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Precise design strategies of nanomedicine for improving cancer
therapeutic efficacy using subcellular targeting
Xianglei Fu1, Yanbin Shi2, Tongtong Qi1, Shengnan Qiu1, Yi Huang1, Xiaogang Zhao3, Qifeng Sun3 and Guimei Lin1

Therapeutic efficacy against cancer relies heavily on the ability of the therapeutic agents to reach their final targets. The optimal
targets of most cancer therapeutic agents are usually biological macromolecules at the subcellular level, which play a key role in
carcinogenesis. Therefore, to improve the therapeutic efficiency of drugs, researchers need to focus on delivering not only the
therapeutic agents to the target tissues and cells but also the drugs to the relevant subcellular structures. In this review, we discuss
the most recent construction strategies and release patterns of various cancer cell subcellular-targeting nanoformulations, aiming
at providing guidance in the overall design of precise nanomedicine. Additionally, future challenges and potential perspectives are
illustrated in the hope of enhancing anticancer efficacy and accelerating the translational progress of precise nanomedicine.
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INTRODUCTION
Nanoparticle-based drug delivery systems (NDDSs) are extensively
employed in the therapy, diagnosis, and imaging of cancer due to
their characteristics of high cancer-targeting efficacy, low toxicity,
and controlled release properties.1 An efficient drug delivery
system must avoid the clearance of the reticuloendothelial system,
penetrate across blood vessel walls and be enriched at cancer
sites to exert their pharmacological effects.2 For this purpose, an
ever-increasing number of preclinical studies have reported a
large number of engineered nanoformulations with unique
physical and chemical properties, with the goal of delivering
chemotherapeutic agents, photosensitizers, genes, and other
biomolecules to cancer cells in specific and efficient manners.3

However, due to the problems of multidrug resistance (MDR), high
variability, and poor patient prognosis, NDDSs have still faced
tremendous challenges. It is therefore necessary when designing
new treatment strategies to study in-depth the pathogenesis of
cancer.
With the development of precision medicine, researchers have

realized that variations in key intracellular biomolecules (genes
and proteins), which are usually at the subcellular level, play a
critical role in carcinogenesis and cancer development.4–6

Designing drug candidates based on molecular-level pathogenesis
has become a new pattern and trend of drug discovery. For
example, Ying et al. found that the expression level of sterol o-
acyltransferase 1, which is responsible for transforming cholesterol
into cholesterol ester-storage granules, is closely related to the
poor prognosis of patients with liver cancer. Based on this, the
research team proved that avasimibe, a small molecular inhibitor
of sterol o-acyltransferase 1, had a good antitumor effect on
patient-derived tumor tissue xenograft model of hepatocellular
carcinoma, and provided new treatment strategies for tumor
patients.7 Moreover, high-profile gene therapies also have to

deliver the therapeutic genes into the cytoplasm or nucleus,
where they can function. As a result, effective NDDSs should not
only carry the therapeutic agents to the target tissues and cells
but also deliver the drugs to distinct subcellular sites which mean
organelles as targets accurately. They are considered to be one of
the most promising approaches for cancer treatment. Through
their proper design and specific modifications, subcellular-
targeting nanoformulations are enriched in tumor cells, are
internalized by endocytosis across the subcellular barriers (such
as inner body embedding and lysosomal degradation)8 and
target-specific subcellular structures (as shown in Fig. 1). This is
then followed by the controlled release of therapeutic agents at
the target sites, thus improving their antitumor efficacy, reducing
their toxic and side effects, and overcoming the most critical
limitation of intracellular drug delivery—MDR.9

In this review, based on the latest research progress over the
past 5 years, we will focus on the important aspects of subcellular-
targeting nanoformulations for cancer therapy. First, relevant
knowledge including the specific endocytosis pathway of different
nanoformulations taken up into cells and the pathological
characteristics of tumor cell organelles are the key elements for
guiding the construction of NDDSs, especially for the selection of
targeting ligands. Next, according to the different subcellular
targets of commonly used anticancer therapeutic strategies
(chemical therapy, gene therapy, photodynamic therapy (PDT),
etc.) applied after surgery, this article will elaborate on how to
achieve precise subcellular targeting by functionalizing the surface
of nanoparticles (NPs) with ligands and other means in the order
of lysosome, nucleus, mitochondria, endoplasmic reticulum (ER),
and Golgi apparatus. Furthermore, we will point out that multiple
targeting and controlled release are crucial to the design and
overall construction of the subcellular-targeting NDDSs. Finally,
two challenges and potential directions to pursue in order to
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boost precise subcellular targeting are illustrated, which will
benefit the transformation of NDDSs from laboratory research to
clinical practice.

