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1  | INTRODUC TION

Vitexin (Apigenin-8-C-β-D-glucopyranoside) is a chemical compound 
found in many plants, such as buckwheat (Zielinska, Szawara-Nowak, 

Ornatowska, & Wiczkowski, 2007), hawthorn (Kirakosyan et al., 
2003), Echinodorus (Tanus-Rangel et al., 2010), bamboo (Wang, Yue, 
Jiang, & Tang, 2012), mung bean (Cao et al., 2011), and Passiflora 
(Gadioli, da Cunha, de Carvalho, Costa, & Pineli, 2018). Vitexin is 
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Abstract
Vitexin is an apigenin flavone glycoside found in food and medicinal plants. It has a va-
riety of pharmacological effects, including antioxidant, anti-inflammatory, anticancer, 
antinociceptive, and neuroprotective effects. This review study summarizes all the 
protective effects of vitexin as an antioxidant against reactive oxygen species, lipid 
peroxidation, and other oxidative damages in a variety of oxidative stress-related dis-
eases, including seizure, memory impairment, cerebral ischemia, neurotoxicity, myo-
cardial and respiratory injury, and metabolic dysfunction, with possible molecular 
and cellular mechanisms. This review describes any activation or inhibition of the 
signaling pathways that depend on the antioxidant activity of vitexin. More basic re-
search is needed on the antioxidative effects of vitexin in vivo, and carrying out clini-
cal trials for the treatment of oxidative stress-related diseases is also recommended.
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found as a major polyphenol in food sources such as mung beans 
(Hou et al., 2019).

Mung bean is consumed as soup and is a popular food item in 
China and many Asian countries, where it is believed to control heat-
stroke (Cao et al., 2011). Vitexin has a variety of pharmacological 
effects, including antioxidant (Bai et al., 2016), anti-inflammatory 
(Choi et al., 2014; Nikfarjam, Hajiali, Adineh, & Nassiri-Asl, 2017), 
anticancer (Yang et al., 2013), anticholinesterase (Sheeja Malar, 
Beema Shafreen, Karutha Pandian, & Pandima Devi, 2017), antibac-
terial (Quílez et al., 2010; Das et al., 2016), antiviral (Fahmy et al., 
2020), antinociceptive (Borghi et al., 2013), hepatoprotective (Kim, 
Chin, Lim, Kim, & Kim, 2004), cardioprotective (Dong et al., 2013), 
and neuroprotective effects (Yang, Yang, Zhang, Tian, Liu, & Zhao, 
2014; Hosseinzadeh & Nassiri-Asl, 2017).

Vitexin has been proven capable of donating electrons and has 
acted as a good radical scavenger. It has a better antioxidant ac-
tivity than apigenin, since the presence of C-8 glucoside in vitexin 
causes a reduction of its bond dissociation enthalpy compared to 
aglycone apigenin. The most stable radical order of vitexin after re-
action with reactive oxygen species (ROS) was reported as 4′-OH, 
7-OH, and 5-OH, respectively (Praveena, Sadasivam, Kumaresan, 
Deepha, & Sivakumar, 2013). Vitexin has some derivatives too, 
such as isovitexin, rhamnopyranosyl-vitexin, methylvitexin (isoem-
bigenin), vitexin-2-O-rhamnoside (VOR), and vitexin-2-O-xyloside 
(VOX; Figure 1; Ninfali, Antonini, Frati, & Scarpa, 2017; Praveena 
et al., 2013).

Vitexin is poorly absorbed in the gastrointestinal tract. It is rapidly 
removed from the blood, and its absolute oral bioavailability is very 
low. Vitexin is probably deglycosylated as the first step and converted 
to 3-(4-hydroxyphenyl) propionic acid in the end. The first-pass ef-
fects of vitexin are almost intestinal (approximately 94%) and less gas-
tric (30%) and hepatic (5%), which contribute to its low bioavailability. 
Vitexin is rapidly and widely distributed into various tissues. Vitexin 
is excreted most in the urine and bile (Ninfali & Angelino, 2013; Xue 
et al., 2014).

Recently, the nanoparticles of vitexin have increased its rate of 
dissolution despite the low aqueous solubility of the raw drug (Gu 
et al., 2017). In recent years, an increasing attention has been paid 
to the search for natural antioxidants, and vitexin has received great 
attention due to its antioxidant activities. This review study thus 
summarizes the antioxidant effects of vitexin and its derivatives 
on oxidative stress-related diseases (Figure 2).

