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Abstract

Local synchronization, both prolonged and transient, of oscillatory neuronal behavior in cor-

tical networks plays a fundamental role in many aspects of perception and cognition. Here

we study networks of Hindmarsh-Rose neurons with a new type of adaptive coupling, and

show that these networks naturally produce both permanent and transient synchronization

of local clusters of neurons. These deterministic systems exhibit complex dynamics with

1/fη power spectra, which appears to be a consequence of a novel form of self-organized

criticality.

Introduction

Synchronization is ubiquitous in nature [1]. Examples of this phenomenon are: synchroniza-

tion in arrays of laser [2, 3] and microwave oscillators [4], and in superconducting Josephson

junctions [5–7], the synchronized beating of wings in a flock of birds [8], the chirping of

crickets in unison [9], and the synchronized clapping of a crowd [10]. Synchronization is of

great importance in neuroscience [11]. There is strong experimental evidence that synchro-

nization of neuronal oscillatory activity is a central mechanism in a variety of cognitive and

perceptual processes in the brain, including: the functioning of working memory, the routing

of signals across cortical networks, sensory motor awareness, and perceptual grouping [12–

14]. Synchronization has been observed experimentally between areas of the visual cortex

and parietal cortex in awake cats during a visual-motor integration task [14]. The occurrence

of synchronization in a cognitive task in humans has also been demonstrated experimentally

[15]. Studies have also found that stored memory patterns depend on spontaneously occur-

ring synchrony in neuronal networks [16]. Moreover, abnormally synchronized neural activ-

ity has been implicated in a number of clinical disorders, including: schizophrenia, epileptic

seizures, and Parkinson’s disease [17]. Understanding these phenomena is of fundamental

importance in neuroscience, and this motivates the present study on synchronization in neu-

ronal networks.

Previous theoretical studies of neural synchronization have largely focused on the issue of

global synchronization, i.e., studying the conditions under which all neurons in the network
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behave in unison [18]. However, it is known from experimental neuroscience that global syn-

chronization does not occur in normal brains. For example, it has been found experimentally

that the visual recognition system of the cat and macaque monkey show local synchronization

within brain regions [19]. It has also be found that local synchronization, both prolonged and

transient, plays a crucial role in many aspects of memory processes [20]. The purpose of this

paper is to study how local synchronization occurs in adaptively coupled networks of neurons.

The effect on synchronization of variable couplings in networks of simple oscillators has previ-

ously been explored in the literature [21–23]. Here we develop this research theme by intro-

ducing a new type of adaptive coupling between biologically realistic neurons, and show that it

naturally results in the emergence of locally synchronized group of neurons.

Model

Networks of biologically-inspired neurons provide a natural theoretical framework for study-

ing neural synchronization [24]. Here we model individual neurons using the Hindmarsh-

Rose equations [25, 26]:

_x ¼ y � x3 þ bx2 � z þ I; ð1Þ

_y ¼ 1 � 5x2 � y; ð2Þ

_z ¼ r½4ðx � x0Þ � z�: ð3Þ

Eqs (1) and (2) model the fast dynamics associated with a neuron, whereas Eq (3) describes the

slow dynamics. The variable x(t) describes the membrane potential; y(t), the fast current, mod-

els the transport of potassium and sodium ions across the fast ion channel; and z(t), the slow

current, models the transport of other ions through the slow channels. The parameters are as

follows: I specifies the membrane input current to the neuron; b allows for switching between

spiking and bursting behavior and also controls the frequency of spiking; r controls the rate of

change of the slow variable z(t) and, if spiking is present, it determines the spiking frequency,

while if bursting is present, it governs the number of spikes per burst; and x0 determines the

resting potential for the neuron. We fix the parameters b, r and x0 to the standard values

b = 3.0, r = 0.006 and x0 = −1.6 [27]. Furthermore, we set I = 2.8, which corresponds to burst-

ing neurons [27, 28], since this behavior seems to be an essential component of information

processing in the brain [29, 30].