MAIN
NDDSs can achieve the enrichment of tumor microenvironment,
cell internalization, and intracellular delivery through passive or
active targeting. In passive targeting, the size, shape, and surface
charge of NPs can affect penetration and retention, thus
significantly affecting their cell internalization and subcellular
localization. For example, positively charged ultrasmall NPs have a
higher affinity to the organelles such as mitochondria and nuclei,
thereby promoting their intracellular permeability.10 Active
targeting usually relies on the modification of localization group
such as antibodies, ligands, etc., which have specific interaction
with the receptor, thus leading to more significant effect than
conventional treatment strategies. In intracellular transport and
targeting, we still focus on these two aspects to explore design
strategies of subcellular-targeting nanoformulations.

Endocytosis and intracellular trafficking of nanoformulations
There are many targets (such as folate receptors, transferrin (Tf)
receptors, antigens) which are usually overexpressed on the
surface of cancer cells, and targeting them to maximize the drug
accumulation around cancer cells have become a focus research
to cancer therapy in recent decades. When NPs reach the cell

surface through passive or active targeting, endocytosis is the
main mechanism by which they are taken up by cancer cells.
Different types of NDDSs rely on different cell endocytosis
mechanisms to enter the cell, which ensures they internalize in
specific intracellular regions.11 We will briefly review the classic
endocytosis pathways for better prediction of the intracellular fate
of nanoformulations.
Endocytosis can be divided into clathrin-mediated endocytosis

(CME), caveolae-mediated endocytosis (CVME), macropinocytosis,
and phagocytosis12 (as shown in Fig. 2). Among these, CME and
CVME are the major uptake pathways of various nanoformulations.
Generally, large NPs (<120 nm) are internalized mainly through
CME, and specific ligand-modified nanoformulations (e.g., epider-
mal growth factor, folic acid, chemokines, and Tf) can significantly
improve the efficiency of this endocytosis pathway. Following
CME, the nanoformulations are trafficked through the early
endosomes—late endosomes—lysosomes pathway and arrive in
the lysosomal lumen, where they may be degraded by lysosomal
hydrolases.13 For those nanoformulations whose action sites are
other subcellular localizations in the cytoplasm, they are supposed
to be designed to avoid endosome/lysosome degradation and
retain their biological activity. Using carrier materials that are
stable in acidic environments and solution with pH buffering
properties can alleviate degradation problem to a certain extent.14

Endosome/lysosome escape capability is a more effective
prerequisite.15 The commonly recognized mechanisms of lysoso-
mal escape include proton-sponge effect, membrane fusion, the

Fig. 1 Schematic illustration of cancer cell subcellular targeting NDDSs for improving cancer therapeutic efficacy and different poptotic
pathways mediated by different organelle-targeted NDDSs. NDDS nanoparticle-based drug delivery system, LMP lysosomal membrane
permeabilization, ER endoplasmic reticulum, Bcl-3 B-cell lymphoma 3, ROS reactive oxygen species, Cyt C Cytochrome C
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generation of gas, and the application of CPPs and PCI. Some
examples and applications used in nanomedicine are listed in
Table 1. On the other hand, nanoformulations with a small particle
size (<60 nm) usually rely on CVME to enter cells. These NPs
coated by caveolae usually do not enter lysosomes and are
directly transferred to the Golgi or ER.16,17 Other endocytosis
processes are shown in Fig. 2. As is apparent, the endocytosis
process of antitumor NPs is the key step to achieve subcellular
enrichment. Deep understanding and exploration of these
endocytic pathways are rather significant for developing new
delivery strategies for subcellular targeting.

Lysosomal accumulation
Many nanoformulations mediated by CME can actively accumu-
late in lysosomes at the end of the endocytosis pathway. Taking
full advantage of this accumulation to delivery antitumor drugs
that act on lysosomes can greatly simplify the complexity of the
carriers’ design. Second, recent reports have demonstrated
chloroquine and its derivatives,18 rapamycin,19 HSP70 antago-
nist,20 and cathepsin B21 can act on the lysosomes and their
components to trigger lysosomal membrane permeabilization
(LMP), which can bypass the classical caspase apoptosis pathway
and thus produce antitumor effects on drug-resistant cells.22 Third,
the lysosomal pathological features lay a foundation for precise
drug release.23 Given the evidence discussed above, lysosomal
targeting and destruction could represent potential pharmacolo-
gical delivery strategies.

Lysosomal characteristics. Lysosomes are single-membrane acidic
vesicles (pH 4.5–5.0) that contain more than 60 hydrolytic
enzymes that can break down biomolecules (such as proteins,
lipids, carbohydrates, and nucleic acids).24 They play important
roles in maintaining cellular homeostasis, inducing cell apoptosis,
nutrient sensing, and immune responses.22 However, malignant
transformation usually leads to changes in lysosomal volume,
composition, and subcellular localization. In cancer cells, increased
lysosomal fragility caused by increases in sphingomyelin makes

lysosomes more vulnerable to LMP in response to stimuli, such as
surfactants, heat, and reactive oxygen species (ROS), thus causing
cell death.25