2  | METHODS

All the major in vivo or in vitro studies conducted over the past decade 
about the effects of vitexin as an antioxidant on oxidative stress were 
selected for this review study. All the studies related to herbal medi-
cines in which vitexin plays a major role as an antioxidant were also 
selected. Scopus, PubMed, and Web of Science were used as the data-
bases, and the search was focused on the effect of vitexin on oxidative 

F I G U R E  1   Chemical structures of vitexin and some derivatives. (A) Vitexin, (B) isovitexin, (C) vitexin-2-O-rhamnoside, and (D) vitexin-2-
O-xyloside
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markers, antioxidant enzymes, and any signaling and gene expression 
potentially involved in its protective effects. The keywords used for 
the search were as follows: vitexin, vitexin and antioxidant, vitexin and 
oxidative stress.

3  | OXIDATIVE STRESS-REL ATED 
DISE A SES

3.1 | Neurological and psychiatric disorders

Vitexin (10 mg/kg, p.o., 16 days) has antiepileptic effects on pi-
locarpine (85 mg/kg) model. Vitexin attenuated the increment 
of lipid peroxidation and the nitrite content and neural loss and 
restored acetylcholinesterase–monoamine oxidase to the nor-
mal levels. It also reduced the mRNA expression of N-methyl-D-
aspartate receptor (NMDAR), metabotropic glutamate receptor 
1 (mGluR1), and metabotropic glutamate 5 (mGlu5) receptor 
(Aseervatham, Suryakala, Doulethunisha Sundaram, Bose, & 
Sivasudha, 2016).

Vitexin compound B-1 (10–7 and 10–6 M) showed dose-dependent 
neuroprotective effects against hypoxia/reoxygenation-induced ox-
idative injury in PC-12 by reducing caspase 3/7-like activities, ROS 
production, 4-hydroxynonenal and malondialdehyde (MDA) levels 
and NADPH oxidase-2 (NOX2) and NOX4 expression (Yang, Tan, 
et al., 2014).

Vitexin (15 mg/kg, i.v.) ameliorated neurological defects in ce-
rebral ischemia/reperfusion (I/R) by increasing the extracellular 

signal-regulated kinases1/2 (p-ERK1/2) and the Bcl-2 protein level 
in the cortex and hippocampus and attenuating the level of c-Jun 
N-terminal kinases3 (p-JNK), p38 phosphorylation, and Bax expres-
sion (Wang et al., 2015).

Pretreatment with vitexin (2 mg/kg, i.v.) suppressed the apopto-
sis induced by middle cerebral artery occlusion (MCAO) by decreas-
ing the secretion of pro-inflammatory cytokines (TNF-α and IL-6) 
and increasing anti-inflammatory cytokines (IL-10), and decreasing 
the expression of autophagy-related proteins (mTOR, Ulk1, PPAR-γ, 
Beclin1 p62, and LC3; Jiang, Dai, & Cui, 2018).

Vitexin (45 mg/kg, i.p.) showed significant neuroprotective 
effects following hypoxic/ischemic injury (HI) and reduced brain 
edema, neuronal cell death, the brain infarct volume, and blood–
brain barrier (BBB) breakdown in rat pups. Vitexin inhibited the 
upregulation of hypoxia-inducible factor (HIF)-1α and vascular en-
dothelial growth factor (VEGF) significantly. By inhibiting HIF-1α, 
vitexin had long-term neuroprotective effects in both morphol-
ogy and neurological function after neonatal HI injury (Min et al., 
2015).

Table 1 presents the effects of pretreatment with vitexin on 
glutamate toxicity. Pretreatment with vitexin (50 µM) demon-
strated significant antioxidant and antiapoptotic effects on gluta-
mate-induced neurotoxicity in neuro-2a cells. Vitexin also increased 
the clearance of glutamate by regulating glutamate transporters 
GLAST-1 and GLT-1 (Malar, Prasant, Shafreen, Balamurugan, & Devi, 
2018; Table 1).

Vitexin (10–40 μM) protected the dopaminergic neurons against 
methyl-4-phenylpyridinium (MPP+)-induced toxicity and apoptosis 

F I G U R E  2   Antioxidative effects of 
vitexin in oxidative stress-related diseases 
[Correction added on 24 April 2020, after 
first online publication: Figure 2 has been 
corrected.]
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and also decreased the expression of caspase-3 and Bax/Bcl-2 ratio 
in a dose-dependent manner in the SH-SY5Y cells. Vitexin (50 mg/
kg) prevented bradykinesia and initial lesions caused by 1-meth-
yl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Parkinson's dis-
ease in mice. In both in vitro and in vivo studies, vitexin was found to 
activate PI3K/akt signaling pathway (Hu, Li, & Wang, 2018).

Vitexin (10–30 mg/kg, i.p.) also reduced the immobility time in 
both the tail-suspension test and the modified forced swimming test 
in mice, which is attributed to its antidepressant-like effects. The 
antidepressant effects of vitexin may be related to increasing cate-
cholamine in synaptic cleft, activating serotonergic 5-HT1A, norad-
renergic α2, and dopaminergic D1, D2, and D3 receptors (Can et al., 
2013).

