, and

𝑠
2

2
and choose any set of measurement times with these

means and variances. We find that M
𝑓
1𝑗
∗

can be minimized
by collecting data at the following times (see Appendix D):

𝑡
1min

=

𝑡
1𝑗
∗ (𝛿
2

𝛼
1

((1 − 𝜌
2
) 𝛿
2

𝛼
2

+ 𝜎
2

2
/𝑚
2
) + (𝜎

2

1
/𝑚
1
) (𝛿
2

𝛼
2

+ 𝜎
2

2
/𝑚
2
))

𝛿
2

𝛼
1

((1 − 𝜌
2
) 𝛿
2

𝛼
2

+ 𝜎
2

2
/𝑚
2
)

,

(81)

𝑡
2min = 0. (82)

The optimal mean measurement time for the primary
response variable, 𝑡

1min in (81), lies slightly above the predic-
tion time. In the limit as 𝑚

2
↓ 0, the solution becomes the

univariate solution:

𝑡
1min =
𝑡
1𝑗
∗ (𝛿
2

𝛼
1

+ 𝜎
2

1
/𝑚
1
)

𝛿
2

𝛼
1

. (83)

Again, the absolute minimum of M
𝑓
1𝑗
∗

is not always
located in the feasible region defined by 0 ≤ 𝑡

𝑟𝑗
≤ 𝑇. More

specifically, the absolute minimum of the unconstrained
function is located outside of the feasible region if and only
if (see Appendix D):

𝑡
1min ≥ 𝑇. (84)

Under this condition, it seems logical that the minimum
would occur if we were to collect all the primary data at
time 𝑇 and all the secondary data at time zero. However,
a simulation study similar to that described above revealed
counterexamples, which occurred when 𝜔 > 0.99. When
𝑇 was decreased (or the ranges of the variance components
for the slope were increased), counterexamples also occurred
at smaller values of 𝜔. Therefore, the optimal measurement
scheme for the bivariate case appears to depend on 𝜔 and
𝑇. When 𝜔 is small or 𝑇 is large (in comparison to the
magnitudes of 𝛿

𝛽
1

and 𝛿
𝛽
2

), the optimal design seems to be
collecting all the primary data at 𝑡 = 𝑇 and all the secondary
data at 𝑡 = 0. When 𝜔 is large or 𝑇 is small (compared to
the magnitudes of 𝛿

𝛽
1

and 𝛿
𝛽
2

), better designs are likely to be
found numerically.

In summary, the average prediction accuracy for the
simple linear time-dependent model depends not only on
the number of measurements collected, but also on the
times when these measurements are taken. In the univariate
case, the prediction accuracy depends on these times only
through their mean and variance. In the example of the
two-process model, the optimal mean of the measurement
times is slightly after the prediction time, where the delay
increases with more prior information and with fewer or
less informative data. When little prior information on the
intercept is available, it is usually possible to collect data so

that the absolute minimum of M
𝑓
𝑗
∗

is achieved. In the case
where the theoretical minimum cannot be achieved (i.e., (66)
is not satisfied), minimization of M

𝑓
𝑗
∗

can be achieved by
collecting all the data at time 𝑇.

In the bivariate case of our example, the prediction
accuracy depends on the measurement times only through
the means and variances of the primary and secondary
measurement times. Furthermore, M

𝑓
1𝑗
∗

is minimized by
centering the primary measurement times above 𝑡

1𝑗
∗ (see

(81)) as in the univariate case and collecting all secondary
measurements at time zero. As in the univariate case, when
little prior information on the primary intercept is available,
it is usually possible to collect data so that the absolute
minimum of M

𝑓
1𝑗
∗

is achieved. In the case where this
minimum cannot be achieved (i.e., (84) is not satisfied),
minimization ofM

𝑓
1𝑗
∗

can usually be obtained for parameter
ranges considered in our simulation by collecting all primary
data at time 𝑇, and all secondary data at time zero.

9. Nonlinear Models with Time Dependency

Lastly, we focus briefly on the nonlinear case, where the
BMSE generally lacks a closed form solution. Obtaining the
BMSE of the MMSE estimator for nonlinear models typically
requires numerical integration of the joint probability density
of y and 𝜃. We illustrate this with an example in which we
numerically estimate the prediction BMSE given a nonlinear
model and a single primary response measurement and
show how it can be improved by a secondary response
measurement.