Delivery strategies of lysosomal precise therapy. Receptor-
mediated endocytosis can usually increase the possibility of the
NPs’ final arrival in lysosomes,13 so ligand modifications play
important roles in lysosomal targeting. When NDDSs are modified
by the specific aptamer of receptors on the surface of tumor cells,
such as Tf26 and the anti-human epidermal growth factor
receptor-2 monoclonal antibody,27 the receptor–ligand complex
is mediated by receptor–ligand interactions, collected into
transport vesicles and delivered into the early endosome-late
endosome-lysosome pathway, resulting in its accumulation in
lysosomes. Owen et al. reported NPs modified by different anti-
HER2 mAbs (trastuzumab and 73JIgG) that bind to different
epitopes on HER2 have variable amounts reaching the lysosome.28

Lysosome-targeting fragments can also be used to promote
lysosomal accumulation. For example, alkylated piperidine frag-
ments could target lysosomes and then self-assemble to construct
anticancer prodrug molecules.29 In addition to surface modifica-
tion, other physicochemical properties of NPs affect the efficiency
of lysosomal accumulation. Lysosomal accumulation of interna-
lized NPs is related to NP rigidity, size,30 and surface charge,31 and
smaller and softer NPs with certain positive and negative charges
have much greater uptake rates into lysosomes in cancer cells.
Therefore, the main means of delivering drugs to lysosomes is to
design and develop the appropriate targeting sequences, assisted
by optimizing the physical and chemical properties of nanofor-
mulations.
After reaching lysosomes, NDDSs need to respond to the

lysosomal microenvironment effectively to release their cancer
therapeutic agents, which need to act rapidly on the lysosome
and trigger LMP. This response mainly relies on some pH-sensitive
liposomes and stimulus-responsive polymers containing specific
pH-triggered switches (such as disulfide bonds,32 hydrazone
bonds, acrylic acid, and diethylaminophenyl units33) and enzyme

Fig. 2 Schematic diagram depicting endocytosis and intracellular trafficking pathways of nanoformulations. NPs nanoparticles
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response switches (such as cathepsin B-sensitive dipeptide
linker,34 glycosidic bond hydrolyzed by glycosidase,35 vSIRPα-
probe activated by lysosomal endopeptidases36). Additional
important triggering methods are the delivery of photosensiti-
zers37 and magnetic agents24 to lysosomes by NDDSs. When the
tumor is exposed to external near-infrared light or a magnetic
field, the sensitive agents will produce a considerable amount of
ROS and heat, stimulating the destruction of the fragile lysosomal
membrane, and induce tumor cell death. As shown by Zhang
et al., their novel photosensitizer supramolecular nanogel is
sensitive to lysosomal pH and aggregates in the lysosomes for
enhanced PDT of multidrug-resistant cancer.37

Nucleus targeting
Chemotherapy is still the cornerstone of cancer treatment and the
vast majority of conventional chemotherapeutic drugs need to
work in the nucleus of cancer cells to induce apoptosis.38

Alternatively, cancer gene therapy, which transfers genes (such
as the CRISPR/Cas9 nuclease system, nucleic acid aptamers, DNA,
and siRNA) to the chromosomes of tumor cells to regulate or
replace abnormal genes, is gradually emerging.39 Their efficacy
depends on the efficient transfer of the drugs or complete
therapeutic exogenous gene into the nucleus.40 In recent studies,
the nucleus has been commonly used as the site of action for free
radicals and heat to cooperate with chemotherapy or gene
therapy to improve the antitumor effect,41 which means
transporting photosensitizers or theranostics to the nucleus to
produce ROS with potentially damaging effects.42,43 However, the
NDDSs targeting the cancer cell membrane generally only release
foreign genes or anticancer agents into the cytoplasm, and then
they can only enter the nucleus through free diffusion. The
efficiency of diffusion is limited, and <1% of the therapeutic
agents in the cytoplasm enter the nucleus and reach the final
target.38 Therefore, enhanced therapeutic agent efficiency by
nuclear targeted delivery is anticipated to be necessary for
efficient cancer treatments and overcoming MDR.

Nuclear characteristics. The nucleus is the site of storage,
replication, and transcription of genetic material and it plays
important roles in cell proliferation, metabolism, growth, and
differentiation. Due to the strong shielding effect of the bilayer
nuclear membrane, nuclear pore complexes (NPCs) with lengths
of ~90 nm and transverse diameters of 70 nm are the only
channels for bidirectional exchange between the cytoplasm and
nucleoplasm. The inner walls of NPCs are tethered with
phenylalanine-glycine nucleoporins (FG Nups), thus limiting the
inner diameter to only ~40 nm.44 As a result, the low efficiency of
nuclear membrane penetration has greatly hindered applications
of nuclear targeting NDDSs.

Construction strategies of cancer cell nucleus-targeting NDDSs. In
general, the NDDSs’ ability to efficiently access the cancer cell
nucleus from the cytoplasm arises from three aspects: passive
diffusion, active targeting, and pore formation in the nuclear
envelope membrane (as shown in Fig. 3).