3.2 | Memory impairment

Vitexin (150 µg/ml) as a glycosylated flavonoid isolated from Serjania 
erecta leaves, strongly protected the PC12 cells against Aβ25-35 pep-
tide-induced toxicity when the cells were treated with it prior to Aβ25-

35 peptide. Vitexin inhibited amyloid β25-35 peptide-induced nitric 
oxide (NO) generation in PC12 cells, which explains the protective 
mechanism of it against Aβ25-35 peptide-induced toxicity (Guimarães 
et al., 2015).

Pretreatment with vitexin (50 μM) reduced oxidative stress and 
reactive nitrogen species (RNS) caused by the Aβ25-35 peptide in a 
dose-dependent manner. It also inhibited Aβ25-35 peptide aggregation 

by interaction with Ile31, Gly33, and Met35 residues in the Aβ25-35 
peptide and by the interaction created among the peptides and ham-
pering β-sheet formation. Vitexin (50 μM) protected the neuro-2a cells 
from Aβ25-35 toxicity through the nuclear factor erythroid 2-related 
factor 2/Heme oxygenase-1 (Nrf-2/HO-1)-dependent antioxidant 
pathway, modulated the genes involved in the antioxidant response 
pathway (such as ABCA1, ApoE, seladin-1, Cyclophilin D (CypD)-
related gene, and unfolded protein response (UPR) specific genes), 
contributed to lipid metabolism, helped maintain the mitochondrial 
membrane potential, and inhibited the expression of apoptotic pro-
teins (Malar, Suryanarayanan, et al., 2018).

Two flavonoids (vitexin and quercetin 3-O-glucoside), isolated 
from Nelumbo nucifera embryos, showed a potent inhibitory activ-
ity against β-site amyloid precursor protein (APP) cleaving enzyme 1 
(BACE1) and Cholinesterase (ChE). Vitexin also demonstrated more 
potent inhibitory activity against BACE1 and ChEs compared to 
quercetin 3-O-glucoside (Jung, Karki, Kim, & Choi, 2015).

Vitexin (100 µM) showed significant cholinesterase inhibitory 
effects for both acetylcholinesterase and butyrylcholinesterase 
activity (Sheeja Malar et al., 2017). As an antioxidant, vitexin 
(40 mg/kg) increased the total antioxidant capacity, superoxide 
dismutase, catalase, and glutathione peroxidase activities in the 
serum and also the levels of superoxide dismutase, catalase, glu-
tathione peroxidase, Na+-K+-ATP enzyme, and Ca2+-Mg2+-ATP 
enzyme in the liver, brain, and kidneys in D-galactose model of 
aging in mice. Vitexin also reduced MDA levels in the liver, brain, 
and kidney and lipofuscin levels in the brain too. In addition, the 

TA B L E  1   Effect of vitexin on oxidative stress in some neurotoxicity models

Vitexin Study
Oxidative and 
defense biomarkers Signaling and gene expression Ref.

In vitro concentration

10 µM NMDA (200 μM) and 
glycine (10 μM)-
induced toxicity in 
cultured cortical 
neurons

 Increased Bcl-2
Decreased Bax protein and the ratio of Bax/Bcl-2 

expression
Downregulated the protein levels of NR2B-

containing NMDA receptors
Reduced the overload of intracellular Ca2+

Yang, Yang, Zhang, Tian, 
Liu, and Zhao (2014)

10 and 
100 µM, 
24 hr

Exposure to isoflurane 
(1.4%) in human 
PC12 cells

Decreased ROS 
levels, increased 
GSH and SOD

Inhibited the level of pro-inflammatory cytokines 
(TNF-α and IL-6)

Decreased caspase-3, BACE protein expression 
levels, cytosolic calcium levels, TRPV1, and NR2B 
protein expression levels

Chen, Zhang, Shan, and 
Zhao (2016)

50 µM Glutamate (5 mM)-
induced cytotoxicity 
in Neuro-2a cells

Decreased MDA and 
NO production

Upregulation of antioxidant response genes 
(Nrf2, HO-1, NQO-1, and Grp78) Downregulated 
Gadd153

Preserved MMP
Suppressed cyclophilin D expression
Downregulated NMDR and calpain gene expression 

Increased Bcl-2/Bax ratio Decreased caspase-3 
Increased GLAST-1, GLT-1)

Malar, Prasant, et al. 
(2018)

Abbreviations: BACE, β-site amyloid precursor protein (APP) cleaving enzyme 1; Gadd153, Growth arrest and DNA damage 153; GLAST-1; GLT-1, 
Glutamate transporters; Grp 78,78-kDa Glucose-regulated protein; GSH, Glutathione; Heme oxygenase 1; HO-1; MDA, Malondialdehyde; MMP, 
Mitochondrial membrane potential; NMDA, N-methyl-D-aspartate; NO, Nitric oxide; NQO-1, NADH-quinone oxidoreductase; NR2B, N-methyl 
D-aspartate receptor subtype 2B; Nrf-2, Nuclear factor erythroid 2-related factor 2; ROS, Reactive oxygen species; SOD, Superoxide dismutase.
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neuronal ultrastructure was improved by vitexin (An, Yang, Tian, 
& Wang, 2012).