We consider a two-parameter sinusoidal model of circa-
dian (i.e., 24 h) rhythmicity, defined for a given subject and a
bivariate response (𝑟 = 1, 2), as follows:

𝑦
𝑟𝑗
= 𝑓
𝑟𝑗
+ 𝜖
𝑟𝑗
= 𝐴
𝑟
sin(
2𝜋 (𝑡
𝑟𝑗
− 𝜙)

24
) + 𝜖
𝑟𝑗
, (85)

where 𝑡 is in hours; 𝐴
𝑟
represents a response-specific ampli-

tude; and 𝜙 represents the phase, which is assumed to be
common to both response types. For our example, we assume

(

𝐴
1

𝐴
2

) ∼N((
5

5

) , (

1 0.95

0.95 1

)) ,

𝜙 ∼N (0, 2) .

(86)

We simulated 𝑛 = 1000 individuals from this model using
normally distributed errors, with primary and secondary
response standard deviations of 𝜎

1
= 0.25 and 𝜎

2
= 0.1.

For each individual, we simulated a single primary response
at time 𝑡

11
= 14 and a single secondary response at time

𝑡
12
= 22. Bayesian forecasting was performed using Markov

Chain Monte Carlo (MCMC) with a chain length of 100,000
to obtain the MMSE predictions 𝑓

1𝑗
∗ for each individual at

time 𝑡
1𝑗
∗ = 24. Predictions were constructed using a primary

data point alone, and also using both a primary data point
and a secondary data point.
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Figure 10: MMSE predictions of the expected primary response
𝑓
1𝑗
∗ and corresponding 95% confidence intervals for a randomly

simulated individual from the model specified in (85). The MMSE
estimator 𝑓

1𝑗
∗ is determined assuming each of the following: no

data was observed (black line and gray confidence interval), a single
primary response was observed (blue line and confidence interval),
and both a primary and a secondary response were observed (purple
line and confidence interval). The expected primary and secondary
responses using the subject’s simulated parameter values are shown
with blue and red dashed lines.The black vertical dashed line shows
the time at which predictions are made.

Figure 10 shows these predictions for a randomly chosen
individual. The 95% confidence intervals on 𝑓

1𝑗
∗ were con-

structed using the quantiles of the posterior distribution for
𝑓
1𝑗
∗ . For the individual considered, the predictions based on

both response variables (purple line and shading) are atmany
times substantially more accurate (i.e., they have smaller
posterior variance) than the predictions based on only the
primary response (blue line and shading).

The average accuracy over individuals was assessed at
time 𝑡

1𝑗
∗ = 24 by estimating the BMSE, as follows (cf. (3)):

M̂
𝑓
1𝑖𝑗
∗

=
1

𝑁

𝑁

∑

𝑖=1

(𝑓
1𝑖𝑗
∗ − 𝑓
1𝑖𝑗
∗)
2

. (87)

The estimated BMSE of 𝑓
1𝑖𝑗
∗ when using only the primary

data points was 0.53, and the estimated BMSE of 𝑓
1𝑖𝑗
∗ when

using both the primary and secondary data points was
0.20. These results suggest that there are nonlinear modeling
scenarios where secondary response variables can improve
predictions of primary response variables considerably via
between-subjects correlation.

10. Discussion

In this paper, we illustrated in a Bayesian, repeated-measures
framework how to improve the prediction accuracy of the

expected response, as measured by the BMSE, for a primary
response variable in the presence of a secondary response
variable that is correlated with the primary response vari-
able between subjects. To set up the general procedure of
improving prediction accuracy through Bayesian forecasting,
we constructed the BMSE for a simple univariate random
intercept model.

We applied the general procedure to a bivariate random
intercept model and derived the BMSE of the primary
response predictions for this model. We studied how the
BMSE depends on the number of observations from the
secondary response and found that, for a fixed number of
primary response observations, the BMSE is bounded below
as specified by (40). The potential value of considering a
secondary response may be assessed by considering whether
this lower bound represents a meaningful improvement in
the expected prediction accuracy.

Assuming the availability of a reasonably highly corre-
lated secondary variable we also addressed the problem of
determining the number of primary and secondary measure-
ments needed to obtain a given average accuracy at minimal
cost. We derived equations for the solution to this problem
and illustrated their use with an example from sleep research.
Given previously observed means, variances, and between-
subjects correlation for polysomnographic (primary) and
actigraphic (secondary) measurements of wakefulness after
sleep onset and assumed reasonable measurement costs, we
found that, to obtain an average prediction accuracy of
15min, the use of actigraphy in addition to polysomnography
resulted in a substantial reduction in estimated data collec-
tion costs as compared to polysomnography alone.

We then considered a steady-state, linear approximation
of the homeostatic component for the two-process model of
sleep regulation [10, 31] in the univariate case. We found that
the minimization of the BMSE with respect to the vector
of times at which the data are collected can be divided into
two subcases. In one subcase, the BMSE is minimized by
collecting data at times with a mean value slightly above the
time at which predictions are to be made, with the offset
being inversely proportional to the variance of the prior on
the intercept. In the second subcase, all of the data is to
be collected at the maximal time point. We extended the
results of this example to the bivariate case, which again
can be divided into two subcases. In one subcase, the BMSE
is minimized by collecting the data so that the secondary
measurement times have a mean of zero, and the primary
variable is collected at times with a mean value somewhat
above the time at which the predictions are to be made, like
in the univariate case. In the other subcase, the time points
that minimize the BMSE may best be found numerically.