Passive diffusion: The structure of the NPCs limits the transloca-
tion of nanoformulations into the nucleus by passive diffusion.
Based on principles of Brownian motion, the key influencing
factors of passive cancer cell nucleus-targeting NPs such as size,
shape, and charge have been extensively studied as follows.
Size is the critical factor affecting the passive diffusion of NPs

into the nucleus. Lim’s group has demonstrated that ions and
small molecules with molecular weights <40 kDa can diffuse freely
through the NPCs.44 For NDDSs, NPs capable of passive nuclear
diffusion are generally smaller than 9 nm.45 Therefore, it is
necessary for nucleus-targeting NPs to regulate their size by
rational preparation or to achieve size reduction of large NPsTa
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activated by special pH conditions or enzymes.46 In particular, how
to compress and fold gene macromolecules to minimize the size
of the gene nanocarrier system should be considered. The existing
research has mainly focused on how to condense DNA/RNA into
stable complexes through the electrostatic interactions between
cation nanocarriers and anion nucleic acids.39

Although small NPs are able to diffuse into the nucleus, the
charge and shape of the NPs also play important roles in nuclear
uptake. Positively charged NPs are more favorable for passage into
the nucleus, but intravenous injection of positively charged NPs
may induce hemolysis. To address this problem, a charge reversal
strategy from negative to positive in endosomes and lysosomes
has been applied.47 NDDSs that recover a positive charge in
lysosomes can not only promote lysosomal escape but also
enhance nuclear targeting, thus enhancing the cytotoxicity of the
anticancer drug compared with free drugs.48 Other studies have
shown that NPs with a higher aspect ratio (shaped like rods or
worms) achieve higher nuclear concentrations compared with the
lower aspect ratio NPs,49which can be ascribed to the structure of
the NPCs.

Active targeting: Although the ultrasmall NPs can carry ther-
apeutic agents into the cancer cells’ nucleus, most of the
marketed NDDSs, whose sizes are usually between 100 and
200 nm, are excluded from the nucleus.38 Fortunately, NPs larger
than NPC can realize nuclear active targeting by surface ligand
modification after lysosomal escape.
Nuclear localization signal sequences (NLSs),50 including from

the SV40 T antigen, adenovirus, transactivator of transcription (TAT)
peptide, NF-κB, KRRRR et al.51,52 are the most classical ligands used
for nuclear targeting. NLSs can be recognized by karyopherins
(Kaps) and rapid binding between Kaps and FG Nups cause FG
Nups to shrink back into more malleable forms.53,54 Therefore,
NLSs modified NPs with a large particle size could enter the
nucleus via active translocation. Thus far, most reported sizes of
active nuclear targeting NDDSs were extended to 50 nm, which
means gold NPs55 and mesoporous silica NPs (MSNs)56 have been
extensively used in nucleus active targeting because of their

advantages of easy control of particle size and surface modifica-
tion. For example, Tang et al.57 synthesized copper sulfide NPs
encapsulated by a silica shell layer, which were modified by RGD
and TAT peptides at the same time. Mediated by RGD to enter
cancer cells, these NPs can effectively target the nucleus with the
help of TAT. When illuminated by a 980 nm laser, copper sulfide
NPs release heat to rapidly increase the temperature and damage
the DNA. Li et al.58 developed a kind of gold NPs with simultaneous
surface modification of siRNA and NLSs. The NLS-mediated NPs
translocated to the nucleus and the siRNA acted on gene promoter
DNA methylation, thus inducing long-term gene silencing in the
nucleus of cancer cells. Meanwhile, a promising strategy to transfer
larger NPs to the nucleus involves optimizing the NLS density.59

For instance, compared to the high density of 2 NLS2/nm, NPs
modified with the intermediate density of 0.9 NLS2/nm can achieve
a 3.7-fold increased nuclear accumulation.60 In addition to NLSs
ligands, boronic acid groups can also translocate anticancer NPs
with a large size from the cell surface to the nucleus through the
importin α/β-mediated pathway. In the future, the development
and discovery of new NLSs will provide a wider range of options
for targeted ligands of nuclear targeting NDDSs.

Opening the nuclear membrane: In addition to improving the
physicochemical properties of the nanoformulations to pass
through NPCs as readily as possible, another effective method is
to open the nuclear membrane with the help of cell membrane
penetrating peptides (CPPs)61 to enhance the nuclear transloca-
tion of antitumor NDDSs. Researchers have gradually mastered
some common properties of CPPs and have synthesized a series of
CPPs with stronger penetration and higher efficiency, such as
CB5005,62 which consists of a membrane permeation sequence
cascaded with the NF-κB NLS. Further study found this kind of CPP
had a unique affinity to brain glioma and its application in
adriamycin delivery could effectively penetrate the membranes of
cancer cells and the nucleus, allowing the chemotherapy drugs to
directly damage the DNA.
In short, nuclear delivery efficiency may depend on the

physicochemical properties of the NPs including size, shape,

Fig. 3 Three construction ways for nucleus-targeting NDDSs to access the cancer cell nucleus from the cytoplasm: passive diffusion, active
targeting, and pore formation in the nuclear envelope membrane. PTT photothermal therapy, PDT photodynamic therapy, NPC nuclear pore
complex, CPPs cell membrane penetrating peptides, Kap karyopherin, NLS nuclear localization signal sequence, NP nanoparticle
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charge, and surface modifications. Intensive study of these factors
may allow for the development of efficient cell nucleus-targeting
NDDSs. Meanwhile, besides light responses,41 further research is
required to explore the means of controlling drug release from
carriers in the nucleus.