We consider a network Γ of N identical Hindmarsh-Rose neurons coupled through electri-

cal synapses (i.e., via gap junctions, which are known to play a fundamental role in a wide

range of neural systems, including the mammalian brain [24, 31, 32], and to be particularly

important in maintaining neural synchronization [33–38]). The coupled system of neurons is

described by the following equations:

_xi ¼ yi � x3
i þ bx2

i � zi þ I þ
XN

j¼1

Aijkijðxj � xiÞ; ð4Þ

_yi ¼ 1 � 5x2
i � yi; ð5Þ

_zi ¼ r½4ðxi � x0Þ � zi�: ð6Þ

Here xi(t), yi(t) and zi(t) denote the x(t), y(t) and z(t) variables of the ith neuron, respectively,

kij(t) (where kij(t)� 0, for all i, j and t) represents the coupling between neurons i and j at time
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t, and A = (Aij) is the adjacency matrix of the network Γ (i.e., Aij = 1 if neurons i and j are con-

nected by an edge in Γ, and Aij = 0 otherwise). For kij(t) = k, for all i, j, and Γ the complete net-

work, Eqs (4)–(6) describes N Hindmarsh-Rose neurons, each of which is coupled to all others

with common, fixed, coupling strength k [27, 39–41].

In this paper we investigate the effects of connection plasticity on the dynamics of the neu-

ronal network defined by Eqs (4)–(6). Previous approaches to modeling connection plasticity

between neurons have focused on properties, such as long-term potentiation (LTP) [42, 43]

and spike-timing-dependent plasticity (STDP) [44], which are particular to chemical synapses.

Here, in contrast, we consider connection plasticity in networks of neurons coupled through

electrical synapses. We allow the strength of the coupling kij(t) between adjacent neurons i and

j to depend on the states (i.e., the membrane potentials) of the neurons. This assumption is

natural since it is known that the electrical coupling between neurons via gap junctions may be

modulated by neural activity [45–49]. The form of the dependence that we assume is moti-

vated by Hebb’s law that synaptic connections are strengthened between neurons that are

active simultaneously [50]. Thus, we assume that the coupling kij(t) between i and j is adaptive,

and will increase in strength if i and j are in (approximately) the same state and will decrease if

i and j are in dissimilar states. Precisely, we take the time evolution of the coupling kij(t)
between adjacent neurons i and j to be governed by the equation

_kij ¼ kij ae� bðxi� xjÞ
2

� gðkij þ 1Þ
h i

; ð7Þ

where α, β and γ are positive parameters. Thus, with kij determined by Eq (7), the last term in

Eq (4) defines an adaptive diffusive coupling in the network of Hindmarsh-Rose neurons.

We note some features of the dynamics of Eq (7). (A) If two neurons i and j are unsynchro-

nized (i.e., xi is very different from xj) then Eq (7) reduces to _kij � � gkijðkij þ 1Þ < 0, and the

strength of the coupling between i and j decreases, and consequently i and j remain unsyn-

chronized. (B) Note that, k̂ij ¼ 0 is always an equilibrium of Eq (7). For 0< kij� 1, Eq (7)

becomes _kij � kijðae� bðxi� xjÞ
2

� gÞ. For such values of kij, if neurons i and j are synchronized

(i.e., xi = xj) then Eq (7) further reduces to _kij � kijða � gÞ; thus we require that α> γ to ensure

that _kij > 0 (and thus k̂ij is unstable) for synchronized neurons, ensuring that the coupling

between i and j increases, maintaining their synchronization. (C) We also note that, for syn-

chronized neurons i and j (i.e., xi = xj), Eq (7) has a second equilibrium, k�ij 6¼ 0, such that

a � gðk�ij þ 1Þ ¼ 0. Thus, k�ij ¼
a

g
� 1. Eqs (4)–(7) model the adaptively coupled neuronal net-

work that we study here. We observe that the form of the variation in coupling strength

between neurons that we have postulated has the effect of increasing the synchronization

between neurons that are already in similar states and of further decreasing the synchroniza-

tion between neurons in dissimilar states.

It would be very interesting to consider the full stability analysis of Eqs (4)–(7), however,

this appears to be a highly non-trivial enterprise which is beyond the scope of the current

work. While it would be most illuminating to understand the fixed points of this system and

the possible bifurcation that can occur as the parameters α, β and γ vary, achieving such an

understanding would seem to be quite ambitious as even the fixed-point equations constitute a

high dimensional system of coupled transcendental equations. As a possibly more manageable

first step for future work in this direction it may be worth considering the stability and bifurca-

tion analysis of a single pair of adaptive coupled neurons satisfying Eqs (4)–(7).