Finally, we considered a nonlinear circadian model and
determined the improvement in individualized prediction
accuracy from a single primary data point versus both a single
primary data point and a single secondary data point. For
this particular model (85), we found the improvement to
be substantial, suggesting that there are cases for nonlinear
models where a secondary variable can substantially improve
prediction accuracy for the primary variable, given a reason-
ably high between-subjects correlation.
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In conclusion, depending on the between- and within-
subjects variance components and the between-subjects cor-
relation between primary and secondary responses, using
secondary response data can be effective in increasing the
individualized prediction accuracy on the primary response
variable in Bayesian forecasting.

This work represents an improvement over the work of
Chandler and colleagues [19], who proposed incorporating
secondary variables in individualized performance predic-
tions as covariates in a generalized linear model. An advan-
tage of their approach is that it accounts for perturbations
on system dynamics from external factors that are common
to the outcome variables considered. A drawback is that the
approach does not accumulate information about individual
differences over time and therefore does not become increas-
ingly accurate for individualized predictions as more data
are collected for the individual at hand. Furthermore, the
technique requires secondary data to bemeasured at the same
time as the primary data is to be predicted. This is not a
requirement for the presently proposed method, for which
individualized predictions can be made for any given time,
even if secondary data are unavailable then.

That said, here we considered only Bayesian models with
diagonally structured error covariancematrices. Suchmodels
do not account for correlation within subjects between
response types. The work of Chandler and colleagues [19]
does account for such correlation, using a fixed linear
relationship between primary and secondary responses. We
did not consider this possibility here, using merely a diag-
onal error covariance matrix with one parameter for each
response type. However, the Bayesian modeling framework
in this paper can be expanded to account for correlation
within subjects between response types by adding additional
structure to the error covariance matrix.

Finally, the models described here assume that error vari-
ance is constant over repeated measures and across different
subjects. This constraint can be relaxed easily by allowing
the error covariance matrix to have different elements for
different individuals.

The multivariate repeated-measures Bayesian forecasting
framework presented here may be useful in a variety of
clinical settings. One example is modeling the disabling
effects of chronic back pain, where pain-related fear may
be a good choice for a secondary variable [33]. For other
examples, a rich literature in this area can be found in the
domain of anesthesiology [34], where clinical applications of
multivariate Bayesian forecasting abound.

Appendices

A. Expression for the Univariate Linear
Time-Dependent Model

Theorem A.1. The BMSE of MMSE predictions for prediction
BMSE in the univariate, linear, time-dependent model given by
(58) is given by

M
𝑓
𝑗
∗

= h (C−1
𝜃
+HC−1

𝜖
H)
−1

h, (A.1)

where

h = (
1

𝑡
𝑗
∗

) , (A.2)

where 𝑡
𝑗
∗ represents the time for which the expected response

is predicted, C
𝜃
is the prior variance matrix for the parameter

vector 𝜃, H is the design matrix, C
𝜖
is the error covariance

matrix, andM
𝑓
𝑗
∗

is defined in (3).

Proof. Since

𝑓
𝑗
∗ = h𝜃 (A.3)

and since the MMSE estimator commutes over linear
transformations [23], the MMSE estimator of the expected
response is given by

𝑓
𝑗
∗ = h�̂�. (A.4)

Therefore,

M
𝑓
𝑗
∗

≡ 𝐸 [(𝑓
𝑗
∗ − 𝑓
𝑗
∗)
2

]

= 𝐸 [(𝑓
𝑗
∗ − 𝑓
𝑗
∗) (𝑓
𝑗
∗ − 𝑓
𝑗
∗)


]

= 𝐸 [h (𝜃 − �̂�) (𝜃 − �̂�)


h]

= h𝐸 [(𝜃 − �̂�) (𝜃 − �̂�)


] h = hM
𝜃
h,

(A.5)

where the parameter BMSE matrix M
𝜃
is given by [23] as

follows:

M
𝜃
≡ 𝐸 [(𝜃 − �̂�) (𝜃 − �̂�)



] = (C−1
𝜃
+HC−1

𝜖
H)
−1

. (A.6)

Therefore, the BMSE of the estimated response is given by
(A.1).