Mitochondria targeting
As indispensable energy reservoirs, mitochondria are also
important as targets of anticancer drugs. Lonidamine, amlodipine,
ceramide, and some natural substances (resveratrol, berberine,
betulinic acid) are the main antitumor therapeutic agents acting
on mitochondria. They usually activate the apoptotic effector
proteins Bax and Bak, release cytochrome c, and form apoptotic
bodies, inducing cancer cells’ death.63,64 Paclitaxel (PTX), doxor-
ubicin (DOX), and camptothecin, in addition to acting on
recognized targets, also act on mitochondria to varying degrees
to induce apoptosis.65

Mitochondria in cancer cells show greater susceptibility than
those in normal tissues. Thus, there is the potential to deliver
radiosensitizers,66 photosensitizers,67 and theranostics68 to the
mitochondria of cancer cells, aiming at ROS production and
oxidative stress, which induce mitochondrial permeability transi-
tions and fundamentally affect the energy supply of cancer cells.
All of the above have demonstrated that mitochondria targeting is
of great significance for improving antitumor therapy.

Mitochondrial characteristics. Mitochondria are double-
membrane-bound organelles with independent DNA69 and they
participate in multiple cellular functions, including energy
production, calcium buffering, lipid synthesis, signaling, cell
proliferation, and apoptosis.70 In the process of Adenosine
triphosphate synthesis, protons are pumped from the mitochon-
drial matrix to the intermembrane space, which generates a
proton gradient and establishes the mitochondrial membrane
potential (MMP, about −160mv).Cancer cells tend to experience
mitochondrial dysfunction, such as an increased MMP (−220mv),
accumulation of hydrogen peroxide, reduced oxidative phosphor-
ylation, increased ROS production, Ca2+ overload, and the
Warburg effect,71,72 which mean that mitochondria in cancer cells
are more susceptible to external disturbances than normal cells.

Construction strategies of cancer cell mitochondria-targeting NDDSs.
In view of the large negative MMP and the precise membrane
structure of mitochondria in cancer cells, cancer cell mitochondria-
targeting NDDSs usually achieve active subcellular targeting with
the aid of two different targeting ligands: delocalized lipophilic
cations (DLCs) and specific mitochondrial-targeting sequences
(MTSs). Similarly, disturbing the mitochondrial membrane integrity
by CPPs also helps NPs penetrate into mitochondria (as shown in
Fig. 4).

Active targeting: DLCs, including 4-carboxybutyl triphenylpho-
sphonium bromide (TPP), quaternary ammonium salts, nitrogen-
containing heterocycles, et al.,73 can easily pass through lipid
bilayers and accumulate in the mitochondrial matrix due to their
high lipophilicity and stable cationic charge, so they have become
the most popular constituent molecules in mitochondrial-
targeting NDDSs.74 Among them, TPP has been the most
extensively studied and it can both induce lysosomal escape
and localize from the cytoplasm to the mitochondria. TPP-
anchored poly(amidoamine) dendrimer,75 TPP-Lonidamine-DOX
self-assembled NPs,76 PLGA-b-PEG NPs with surface modification
of TPP,77 and silica NPs with surface modification of TPP78 can
carry different therapeutic molecules to mitochondria in cancer
cells. However, cationic materials represented by TPP induce
inevitable systemic toxicity. Chemical modification of TPP or
application of a core-shell structure, which shields the positive
charges during circulation but is then removed in the lysosomal
environment to expose the TPP, can maximize the safety of the
drug. For instance, compared with liposomes where STPP is
embedded in the lipid bilayer, liposomal loading with PTX and
modification with a novel triphenyphosphonium-PEG-PE conju-
gate can more easily interact with the mitochondria and avoid the
nonspecific cytotoxicity of STPP, to enhance their antitumor
effects.79

In consideration of the safety concerns of DLCs, researchers
have preferred to develop new MTSs to achieve precise
intracellular localization. The precise membrane structure and
internal structure of mitochondria provide a basis for determining
the specific loci of MTSs. MTSs such as the KLA peptide80 and the
amphipathic tail-anchoring peptide81 commonly contain 20–30