Synchronization in neuronal networks
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Results

We now present results obtained by numerically integrating this neuronal network. We con-

sider the time evolution of the network for initial coupling strengths kij chosen uniformly ran-

domly from (0, 1). Here we fix α = 1, γ = 0.5 (so kij 2 [0, 1], for all i, j) and treat β as a control

parameter. The results described here are for β = 12, although we obtain qualitatively similar

results for the range of values β 2 [10, 12.5].

We first consider the case in which Γ is the complete network (i.e., Aij = 1, for all i 6¼ j).
Thus, every neuron is potentially coupled to every other neuron. Fig 1 shows the time evolu-

tion of the coupling strengths for a network of N = 100 neurons. We observe that over time the

coupling kij(t) between any pair of neurons i, j evolves into one of the following three classes:

(1) kij(t) ! 1 as t! 1; (2) kij(t)! 0 as t! 1; or (3) kij(t) undergoes sustained oscillations

between 0 and 1. This coupling dynamics induces a corresponding synchronization dynamics

for the neurons: (1) pairs of neurons i, j for which kij(t)! 1 as t!1 become completely syn-

chronized (i.e., |xi(t) − xj(t)|! 0 as t! 1); (2) i, j for which kij(t)! 0 as t! 1 become

completely unsynchronized; and (3) i, j for which kij(t) continuously varies between 0 and 1

become synchronized when kij(t) is high (greater than approximately 0.8) and then lose syn-

chronization as kij(t) falls. The variations in the couplings result in the emergence over time of

clusters of both permanently and transiently synchronized neurons. Within each cluster of

permanently synchronized neurons, the couplings between neurons evolve dynamically to 1.

For transiently synchronized neurons, the couplings between such neurons continuously

change between 0 and 1 under the dynamics, resulting in the emergence of clusters of neurons

that are synchronized for a period of time when the couplings are high and then become

desynchronized as the couplings decrease. In addition, the couplings between some neurons

evolve dynamically to 0, resulting in these neurons being permanently unsynchronized. Fig 2

shows the structure of the four largest synchronized clusters in the network at different stages

in the time evolution. These clusters are obtained by eliminating edges in the original network

with coupling strength less than 0.8. The emergence of permanently and transiently synchro-

nized clusters of neurons is clearly apparent. The time evolution of the coupling strengths over

a longer time interval is shown in Fig 3, which makes clear the emergence of both permanent

and transient strong couplings, which result in the formation of both permanently and tran-

siently synchronized clusters of neurons, throughout the time interval.

The nature of the local synchronization process may be elucidated by considering the long-

term dynamics of the couplings between neurons in the network. We define the time-average

coupling hkiji between neurons i and j over the interval [T0, T] to be hkiji ¼
1

T� T0

PT
t¼T0

AijkijðtÞ.
The time-averages of the couplings between all neurons are shown in Fig 4. This figure

clearly illustrates the trichotomy that all pairs of neurons (i, j) are either: (1) completely syn-

chronized (hkiji = 1); (2) completely unsynchronized (hkiji = 0); or (3) transiently synchronized

(hkiji 2 (0, 1)). The time evolution of kij(t) for pairs of neurons in each of these classes is also

shown in Fig 4. The couplings between completely synchronized and completely unsynchro-

nized pairs of neurons reach a steady state, while those between transiently synchronized pairs

of neurons continue to evolve in time and drive a complex dynamical system.

The statistical features of the time evolution of the couplings between neurons can be analyzed

by studying the power spectrum of the sum of the connection strengths KðtÞ ¼
PN

i;j¼1
AijkijðtÞ,

which conveniently includes the time-dependence of all couplings between neurons in the net-

work. The time series and power spectrum of K(t) are shown in Fig 5(a) and 5(b), respectively.