Theorem A.2. The BMSE of MMSE predictions for the uni-
variate, linear, time-dependent model given by (58) is given by

M
𝑓
𝑗
∗

=

1/𝛿
2

𝛽
+ 𝑚𝑠
2
/𝜎
2
+ 𝑚(𝑡 − 𝑡

𝑗
∗)
2

/𝜎
2
+ 𝑡
2

𝑗
∗/𝛿
2

𝛼

(1/𝛿
2

𝛼
+ 𝑚/𝜎

2
) (1/𝛿

2

𝛽
+ 𝑚𝑠
2
/𝜎
2
) + 𝑚𝑡

2

/𝛿
2

𝛼
𝜎
2

,

(A.7)

whereM
𝑓
𝑗
∗

is given in (A.1).

Proof. For this model, the inverse of the between-subjects
covariance matrix is given by

C−1
𝜃
= (

1

𝛿
2

𝛼

0

0
1

𝛿
2

𝛽

). (A.8)

Furthermore, the parameter BMSE matrix is given by (see
Theorem A.1)

M
𝑓
𝑗
∗

= h (C−1
𝜃
+HC−1

𝜖
H)
−1

h, (A.9)
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where h is the covariate vector at the time at which we want
to make predictions:

h = (
1

𝑡
𝑗
∗

) . (A.10)

The error variance matrix is as follows:

C
𝜖
= 𝜎
2I. (A.11)

The design matrix is as follows:

H = (

1 𝑡
1

.

.

.

.

.

.

1 𝑡
𝑚

). (A.12)

The matrix multiplicationHC−1
𝜖
H can be computed to be

HC−1
𝜖
H = 1
𝜎
2
(

𝑚

𝑚

∑

𝑗=1

𝑡
𝑗

𝑚

∑

𝑗=1

𝑡
𝑗

𝑚

∑

𝑗=1

𝑡
2

𝑗

). (A.13)

The matrix inverse (C−1
𝜃
+HC−1

𝜖
H)−1 can then be computed

as follows:

(C−1
𝜃
+HC−1

𝜖
H)
−1
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𝑚
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𝑚

∑
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𝑗
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+

∑
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2
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∑
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∑
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(A.14)

Computing the quadratic form, we find that

M
𝑓
𝑗
∗

=

1/𝛿
2

𝛽
+ (∑
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𝑡
2
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. (A.15)

We note the following decomposition of the sum of squared
times:

𝑚

∑

𝑗=1

𝑡
2

𝑗
=

𝑚

∑

𝑗=1

(𝑡
𝑗
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2
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𝑚
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(𝑡
𝑗
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2

+

𝑚
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(𝑡)
2

= 𝑚(𝑠
2
+ 𝑡
2

) .

(A.16)

Including this decomposition, we find that
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=

1/𝛿
2

𝛽
+ 𝑚𝑠
2
/𝜎
2
+ 𝑚𝑡
2

/𝜎
2
− 2𝑚𝑡

𝑗
∗𝑡/𝜎
2
+ 𝑡
2

𝑗
∗/𝛿
2

𝛼
+ 𝑚𝑡
2

𝑗
∗/𝜎
2

(1/𝛿
2

𝛼
+ 𝑚/𝜎

2
) (1/𝛿

2

𝛽
+ 𝑚(𝑠

2
+ 𝑡
2

) /𝜎
2
) − (𝑚𝑡/𝜎

2
)
2

=

1/𝛿
2

𝛽
+ 𝑚𝑠
2
/𝜎
2
+ (𝑚/𝜎

2
) (𝑡
2

− 2𝑡
𝑗
∗𝑡 + 𝑡
2

𝑗
∗) + 𝑡

2

𝑗
∗/𝛿
2

𝛼

(1/𝛿
2

𝛼
+ 𝑚/𝜎

2
) (1/𝛿

2

𝛽
+ 𝑚(𝑠

2
+ 𝑡
2

) /𝜎
2
) − (𝑚𝑡/𝜎

2
)
2

=

1/𝛿
2

𝛽
+ 𝑚𝑠
2
/𝜎
2
+ 𝑚(𝑡 − 𝑡

𝑗
∗)
2

/𝜎
2
+ 𝑡
2

𝑗
∗/𝛿
2

𝛼

(1/𝛿
2

𝛼
+ 𝑚/𝜎

2
) (1/𝛿

2

𝛽
+ 𝑚𝑠
2
/𝜎
2
) + 𝑚𝑡

2

/𝛿
2

𝛼
𝜎
2

.