Vitexin (100 μM) improved memory retrieval in scopolamine 
model of memory impairment in rats (Abbasi, Nassiri-Asl, Sheikhi, 
& Shafiee, 2013). The modulatory effect of vitexin on cholinergic 
system was mentioned for possible mechanism, since it was shown 
that scopolamine causes rising in brain acetylcholinesterase enzyme 
(AChE) activity and brain oxidative stress (El-Khadragy, Al-Olayan, & 
Abdel Moneim, 2014).

Vitexin (3, 10 mg/kg) could reverse escape latency period in 
Morris water maze test against memory impairment of isoflurane 
in rats. Vitexin (10, 100 µM) could also increase cell viability of 
PC-12 cells against neurotoxicity of isoflurane and reduce inflam-
matory cytokines (TNF-α, Il-6) and ROS and increase glutathione 
(GSH) and superoxide dismutase (SOD). Vitexin also reduced 
apoptosis in both PC-12 cells and hippocampus neurons and in-
creased expression mir-409 in both models. Vitexin has protective 

effects against oxidative stress and inflammation induced by iso-
flurane and the underlying mechanism is probably through acti-
vation AMPK/GSK3β signaling pathway (Qi, Chen, Shan, Nie, & 
Wang, 2020).

Figure 3 presents a summary of the studied effects of vitexin 
against oxidative stress via different signaling pathways in cells. This 
figure shows the effects of vitexin on the membrane receptors and 
its role in the transporter system and how it activates Nrf-2, AMPK, 
mTOR, and ABCA1 and inhibits HIF-1α, BACE1, ChEs, JNK, and 
CypD in noncancer cells.

3.3 | Antinociceptive and anti-
inflammatory activities

Vitexin (10 mg/kg, i.p., 30 min before stimulus with phenyl-p-ben-
zoquinone, 1,890 μg/kg) inhibits inflammation-associated pain and 

F I G U R E  3   Possible signaling of vitexin against oxidative stress in different diseases in noncancerous cell. Aβ, β-amyloid; ABCA-1, ATP-
binding cassette transporter 1; AMPK, AMP-activated protein kinase; ApoE, apolipoprotein E; α2R, α2 Adrenergic receptor; BACE1, β-site 
amyloid precursor protein (APP) cleaving enzyme 1; ChE, Cholinesterase; CAT, Catalase; CypD, Cyclophilin D; D1,2,3 Rs, D1,2,3 receptors; 
GLAST-1 and GLT-1, Glutamate transporters; GPX, Glutathione Peroxidase; HIF-1α, Hypoxia-inducible factor 1; HO-1, Heme oxygenase-1; 
5-HT1A R, 5-HT1A receptor; JNK, c-Jun N-terminal kinases3; mGluR1 and mGlu5, Metabotropic glutamate receptor 1 and 5; mPTP, 
Mitochondrial permeability transition pore; mTOR,Mammalian target of rapamycin; NMDAR, N-methyl-D-aspartate receptor; p-CREB, 
Phosphorylated cAMP response element-binding protein; ROS, Reactive oxygen species; SOD, Superoxide Dismutase; RNS, Reactive 
nitrogen species; NOX2,4, NADPH oxidase-2 and 4, Nrf-2, Nuclear factor-E2-related factor 2; p-ERK1/2, Extracellular signal-regulated 
protein kinases 1 and 2; ULK1, Unc-51 like autophagy activating kinase; VEGF, Vascular endothelial growth factor
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can also inhibit 91% of the acetic acid-induced writhing response 
and pain-like behavior induced by phenyl-p-benzoquinone, com-
plete Freund's adjuvant, capsaicin (an agonist of transient receptor 
potential vanilloid 1, TRPV1), and both phases of the formalin test. 
As the possible mechanism, vitexin could prevent the reduction 
of glutathione levels, the ferric-reducing ability potential, and the 
free-radical scavenger ability, inhibit the production of hyperalgesic 
cytokines, such as TNF-α, IL-1β, IL-6, and IL-33, and upregulate anti-
hyperalgesic cytokine IL-10 levels (Borghi et al., 2013). Figure 3 also 
shows the role of vitexin in the activity of peripheral cytokines in the 
peripheral system.