Fig. 4 Schematic illustration of mitochondria-targeted drug delivery strategies mediated by active targeting and CPPs. PDT photodynamic
therapy, DLCs delocalized lipophilic cations, MMP mitochondrial membrane potential, TPP triphenylphosphonium, DQA di-quaternary
ammonium, NHCs nitrogen-containing heterocycles, CPPs cell membrane penetrating peptides, MTSs mitochondrial-targeting sequences
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amino acids and α-helix structures that are rich in base, hydroxyl,
and hydrophobic residues. Anticancer drugs, DNA, and nanocar-
riers conjugated to MTSs or DNA sequences encoding MTSs
integrated into therapeutic DNA, are supposed to target
mitochondria.82 For example, Kazuaki et al. designed a dual-
function lipid-based drug delivery system that is capable of
intracellular trafficking, such as endosomal escape mediated by
octaarginine (a kind of CPP), and then delivery to mitochondria
mediated by MTSs.83 However, it should be realized that extensive
applications of MTSs are limited by their poor stability and their
inability to target tumor locations. It is essential to improve the
physicochemical and biopharmaceutical properties of these
peptides and conjugate them with cancer cell-targeting fragments
before clinical applications.
It is worth mentioning that the special mitochondrial micro-

environment of cancer cells may be a trigger for drug release from
vehicles. For example, Yue et al.84 reported the use of TL-CPT-
PEG1K-TPP copolymers. After uptake by the cancer cells, the NPs
were guided to the mitochondria by TPP, with hundreds of fold
increased accumulation. The thioketal linker (TL) in the copoly-
mers was sensitive to a high concentration of ROS in the cancer
cells’mitochondria to release CPT. Hu et al.85 constructed a kind of
MSNs loaded with Fe2+. After mediated by the MTSs to enter the
cancer cells’ mitochondria, the Fe2+ reacted with the increased
amount of H2O2 and generated cell-damaging hydroxyl radicals.
NIR exposure could promote chemical reactions and this delivery
system has overcome the limitations that conventional PDT needs
to rely on O2 and controllably exert their anticancer effects.

Opening the mitochondria envelope: Similar to the nuclear
targeting delivery strategies, CPPs can also be used to enhance
NDDSs penetration in accurate delivery of mitochondria targeting.
Compared with the cell membrane, the mitochondrial membrane
is more hydrophobic and has more negative potential, thus
increasing the positive polarity and hydrophobicity of CPPs is
conducive to helping nanoformulations cross the mitochondrial
membrane. Commonly used mitochondrial CPPs generally have
highly hydrophobic residues, such as cyclohexyl and SS peptides.
In addition, some cationic small molecules, including rhodamine,
pyridinium, and cyanine, which have inherent capabilities of
mitochondrial penetration, can be modified on the surface of
liposomes86 or self-assembled into NPs with imaging functions87

to selectively target the mitochondria.
In conclusion, an in-depth study of the cancer cells’ special

mitochondrial microenvironment and development of novel
targeting sequences may benefit the further design of efficient
and safe mitochondrial-targeting NDDSs.

ER and Golgi targeting nanoformulations
With the development of modern oncology, the discovery of new
and valuable anticancer targets and cellular pathways has fostered
the study of cancer therapeutic agents acting on organelles other
than the nucleus and mitochondria. The ER and Golgi have
gradually attracted attention due to their large intracellular surface
area and important roles in endocytosis.

Characteristics of the ER and Golgi. As the largest subcellular
structure in the cell, the ER is a series of lamellar and tubular
cavities composed of membranes that are weakly alkaline and it
stores large amounts of calcium. ER controls the biosynthesis,
folding, and assembly of proteins and other biological macro-
molecules, as well as playing an important role in cell survival and
homeostasis.88 When stimulated, the ER will release calcium ions
and active caspase-8 to initiate the apoptotic program.89

Eeyarestatin, bortezomib, natural polyphenols, terpenes, and
other ER stress inducers90 have been identified.91 Delivering
anticancer drugs to cause sustained and excessive ER stress, thus
inducing cell death, has become a new anticancer strategy.

The Golgi apparatus is closely linked to the ER. It is usually
comprised of three different compartments, including the cis-
Golgi network, medial-Golgi, and trans-Golgi network, which have
a pH gradient from cis-Golgi network (pH 6.7) to trans-Golgi
network (pH 6.0).92 It is an important organelle of cell secretory
pathways that can modify, label, store and transport proteins,
lipids, and polysaccharides. Recent studies have shown that the
Golgi’s function is significantly improved in cancer cells, and its
structural integrity affects certain signaling pathways, particularly
those related to migration, invasion, and angiogenesis.93,94

Therefore, delivering intra-Golgi protein inhibitors to cancer cells’
Golgi has the potential to block multiple molecular pathways
associated with the development of cancer.