(A.17)

B. Unconstrained Minimization
of the BMSE for the Univariate,
Time-Dependent Linear Model

Theorem B.1. For the univariate, linear, time-dependent
model given by (58), M

𝑓
𝑗
∗

as given by (A.17) exhibits an
absolute minimum at a point (𝑡min, 𝑠

2

min) if and only if

M
𝑓
𝑗
∗

=
1

1/𝛿
2

𝛼
+ 𝑚/𝜎

2
. (B.1)

Proof. Recall that 𝑡 and 𝑠2 are defined by (63) and (64).
To prevent ambiguous notation, let 𝛾 = 𝑠2. Consider the
derivative ofM

𝑓
𝑗
∗

with respect to 𝛾:

𝜕M
𝑓
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∗
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We can represent this derivative more simply as follows:

𝜕M
𝑓
𝑗
∗

(𝑡, 𝛾)

𝜕𝛾
= −

𝑚𝜎
2
𝑐
2

1
𝛿
4

𝛽

𝑐
2

2

, (B.3)

where the values of 𝑐
1
and 𝑐
2
are found explicitly from (B.2).

It is easy to show that 𝑐2
1
≥ 0 and 𝑐2

2
> 0, and consequently

𝜕M
𝑓
𝑗
∗

(𝑡, 𝛾)

𝜕𝛾
≤ 0. (B.4)

Therefore, for a fixed 𝑡, M
𝑓
𝑗
∗

either decreases or remains
constant as we increase 𝛾. It follows that, for fixed value of
𝑡,M
𝑓
𝑗
∗

is bounded below byM
𝑓
𝑗
∗

in the limit as 𝛾 → ∞:
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𝛾→∞
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Since the limit of M
𝑓
𝑗
∗

does not depend on the values of 𝑡
and 𝛾, any values of 𝑡 and 𝛾 for whichM

𝑓
𝑗
∗

takes on the value
given by (B.5) are an absolute minimum ofM

𝑓
𝑗
∗

.

Theorem B.2. For the univariate, linear, time-dependent
model given by (58), an absolute minimum ofM

𝑓
𝑗
∗

as given by
(A.17), inside the region defined by 0 ≤ 𝑡

𝑗
≤ 𝑇, can be obtained

by collecting data at times 𝑡
𝑗
such that
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if and only if

𝑡 ≤ 𝑇. (B.7)

Proof. The critical points of the unconstrained function are
found by taking the derivative of M

𝑓
𝑗
∗
with respect to 𝑡 and

𝑠
2 and setting these derivatives to zero. The derivative with
respect to 𝑡 is as follows:
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The derivative with respect to 𝑠2 is given by (B.2). Setting both
derivatives equal to zero, we find the following critical point:

𝑡min =
𝑡
𝑗
∗ (𝜎
2
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2
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Evaluating the BMSE at this critical point, we find that

M
𝑓
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(𝑡min, 𝑠
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𝛼
+ 𝑚/𝜎
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which is sufficient to show that M
𝑓
𝑗
∗

exhibits an absolute
minimum at this point.

Given the constraint that 0 ≤ 𝑡
𝑗
≤ 𝑇 for each 𝑗, 𝑡min is a

feasible point only when 0 ≤ 𝑡min ≤ 𝑇. It is easy to see that
𝑡min > 0 in all cases. Therefore, the absolute minimum can

be achieved by collecting all data at 𝑡min if and only if 𝑡min ≤
𝑇.

C. Constrained Minimization of the BMSE
for the Univariate, Time-Dependent Linear
Model with Two Time Points

Theorem C.1. For the univariate, linear, time-dependent
model given by (58) with𝑚 = 2 and 0 ≤ 𝑡

𝑗
≤ 𝑇, if

𝑡
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> 𝑇, (C.1)

thenM
𝑓
𝑗
∗

as given by (A.17) is minimized by collecting data at
times such that 𝑡

1
= 𝑡
2
= 𝑇.

Proof. Substituting𝑚 = 2 into (A.15) we find that
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From Theorem B.2 we know that there are no critical points
inside the feasible region, and the solution must therefore
exist on the boundary of the region, which is defined by the
following line segments:

𝐴: 𝑡
1
∈ [0, 𝑇] , 𝑡2 = 0;

𝐵: 𝑡
1
= 0, 𝑡

2
∈ [0, 𝑇] ;
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𝐶: 𝑡
1
∈ [0, 𝑇] , 𝑡2 = 𝑇;

𝐷: 𝑡
1
= 𝑇, 𝑡

2
∈ [0, 𝑇] .