3.4 | Cardiovascular injury

Vitexin preconditioning (100 µM, for 20 min, 24 hr) before anoxia and 
reoxygenation on cultured neonatal rat cardiomyocytes enhanced 
cell viability, creatine kinase (CK), and lactate dehydrogenase (LDH) 
as ischemic indexes by decreasing the apoptotic cells and intracel-
lular Ca2+ overload and increasing extracellular signal-regulated pro-
tein kinases (ERK1/2) activity in neonatal rat cardiomyocytes after 
anoxia-reoxygenation (Dong, Chen, Guo, Cheng, & Shao, 2008).

Vitexin (6 mg/kg, i.v.) has cardioprotective effects and decreases 
the elevation of the ST segment of ECG and reduces myocardial in-
farct size in myocardial ischemia-reperfusion in rats. It also reduced 
LDH and CK activities and MDA level and increased SOD in the 
serum. Vitexin decreased myocardial NF-κB, TNF-α, phosphory-
lated c-Jun, and phosphorylated ERK expression in myocardial tissue 
(Dong et al., 2013).

Isoproterenol infusion and transverse aortic constriction in-
creased ROS levels and induced cardiac hypertrophy in both in vitro 
and in vivo models. Vitexin (30 mg/kg, i.p., 100 μM) reduced hyper-
trophic markers such as atrial natriuretic peptide (ANP), brain natri-
uretic peptide (BNP), and β-MHC at the mRNA and protein levels in 
both models. Vitexin (100 μM) also decreased the enhancement of 
intracellular calcium in isoproterenol-induced cardiac hypertrophy in 
cultured neonatal rat myocytes. It also inhibited calcineurin–nuclear 
factor of activated T-cells c3 (NFATc3) and phosphorylated calmod-
ulin kinase II (CaMKII) in both models as calcium downstream effec-
tors, which are involved in cardiac hypertrophy and heart failure (Lu 
et al., 2013). Some antioxidant effects of vitexin on oxidative stress 
in different models of cardiovascular injury are presented in Table 2.

3.5 | Respiratory injury

Vitexin (10 mg/kg, i.p.) suppressed LPS-induced acute lung injury 
by increasing the expression of nuclear factor erythroid-2-related 
factor2 (Nrf2) and the activation of heme oxygenase (HO)-1 in 
mice. Also, TNF-α, IL-1β, IL-6, and MDA production were decreased 
by vitexin (Lu, Yu, Liu, & Gu, 2018). The Nrf2/HO-1 pathway was 
found to have a potential protective role against oxidative stress 

(Nikam et al., 2016). The antioxidant effect of vitexin has been at-
tributed to the activation of this pathway. Vitexin also inhibited 
NLR Family Pyrin Domain Containing 3 (NLRP3) expression. An 
interesting issue is that the noted effect of vitexin was removed 
in Nrf2−/− mice (Lu, Yu, Liu, & Gu, 2018). Furthermore, ROS, IL-
1β, IL-6, TNF-α, and MDA levels were decreased by vitexin (50 μM) 
in LPS-activated RAW cells. Similarly, the knockdown of Nrf2 by 
siRNA in RAW cells suppressed the benefits of vitexin in an in vitro 
study. Figure 3 shows how vitexin activates Nrf-2 and HO-1 (Lu, Yu, 
Liu, & Gu, 2018).

3.6 | Other antioxidative studies

Table 2 presents a summary of other studies conducted on the an-
tioxidant effects of vitexin. In addition, there are several studies 
that have worked on the total extract of herbs that contain vitexin 
and have antioxidant activities due to vitexin. The present review 
study summarized some of the most important of these studies. 
Cardioprotective effects have been demonstrated for mung bean 
polyphenol extract on aluminum-induced myocardial injury in rats. 
The major polyphenols of this extract include vitexin and isovitexin 
(Cheng, Wang, Wang, & Hou, 2017; Table 3).

Vitexin and isovitexin, as major antioxidant components in var-
ious cultivars of mung bean, may be involved in DPPH and ABTS +̊ 
radicals’ scavenging abilities, and FRAP (ferric reducing antioxidant 
power) in MBS (Table 3). Nonetheless, this effect was greater in the 
MBS of cv. Huang and cv. Mao than cv. Ming (Li, Cao, Yi, Cao, & 
Jiang, 2012).

The methanolic extract of Ficus deltoidea leaves (1 g/kg) and 
vitexin (1 mg/kg) attenuated pancreatic oxidative damage and pre-
vented β-cell destruction in diabetic rats (Nurdiana et al., 2017; 
Table 3).

4  | C ANCER

As previously described, vitexin inhibits apoptosis in noncancerous 
cells and acts as antioxidant. On the other hand, it has different ef-
fect on apoptosis in tumor cells. Vitexin has shown anticancer ef-
fects in the cancer cell line by inducing apoptosis in several studies 
(Ninfali et al., 2017; He et al., 2016).