Design of ER or Golgi targeting nanoformulations. In the delivery
process of therapeutic agents acting on the ER or Golgi apparatus,
it is necessary to consider the different endocytosis pathways of
NPs entering cancer cells. That is, mainly because the CVME
pathway can actively transport NPs into the ER and Golgi.
Obviously, it is very beneficial to deliver antitumor agents to
achieve CVME by specific design of their nanoformulations. The
other key to designing NDDSs is to enhance their retention time in
the target substructure and to avoid their being discharged by
exocytosis. For example, Xue et al. reported a pH-responsive
photothermal ablation agent that was assembled with bovine
serum albumin to form NPs. Due to their hypertrophic morphol-
ogy, they could accumulate in the Golgi apparatus of cancer cells
during endocytosis. Meanwhile, NPs can be activated for effective
photothermal therapy in response to the acidic environment of
the Golgi.95

In addition, we must take into consideration that a significant
proportion of NDDSs enter the lysosomes of cancer cells through
the CME. For these NPs, only by modifying the appropriate ER and
Golgi target sequences can they selectively target to these
subcellular organelles after endolysosomal escape to the cyto-
plasm. Studies have shown that several biocompatible metal
complexes could be used to target the ER. Kwon et al. reported an
effective strategy for IR(III) delivery targeting the ER. The IR(III)
complex can not only target the ER actively but also produce ROS
in response to the PDT reagent, which results in oxidative damage
to proteins.96 E3/19K of adenovirus,97 phosphotetrapeptide (4P),98

KKXX peptide,99 propylene oxide,100 the sulfonyl group,101 and ER-
targeting photosensitizer TCPP-TER102 have also been applied to
construct NPs targeting the ER.
In terms of Golgi targeting, Huang et al. demonstrated that L-

cysteine is a kind of effective ligand for the Golgi. Carbon
quantum dots and silica NPs could target the Golgi to monitor its
changes when they are modified with l-cysteine.103 Gong’s team
repeatedly proved that chondroitin sulfate (CS) nanomicelles
targeted the Golgi since the glycosyltransferases in the Golgi
could specifically bind to CS.104,105

However, it should be pointed out that compared with the
targeting of the mitochondria and nuclei, the subcellular targeting
of the ER and Golgi is still in its infancy, with not enough
information available to apply comprehensive design strategies.

Other subcellular-targeting nanoformulations
Apart from the above, there are several other important subcellular
structures that are also susceptible to therapeutic agents.
The mutation of and abnormal expression of cytoskeleton-

associated proteins play important roles in cancer cell migration,
so targeting the cytoskeleton may be a potential anticancer
therapy.106 For drugs (such as PTX and vincristine) acting on the
cytoskeleton, the current delivery strategy is mainly to design
NDDSs that are degraded in the lysosome, releasing the
therapeutic agents into the cytoplasm through lysosome escape,
and then achieve the drug targeting by the interaction between
the drug molecules and the protein targets.107
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As a complex of RNA and protein, many key molecules and
proteins in ribosomes are secondary regulators of epigenetic
regulation and cancer progression.108,109 In recent years, ribo-
somes have been gradually regarded as a potential target in the
development of anticancer drugs.110,111 Discovery and delivery of
drug molecules acting on ribosomes remains in a preliminary
stage. Delivery of antitumor drugs to ribosomes will also be an
important branch of subcellular targeting in the near future.

Key factors in the rational design of subcellular-targeting
anticancer nanomedicine
The above has described different strategies of precise delivery of
antitumor agents to subcellular organelles in cancer cells. To guide
the rational design and clinical transformation of subcellular-
targeting anticancer nanomedicine comprehensively, we will
emphasize below two key factors and principles that need to be
considered when constructing efficient nanomedicine.

Dual targeting and multiple targeting. The initial premise of the
subcellular-targeting NDDSs discussed above is that they have
overcome the first step of initial delivery and tend to accumulate
in the region of the tumor. Therefore, in the rational design of
subcellular targeting anticancer nanomedicine, we need to use
dual-targeting strategies, taking into account both cancer cell
targeting and subcellular targeting. For example, Qu’s team112

designed folate and TAT-modified Fe3O4 core/mesoporous silica
shell NPs to deliver camptothecin, López et al.113 developed
mesoporous silica particles with asymmetric modification of folate
and TPP, and Xie et al.114 constructed hollow carbonitride
nanospheres modified by hyaluronic acid (HA) and mitochondrial
localization peptide D. These NDDSs achieved the organic
combination of cancer enrichment and subcellular level targeting,
which greatly improving the efficiency of the antitumor agents.
Furthermore, it should be noted that the overlapping interactions
between two target ligands and their relative densities may have
influences on their targeting ability. Meanwhile, scientists are also
making efforts to synthesize multifunctional targeting sequences,
such as one sequence having both cancer-targeting and
subcellular targeting functions or having both navigation and
imaging functions.
In many cases, targeting only one organelle may not be able to

reach the expected therapeutic effect. One solution chosen by
scientists is to simultaneously target multiple subcellular orga-
nelles or structures. For example, Yao et al.115 have developed HA-
modified hydroxyapatite (HAP) NPs (HAP-HA). HA acts as a tumor-
targeting active ligand and can bind to the CD44 receptor
overexpressed on the surface of cancer cells. HAP can load and
deliver DOX to the nucleus and mitochondria of tumor cells to
maximize the expected therapeutic effect. Multiple targeting is
based on the principle of organelle interaction network and
functional synergy. Achieve simultaneous targeting of mitochon-
dria and nucleus, ER and nucleus, as well as ER and mitochondria
is of great significance for enhancing therapeutic efficacy.