(C.3)

Note thatM
𝑓
𝑗
∗

is symmetric in 𝑡
𝑗
:

M
𝑓
𝑗
∗

(𝑡
1
= 𝑎, 𝑡

2
= 𝑏) = M

𝑓
𝑗
∗

(𝑡
1
= 𝑏, 𝑡

2
= 𝑎) . (C.4)

Therefore, it is sufficient to consider only line segments 𝐴
and 𝐶. We first consider finding the minimum value on line
segment 𝐴. Setting 𝑡

2
= 0 and then taking the derivative

of M
𝑓
𝑗
∗

with respect to 𝑡
1
, and solving for 𝑡

1
, we find the

following two critical points:

𝑡
𝐴+

1min =
𝑡
𝑗
∗ (𝜎
2
+ 2𝛿
2

𝛼
)

𝛿
2

𝛼

, (C.5)

𝑡
𝐴−

1min = −
𝜎
2
𝛿
2

𝛼

𝑡
𝑗
∗ (𝜎
2
+ 𝛿
2

𝛼
) 𝛿
2

𝛽

. (C.6)

Applying condition (C.1) to 𝑡𝐴+
1min, we find that 𝑡𝐴+

1min > 2𝑇.
Taking the second derivative ofM

𝑓
𝑗
∗

with respect to 𝑡
1
, such

that 𝑡
2
= 0, and evaluating it at 𝑡𝐴+

1min result in

𝜕
2M
𝑓
𝑗
∗

𝜕𝑡
2

1

=

2𝜎
2
𝛿
8

𝛼
𝛿
2

𝛽

(𝜎
2
+ 2𝛿
2

𝛼
)
2
(𝜎
4
𝑡
2

𝑗
∗𝛿
2

𝛽
+ 3𝜎
2
𝑡
2

𝑗
∗𝛿
2

𝛼
𝛿
2

𝛽
+ 𝛿
4

𝛼
(𝜎
2
+ 2𝑡
2

𝑗
∗𝛿
2

𝛽
))

,

(C.7)

which is positive. Therefore (C.5) represents a minimum.

It is easy to see that 𝑡𝐴−
1min is always negative. Taking the

second derivative ofM
𝑓
𝑗
∗

with respect to 𝑡
1
, such that 𝑡

2
= 0,

and evaluating it at 𝑡𝐴−
1min (C.6) result in

𝜕
2M
𝑓
𝑗
∗

𝜕𝑡
2

1

= −

2𝑡
4

𝑛
(𝜎
2
+ 𝛿
2

𝛼
)
2

𝛿
6

𝛽

𝜎
6
𝑡
2

𝑛
𝛿
2

𝛽
+ 3𝜎
4
𝑡
2

𝑛
𝛿
2

𝛼
𝛿
2

𝛽
+ 𝛿
4

𝛼
(𝜎
4
+ 2𝜎
2
𝑡
2

𝑛
𝛿
2

𝛽
)

,

(C.8)

which is negative. Therefore 𝑡𝐴−
1min represents a maximum.

Since the maximum occurs at a value 𝑡𝐴−
1min < 0, the

minimum occurs at a value 𝑡𝐴+
1min > 𝑇, and these are the only

two critical points; the BMSE must be decreasing over the
line segment, and the minimum BMSE on the line segment
therefore occurs at 𝑡

1
= 𝑇, 𝑡

2
= 0.

We next consider finding the minimum value on the line
segment 𝐶. Setting 𝑡

2
= 𝑇 and then taking the derivative

of M
𝑓
𝑗
∗

with respect to 𝑡
1
, and solving for 𝑡

1
, we find the

following two critical points:

𝑡
𝐶+

1min =
𝜎
2
𝑡
𝑗
∗ − 𝑇𝛿

2

𝛼
+ 2𝑡
𝑗
∗𝛿
2

𝛼

𝛿
2

𝛼

,

𝑡
𝐶−

1min =
𝛿
2

𝛼
(𝜎
2
+ 𝑇
2
𝛿
2

𝛽
− 𝑇𝑡
𝑗
∗𝛿
2

𝛽
)

(−𝜎
2
𝑡
𝑗
∗ + 𝑇𝛿

2

𝛼
− 𝑡
𝑗
∗𝛿
2

𝛼
) 𝛿
2

𝛽

.

(C.9)

We see that 𝑡𝐶+
1min is minimized by applying the lower bound

for 𝑡
𝑗
∗ given by (C.1), and we find that 𝑡𝐶+

1min > 𝑇. Concerning
𝑡
𝐶−

1min, the numerator can be minimized by applying the upper
bound for 𝑡

𝑗
∗ of 𝑇. In this case, the numerator is 𝛿2

𝛼
𝜎
2, which

is always positive. The maximum value of the denominator
is found by substituting in the minimum value for 𝑡

𝑗
∗ given

by (C.1). We find that the maximum value is −𝑇𝜎2𝛿2
𝛼
𝛿
2

𝛽
/

(𝜎
2
+ 2𝛿
2

𝛼
), which is negative. Therefore 𝑡𝐶−

1min is always
negative.