The effective concentration of each derivative of vitexin with 
molecular target and mechanism in different cancers has been sum-
marized by Ninfali et al. (2017). For example, vitexin-2-O-xyloside 
has a dose-response anticancer effect (IC50 of 8.8 ± 0.8 μM, at 72 hr) 
and activated intrinsic pathway of apoptosis in T24 bladder cancer 
cells (Scarpa et al., 2016). An interesting issue is that vitexin had 
no toxicity against normal human bronchial epithelial 16HBE cells. 
Meanwhile, vitexin (40 μM) induced apoptosis possibly by suppress-
ing PI3K/Akt/mTOR signaling in human nonsmall cell lung cancer 
A549 cells (NSCLC). Vitexin (2 mg/kg, i.p., 4w) also inhibited NSCLC 



     |  2575BABAEI Et Al.

tumor growth, increased the expression levels of Bax and cleaved 
caspase-3, and decreased the expression of Bcl-2 in the tumor tissue 
of mice (Liu, Jiang, Liu, & Luo, 2019).

Similarly, vitexin (10–50 μM) induced ROS generation in a 
dose-dependent manner, possibly via the activation of JNK, and in-
creased the expression of autophagy marker proteins Beclin-1, Atg5, 

TA B L E  2   Antioxidant effects of vitexin on some oxidative stress models

Vitexin Study
Oxidative markers and antioxidant 
enzymes

Signaling and gene 
expression Ref.

In vitro concentration

400 μM H2O2 (180 µM)-induced 
oxidative stress in 
HUVECs

Decreased ROS levels
Inhibited LPO

 Ugusman, Zakaria, Hui, 
Nordin, and Mahdy (2012)

Pretreatment 
(20 μM)

HUVECs treated with 
oxidized-LDL

Reduced ROS and MDA levels
Increased SOD activity

Increased the expression 
of p-AMPK

Decreased the expression 
of p-mTOR

Zhang et al. (2017)

30 and 60 µg/
ml

H2O2 (400 mM)-induced 
oxidative damage in 
human erythrocytes

Reduced the erythrocyte 
hemolysis, formation of 
methemoglobin, skeleton protein 
damage, ROS, and MDA contents

Enhanced the activities of SOD, 
CAT and GPx, and sulfhydryl 
content

 An, Cao, Qu, and Wang (2015)

10 µM H/R in H9c2 cells
I/R injury in isolated rat 

heart

Reduced ROS levels Decreased expression 
NOX4, inhibited the 
release of Cyt c from 
mitochondria into the 
cytoplasm, reduced 
cleaved caspase-3/9 
expression in both 
models

Increased the Bcl-2/Bax 
ratio in rat heart

Xue et al. (2020)

20 µM, 24 hr Ethanol (100 µM)-
induced LO2 cell injury, 
24 hr

Decreased TNF-α, IL-1β, IL-6, and 
MDA levels

Increased the expression 
of Nrf-2 and HO-1 
Inhibited the expression 
of NLRP3

Yuan et al. (2020)

In vivo dose

60 mg/kg, i.p. L-NAME induced 
preeclampsia rat model

Decreased MDA level
Increased SOD activity

Decreased expression of 
sFlt-1, PlGF,

TFPI-2, HIF 1α, and VEGF

Zheng et al. (2019)

30 mg/kg, p.o. Doxorubicin-induced 
acute cardiotoxicity rat 
model

Reduced MDA, IL-1β, IL-6, NF-κB, 
and TNF-α levels

Increased SOD, CAT, and 
myeloperoxidase activities

Reduced caspase-3 
activity

Increased FOXO3a 
expression

Sun et al. (2016)

Post-
treatment 
(1.5 mg/kg, 
p.o.)

Isoproterenol-induced 
heart damage in rats

Increased the levels of SOD, 
CAT, GPx, and nonenzymatic 
antioxidants vitamin C, E, and 
GSH

Reduced the MDA level

 Ashokkumar, Jamuna, 
Sakeena Sadullah, and 
Niranjali Devaraj (2018)

80 mg/kg, 4 
weeks

Liver damage 
induced by ethanol 
(30%,40%,50%,55%, 4 
weeks) in mice

Decreased MDA and TNF-α levels 
and increased SOD

Increased expression of 
Sirt1 and Bcl-2, inhibited 
apoptosis (Bax, ac-p53, 
cleaved caspase-3)

Yuan et al. (2020)