Accurate response and controlled release. The differences
between nanoformulations and free drugs lie not only in the
protection and transport by the carriers but also in the
controllable release of the cargoes in specific locations.116 Thus,
subcellular-targeting nanoformulations are supposed to release
their payload in a controlled manner to ensure that the goods
cannot be released before reaching the specific target, but only be
released on demand when they reach the target successfully. This
response relies on the characteristics of the microenvironment in
different organelles, such as the acidity of lysosomes,32 the weak
basicity of the ER, the weak acidity of the Golgi,95 and the high
expression of ROS84 and H2O2

85 in the mitochondria. In-depth
explorations of intracellular environments, components, and
functionality will drive innovation in the development of

promising subcellular-targeting NDDSs in the field of anticancer
nanomedicine. It needs to be emphasized that in some
programmed stimulus-response drug delivery systems, the use
of two or more stimuli in sequential or coordinated action also
requires comprehensive tests in vivo to achieve accurate
spatiotemporal control of each trigger factor.

CONCLUSIONS AND PERSPECTIVES
With the development of medical biology and nanotechnology,
research into and applications of subcellular-targeting NDDSs
have become hot topics and trends over the past 5 years. Great
advances in nanotechnology have stimulated the quick develop-
ment of various subcellular-targeting nanoformulations as listed in
Table 2. They are generally modified with subcellular-targeting
function groups to efficiently cross through the intracellular
obstacles and reach the molecular target, where they control their
payloads release in response to the specific subcellular micro-
environment (e.g., the acidic environment of the lysosome and
Golgi). This direct delivery of therapeutic agents to their final
destination maximizes the therapeutic efficacy of various cancer
therapies. Although progress in preclinical studies has been made,
we have to point out that some limitations still remain. Here, we
list the current challenges and potential future directions of this
topic.
In terms of cell biology research, the current progress related to

the fate of subcellular-targeting nanomedicine may involve some
uncertainties. (1) There is controversy since different researchers
have come to different conclusions about the endocytosis
pathway and mechanism of the same type of nanoformulation.
(2) There is a lack of support from raw data and targeted research
related to the stability of most currently existing nanoformulations
in lysosomes, especially regarding how to ensure subcellular-
targeting groups are able to function after escaping from the
lysosome. (3) The intertumor heterogeneity is currently less
considered in the design of subcellular-targeting NDDSs, which
are mainly based on the common pathological features of
organelles. Therefore, there is an urgent need for more
comprehensive studies on different types of cancer cells (such
as MDR cells) at the organelle/molecular level. In addition,
precision medicine is based on gene mutation information, and
individualized treatment, especially in subcellular delivery of gene
therapeutic agents, should pay more attention to understanding
the internal regulation of living systems by combining them with
gene sequencing technology.
In terms of clinical transformation, the translation efficiency of

complex nanoformulations is quite low. A high targeting ability of
multiple modified structures is closely related to their instability,
and a high sensitivity to intracellular environmental changes is
often accompanied by systemic toxicity. This imbalance between
efficacy and side effects makes demands on the exploration of
multifunctional targeting groups (e.g., have both cancer-targeting
and subcellular-targeting functions, have both navigation and
imaging functions) on the one hand, and drives the development
of diversification triggering and release strategies at the sub-
cellular level (especially the nucleus) on the other hand.
Furthermore, exploiting controllable preparation of nanoformula-
tions in combination with other novel techniques such as
microfluidic technology will control or optimize their properties
more accurately.
In terms of monitoring methods, observing dynamic nanofor-

mulations’ behavior in vivo and in tumor cells is indispensable to
the biological and medical research of nanomedicine. However,
the various visualization imaging techniques in the field of
nanomedicine have their own advantages and disadvantages.
For instance, the analysis conducted by transmission electron
microscopy is static while having high resolution. Two-photon
microscopy can observe tumor tissues directly in real time and
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in vivo, but it is limited by the imaging depth and the resolution at
the subcellular level. Most of the organelle fluorescent dyes need
to be used after cell membrane rupture and inactivation. To solve
these problems will require complementation with numerous
technologies on the basis of the existing tools, especially imaging
methods for visualizing the actual process of nanoformulations
entering single cancer cells. In addition, subcellular pharmacoki-
netics also affect the final efficacy of nanomedicine and should be
paid more attention to, since it can be used for screening and
transformation.
In general, subcellular-targeting NDDS are expected to play a

greater role in cancer treatment and, where appropriate, of other
diseases. It is also an inevitable trend in the field of personalized
cancer medicine and precision nanomedicine. This review
emphasizes the importance of subcellular targeting in the precise
treatment of tumors, and encourages the development of novel
subcellular-targeting strategies. The application of multidisciplin-
ary and more concentrated efforts in the research into subcellular-
targeting NDDSs and clinical transformation can further enhance
our understanding of personalized cancer medicine for precise
treatment and effectively guide the future design of
nanoformulations.
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