Taking the second derivative of M
𝑓
𝑗
∗

with respect to 𝑡
1
,

such that 𝑡
2
= 𝑇, and evaluating it at 𝑡𝐶+

1min result in

𝜕
2M
𝑓
𝑗
∗

𝜕𝑡
2

1

=

2𝜎
2
𝛿
8

𝛼
𝛿
2

𝛽

(𝜎
2
+ 2𝛿
2

𝛼
)
2
(𝜎
4
𝑡
2

𝑗
∗𝛿
2

𝛽
+ 𝜎
2
𝑡
𝑗
∗ (−2𝑡

𝑓
+ 3𝑡
𝑗
∗) 𝛿
2

𝛼
𝛿
2

𝛽
+ 𝛿
4

𝛼
(𝜎
2
+ 2𝑡
2

𝑓
𝛿
2

𝛽
− 4𝑡
𝑓
𝑡
𝑗
∗𝛿
2

𝛽
+ 2𝑡
2

𝑗
∗𝛿
2

𝛽
))

. (C.10)

Evaluating (C.10) at 𝑡
𝑗
∗ = 𝑇 results in

𝜕
2M
𝑓
𝑗
∗

𝜕𝑡
2

1

=

2𝛿
8

𝛼
𝛿
2

𝛽

(𝜎
2
+ 2𝛿
2

𝛼
)
2
(𝛿
4

𝛼
+ 𝜎
2
𝑡
2

𝑓
𝛿
2

𝛽
+ 𝑡
2

𝑓
𝛿
2

𝛼
𝛿
2

𝛽
)

, (C.11)

which is positive. In general, (C.10) is positive when

𝜎
4
𝑡
2

𝑗
∗𝛿
2

𝛽
+ 𝜎
2
𝑡
𝑗
∗ (−2𝑡

𝑓
+ 3𝑡
𝑗
∗) 𝛿
2

𝛼
𝛿
2

𝛽

+ 𝛿
4

𝛼
(𝜎
2
+ 2𝑡
2

𝑓
𝛿
2

𝛽
− 4𝑡
𝑓
𝑡
𝑗
∗𝛿
2

𝛽
+ 2𝑡
2

𝑗
∗𝛿
2

𝛽
) > 0.

(C.12)
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Setting the expression on the left-hand side to zero and
solving for 𝑡

𝑗
∗ , we find the following roots:

𝑡
𝑗
∗ =

𝜎
2
𝑡
𝑓
𝛿
2

𝛼
𝛿
2

𝛽
+ 2𝑡
𝑓
𝛿
4

𝛼
𝛿
2

𝛽
± √−𝜎

6
𝛿
4

𝛼
𝛿
2

𝛽
− 3𝜎
4
𝛿
6

𝛼
𝛿
2

𝛽
− 2𝜎
2
𝛿
8

𝛼
𝛿
2

𝛽
− 𝜎
4
𝑡
2

𝑓
𝛿
4

𝛼
𝛿
4

𝛽
− 2𝜎
2
𝑡
2

𝑓
𝛿
6

𝛼
𝛿
4

𝛽

𝜎
4
𝛿
2

𝛽
+ 3𝜎
2
𝛿
2

𝛼
𝛿
2

𝛽
+ 2𝛿
4

𝛼
𝛿
2

𝛽

. (C.13)

These roots are imaginary, which implies that (C.10) is
always positive, and therefore, 𝑡𝐶+

1min is aminimum.Given that
the BMSE must always be positive, and there are only two
critical points, this implies that 𝑡𝐶−

1min is a maximum. Since the
maximum occurs at a value of 𝑡𝐶−

1min < 0 and the minimum
occurs at a value of 𝑡𝐶+

1min > 𝑇, the minimum on the line
segment must occur at the value 𝑡

1
= 𝑇.

In summary, the minimum value on the line segment 𝐴
occurs at 𝑡

1
= 𝑇, 𝑡

2
= 0. Applying symmetry, the BMSE

at this point is the same as the BMSE at the points 𝑡
1
= 0,

𝑡
2
= 𝑇, which is the maximum point for the line segment
𝐶. Therefore, the minimum BMSE does not occur on the
line segment 𝐴. Again, by symmetry, this means that the
minimum BMSE does not occur on the line segment 𝐵. For
the line segment 𝐶, the minimum BMSE occurs at 𝑡

1
=

𝑇, 𝑡
2
= 𝑇. Applying symmetry, the minimum BMSE on the

line segment 𝐷 occurs at 𝑡
1
= 𝑇, 𝑡

2
= 𝑇. Since these two

points are the same, we find that the overall minimum BMSE
within the feasible region occurs at the point 𝑡

1
= 𝑡
2
= 𝑇.

D. Unconstrained Minimization
of the BMSE for the Bivariate,
Time-Dependent Linear Model

TheoremD.1. For the bivariate, linear, time-dependent model
given by (70), M

𝑓
1𝑗
∗

as given by (74) exhibits an absolute
minimum at a point (𝑡

1min, 𝑡2min, 𝑠
2

1min, 𝑠
2

2min) if and only if

M
𝑓
1𝑗
∗

=

𝛿
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𝛼
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(𝜎
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1
/𝑚
1
) ((1 − 𝜌
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𝛼
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2
) 𝛿
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𝛼
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+ 𝜎
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2
/𝑚
2
)

.