Abbreviations: ac-p53, Acetylated p53; AMPK, AMP-activated protein kinase; CAT, Catalase; Cyt c, Cytochrome c; FOXO3, Forkhead-box protein 
O class subfamily 3; GPx, Glutathione peroxidase; GSH, Glutathione; H/R, Hypoxia/Reoxygenetion; H2O2, Hydrogen peroxide; HIF-1α, hypoxia-
inducible factor 1; HO-1, heme oxygenase 1; HUVECs, Human umbilical vein endothelial cells; I/R, Ischemia/Reperfusion; LDL, Low-density 
lipoprotein; L-NAME, N omega-nitro-L-arginine methyl ester; LPO, Lipid peroxidation; MDA, Malondialdehyde; mTOR, mammalian target of 
rapamycin; NLRP3, NLR Family Pyrin Domain Containing 3; NOX4, NADPH oxidase 4 (NOX4);Nrf-2, nuclear factor erythroid 2-related factor 2; 
PlGF, Placental growth factor; ROS, Reactive oxygen species; sFlt-1, soluble FMS-like tyrosine kinase-1; Sirt1, Silent information regulator 1; SOD, 
Superoxide dismutase; TFPI-2, Tissue factor pathway inhibitor 2; VEGF, Tissue factor pathway inhibitor 2.
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TA B L E  3   The effects of vitexin in herbal extract on oxidative markers and antioxidant enzymes

Herbal extract Study
Oxidative markers and antioxidant 
enzymes

Signaling and gene 
expression Ref

In vitro concentration

Mung bean soup 
(30 g/1,000 ml)

DPPH, FRAP, ABTS Higher ability of DPPH and ABTS +̊ 
radical scavenging, and increased 
FRAP

 Li et al. (2012)

Ficus deltoidea leaves
50% ethanol–water 

extract (percentage yield: 
25.2 ± 0.1%; Vitexin: 
0.62 ± 0.01%)

DPPH Highest DPPH, radical scavenging 
activity

 Abu Bakar, 
Manaharan, 
Merican, and 
Mohamad 
(2018)

Acer palmatum
ethanolic extract (Vitexin 

50 μg/ml)

UVB-irradiated HDFs Reduced ROS production  Kim et al. 
(2005)

Zanthoxylum 
bungeanumleaves

95% ethanolic extract 
(1,824.4 g)

TBARS assay Inhibited lipid peroxidation (Vitexin, 
IC50 = 0.014 ± 0.001 mM)

 Zhang, Wang, 
Yang, Zhou, 
and Zhang 
(2014)

Ethyl acetate fraction (EAF) 
of Nectandra cuspidata 
leaves (Vitexin 2 µg/ml)

L-929 fibroblasts 
irradiated with UVB 
(500 mJ/cm2)

Increased cell viability
Inhibited the UVB-induced ROS 

production and LPO

 Ferreira et al. 
(2020)

In vivo dose

Mung bean coat extract 
(400 mg/kg, gavage)

Heat stress in rats 
(swimming cells at 
40 ± 1°C for 30 min)

Reduced the levels of MDA, LDH, 
and NOS, increased the levels of 
total antioxidant capacity and GSH

 Cao et al. (2011)

Mung bean polyphenol 
extract

200 mg kg−1 day−1, 12 weeks

Myocardial injury by 
aluminum (171.8 mg/kg, 
12 weeks) in rats

Reversed decrement of SOD, CAT, 
GPx, GST, and GSH

Reversed increment of CK, LDH, 
MDA, GSSG, GSH, and AOPP

Increased Na+/K+-ATPase activity 
Reduced Ca2+-ATPase activity, and 
Na+, Ca2+ ion levels

Inhibited ROS-
triggered Ca2+/
JNK/NF-κB 
signaling pathway, 
reduced caspase-9 
and cytochrome C 
expression

Cheng, Wang, 
Wang, and 
Hou (2017)

Dehydrated beet stalks and 
leaves

3.07 mg of vitexin-
rhamnoside equivalents 
100 g−1, 8 weeks

High-fat diet-induced 
oxidative damage in liver 
in mice

Reversed increment of MDA level, 
GPx, and GR activities, improved 
total cholesterol level

 Lorizola et al. 
(2018)

F. carica fruit extract 
(400 mg/kg, 8 weeks)

High-fat diet (normal 
diet supplemented with 
1% cholesterol, 4% fat, 
and 0.1% cholic acid)-
induced hyperlipidemic 
rats

Reduced the levels of plasma 
cholesterol, TG, LDL-C, and AI, 
increased HDL-C concentration, 
decreased TBARS, increased GPx, 
SOD, and CAT in liver, heart, and 
kidney

 Belguith-
Hadriche et al. 
(2016)

Methanolic extract of Ficus 
deltoidea leaves (1 g/kg, 
gavage, 8 weeks)

Vitexin (1 mg/kg, gavage, 8 
weeks)

STZ-induced diabetic rats Extract increased both pancreatic 
GPx and SOD values

Vitexin only increased GPx level
Both reduced TBARS value

 Nurdiana et al. 
(2017)

Methanolic extract of Vigna 
angularis

Vitexin (50, 100 μM)

Thermal and oxidative 
stress in Caenorhabditis 
elegans

Reduced ROS levels, increased 
catalase and SOD activities

Upregulated SOD-3 
and HSP-16.2 
expressions 
in transgenic 
nematodes

Lee et al. (2015)