(D.1)

Proof. Recall that 𝑡
1
, 𝑡
2
, 𝑠2
1
, and 𝑠2

2
are defined in (77), (78),

(79), and (80). To prevent ambiguous notation, let 𝛾
1
= 𝑠
2

1

and 𝛾
2
= 𝑠
2

2
. Consider the derivative of M

𝑓
1𝑗
∗

(see (74)) with
respect to 𝛾

1
:

𝜕M
𝑓
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(𝑡
1
, 𝑡
2
, 𝛾
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, 𝛾
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𝛿
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𝛽
1

𝑚
1
𝜎
2

1
𝑐
2

1

𝑐
2

2

, (D.2)

where

𝑐
1
= 𝑡
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(D.3)

It is easy to show that 𝑐2
1
≥ 0 and 𝑐2

2
≥ 0, and consequently

𝜕M
𝑓
1𝑗
∗

(𝑡
1
, 𝑡
2
, 𝛾
1
, 𝛾
2
)

𝜕𝛾
1

≤ 0. (D.4)

Consider also the derivative ofM
𝑓
1𝑗
∗

with respect to 𝛾
2
:

M
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where
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𝑐
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(D.6)

It can be shown that 𝑐2
3
≥ 0 and 𝑐2

4
> 0, and consequently

𝜕M
𝑓
1𝑗
∗

(𝑡
1
, 𝑡
2
, 𝛾
1
, 𝛾
2
)

𝜕𝛾
2

≤ 0. (D.7)

Therefore, for fixed 𝑡
1
and 𝑡

2
, M
𝑓
1𝑗
∗

either decreases or
remains constant as we increase 𝛾

1
or 𝛾
2
. It follows that, for

fixed values of 𝑡
1
and 𝑡
2
,M
𝑓
1𝑗
∗

is bounded below byM
𝑓
1𝑗
∗

in
the limit as 𝛾

1
, 𝛾
2
→ ∞:

lim
𝛾
1
,𝛾
2
→∞

M
𝑓
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∗
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1
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2
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1
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2
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2
)
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1
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2

𝛼
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+ 𝜎
2

2
/𝑚
2
) + 𝑎
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1
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2
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2

𝛼
2

+ 𝜎
2

2
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)
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(D.8)

Since the limit ofM
𝑓
1𝑗
∗

does not depend on 𝑡
1
or 𝑡
2
, any values

of 𝑡
1
, 𝑡
2
, 𝛾
1
, and 𝛾

2
for whichM

𝑓
1𝑗
∗

takes on the value given by
(D.8) are an absolute minimum ofM

𝑓
1𝑗
∗

.

TheoremD.2. For the bivariate, linear, time-dependentmodel
given by (70), an absolute minimum ofM

𝑓
1𝑗
∗

as given by (74),
inside the region defined by 0 ≤ 𝑡

𝑟𝑗
≤ 𝑇, can be obtained by

collecting data at times 𝑡
𝑟𝑗
such that

𝑡
1min =
𝑡
1𝑗
∗ (𝛿
2

𝛼
1

((1 − 𝜌
2
) 𝛿
2
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2

+ (𝜎
2

2
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2
)) + (𝜎
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1
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2

𝛼
2
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2
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2
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2
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𝛼
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2

2
/𝑚
2
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,

𝑡
2min = 0,

(D.9)

if and only if

𝑡
1min ≤ 𝑇. (D.10)

Proof. Substituting (D.9) intoM
𝑓
1𝑗
∗

, we find that

M
𝑓
1𝑗
∗
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2

1
, 𝑠
2

2
)

=
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2
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,

(D.11)

which is sufficient to show that any point (𝑡
1min, 𝑡2min, 𝑠

2

1
, 𝑠
2

2
)

is an absolute minimum of the unconstrained function (see
Theorem D.1).

Given the constraint that 0 ≤ 𝑡
1𝑗
≤ 𝑇 for each 𝑗, 𝑡

1min
is a feasible point only when 0 ≤ 𝑡

1min ≤ 𝑇. It is easy to see
that 𝑡
1min > 0 in all cases. Therefore, the absolute minimum

can be achieved by collecting all data at 𝑡
1min if and only if

𝑡
1min ≤ 𝑇.
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[10] A. A. Borbély and P. Achermann, “Sleep homeostasis and
models of sleep regulation,” Journal of Biological Rhythms, vol.
14, no. 6, pp. 557–568, 1999.

[11] S. Daan, D. G. Beersma, and A. A. Borbély, “Timing of human
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