Abbreviations: ABTS, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt; AI, Atherogenic index; AOPP, Advanced oxidation 
protein products; CAT, Catalase; CK, Creatine kinase; DPPH, 2,2-Diphenyl-1-picrylhydrazyl; FRAP, Ferric reducing antioxidant power; GPx, 
Glutathione peroxidase; GR, Glutathione reductase; GSH, Glutathione; GSSG, Oxidized glutathione; GST, Glutathione S-transferase; HDFs, Human 
dermal fibroblasts; HDL-c, High-density lipoprotein cholesterol; HSP, Heat shock protein; JNK/NF-κB, c-Jun N-terminal kinase/nuclear factor-
kappaB; LDH, Lactate dehydrogenase; LDL-c, Low-density lipoprotein cholesterol; LPO, Lipid peroxidation; MDA, Malondialdehyde; NOS, Nitric 
oxide synthase; ROS, Reactive oxygen species; SOD, Superoxide dismutase; STZ, Streptozotocin; TBARS, Thiobarbituric acid reactive substances; 
TG, Triglyceride; UVB, Ultraviolet B.
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and microtubule-associated protein light chain 3-II (LC3-II), which 
promote autophagy induction in colorectal carcinoma cells. Vitexin 
(25, 50, and 100 mg/kg, p.o.) inhibited the growth of colorectal car-
cinoma in mice xenograft model with low toxicity. It decreased in 
HSF-1 (Heat shock transcription factor-1) levels and increased in 
p-JNK, LC3-II, and ApoL1 levels (Bhardwaj et al., 2017).

Vitexin (100, 200 μg/ml, IC50 = 147 μg/ml) as an active constit-
uent of P. cineraria had dose and time-dependent anti-proliferative 
activity in chronic myeloid leukemia (K-562) cell line by inducing 
apoptosis through reducing SOD activity and elevating ROS, NO, 
and MDA (Sarkara, Mahapatrab, & Vadivel, 2020). Vitexin (10, 
20 μM, 24 hr) suppressed the activation of NF-κB and its key reg-
ulators (p65, IκBα and IKKs) and resulted in induction of apoptosis 
and inhibition of cell growth in nasopharyngeal carcinoma (NPC). In 
addition, vitexin (30 mg/kg, p.o., 2 weeks) decreased tumor growth 
through reducing of p-p65 and Cyclin D1 expression in NPC xeno-
graft mouse model (Wang, Cheng, Gu, & Yin, 2019).

Moreover, vitexin (10, 25, and 50 μM) dose-dependently de-
creased ROS, upregulated Hsp 90, antioxidant enzymes (SOD, 
GR, and catalase), and MAPKs, and downregulated caspase-3 and 
caspase-4 in endoplasmic reticulum (ER) stress-mediated autophagy 
in A549 cells. It therefore has cytoprotective and antiapoptotic ef-
fects (Bhardwaj, Paul, Jakhar, & Kang, 2015).

Three parameters of dose response, time of exposure to vi-
texin, and type of cancer cell lines are important for determining 
the antiapoptotic, apoptotic or proapoptotic effects of vitexin 
in cancer studies. It seems, however, that several factors are in-
volved in directing the type of activity of vitexin in the cells, as 
previously noted. An important question is whether the target of 
vitexin is different in cancer cells compared to in normal cells. In 
other words, how can vitexin be used to activate apoptosis or au-
tophagic cell death in cancer cells. Further studies can help answer 
these questions.

On the other hand, cooperation of vitexin (75 mg/kg, i.p., 21 
days) with hyperbaric oxygen (HBO) therapy in glioma mouse model 
could sensitize the glioma radiotherapy by reducing glutathione per-
oxidase activity and glutathione content as well as expressions of 
HIF-1α and VEGF in tumor tissues in SU3-inoculated nude mice (Xie 
et al., 2019).

5  | CONCLUSION

Vitexin is found in food sources and is used as an active compo-
nent with herbal supplement. The present review study summa-
rized all the protective effects of vitexin as an antioxidant against 
ROS, lipid peroxidation, and other oxidative damages with changes 
in oxidative and defense biomarkers in the nervous system, heart, 
and respiratory systems with possible mechanism on molecular 
and cellular signaling. Any activation (AMPK, Nrf-2, and mTOR) or 
inhibition (JNK and BACE1) of the signaling pathways that depend 
on the antioxidant activity of vitexin in noncancer cells was also 
described. The diversity of the mechanisms of effect of vitexin 

against different oxidative stress models is the one of the most 
important points to consider regarding vitexin. Clinical studies 
are needed to further examine the protective effects of vitexin 
against oxidative stress-related diseases, and as formerly noted, 
nanoparticles of it have been developed for increasing the bio-
availability of vitexin.
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