The perpetual variation in the total coupling strength K(t), apparent in Fig 5(a), reflects the

dynamic in which groups of neurons transiently synchronize when the couplings between them

are strong, subsequently desynchronize as the coupling strengths fall, and later resynchronize as

Synchronization in neuronal networks
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the coupling strengths rise again. We note, from Fig 5(b), that the power P(f ) associated with fre-

quency f satisfies, to a good approximation, the power-law P(f )∝ 1/f η, where η = 2.628 ± 0.002.

The fact that the power spectrum satisfies a 1/f η power law implies that variations in K(t) occur

on all time scales. We find the same 1/f η power-law for all values of β 2 [10, 12.5], the range of β-

values for which local synchronization occurs.

We have also investigated the time series and power spectrum of the total membrane poten-

tial XðtÞ ¼
PN

i¼1
xiðtÞ, which is shown in Fig 5(c) and 5(d), respectively. The power spectrum

of X(t) has greater deviations from a power law than that of K(t), however, X(t) also exhibits

variations on a wide range of time scales.

Fig 1. The time-evolution of coupling strengths and membrane potentials for a network of 100

neurons for I = 2.8 and β = 12. (a) The coupling strength matrix. Starting from a random initial condition (not

shown), consecutive pictures from left to right and top to bottom are for times t = 3800, 3810, 3820, 3830,

3840, 3850, 3860, and 3870. Blue (left end of colorbar) corresponds to kij = 0 and red (right end of colorbar)

corresponds to kij = 1. The emergence of strong couplings, both permanent and transient, results in the

corresponding neurons being permanently or transiently synchronized. The time evolution of the difference

between the membrane potentials of pairs of neurons are also shown for: (b) a completely synchronized pair,

(c) a completely unsynchronized pair, and (d)—(f) three transiently synchronized pairs.

https://doi.org/10.1371/journal.pone.0178975.g001
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The dynamics of the emergence of permanently and transiently synchronized groups of

neurons in the adaptively coupled network is considerably elucidated by considering an appro-

priate order parameter. Here we define the order parameter wðtÞ ¼ 1

N j
PN

j¼1
e2pix̂ jðtÞj, where

x̂ jðtÞ ¼
xjðtÞþxm
xMþxm

is the rescaled membrane potential (defined using the maximum and minimum

values of the membrain potential over the time interval of interest, xM and xm, respectively),

which satisfies x̂ jðtÞ 2 ½0; 1�. The order parameter χ(t) 2 [0, 1], for all t. Complete global syn-

chronization of all neurons corresponds to χ(t) = 1, while total lack of synchronization among

all neurons results in χ(t)� 0. Different aspects of the time variation of the order parameter

are shown in Fig 6. The time series of χ(t) is shown in Fig 6(a). The continual variation in χ(t),
apparent in Fig 6(a), vividly illustrates the dynamic of repeated synchronization and desyn-

chronization of clusters of transiently synchronized neurons in the adaptively coupled net-

work. The power spectrum of χ(t), shown in Fig 6(b), shows greater deviations from a power

law than that for K(t), but still exhibits variations on a large range of time scales, indicative of

the complex dynamics of χ(t). The distributions of the complex numbers fe2pix̂ jðtÞg
N
j¼1

on the

unit circle in the complex plane at different times are shown in Fig 6(c)–6(f). The configura-

tion shown in Fig 6(c) corresponds to a state of the neuronal network with low levels of syn-

chronization, which then evolves in time to successively more synchronized states, shown in

Fig 2. The four largest synchronized groups of neurons at different times for I = 2.8 and β = 12. In each

row, the first picture shows the coupling strength matrix and the four consecutive pictures show the largest

synchronized clusters at that time. The first row corresponds to time t = 3810, and the time interval between

each successive row is 10 units. Permanently and transiently synchronized clusters of neurons are clearly

apparent.

https://doi.org/10.1371/journal.pone.0178975.g002
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Fig 3. The coupling strength matrix for I = 2.8 and β = 12 over a longer time interval. The picture at the top right is for time t = 3540. The time

difference between successive pictures in each row is 10, and the time difference between successive rows is 130. The emergence of both

permanent and transient strong couplings, resulting in either permanent or transient synchronization of the corresponding neurons, is apparent

throughout the whole time interval studied.

https://doi.org/10.1371/journal.pone.0178975.g003
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Fig 6(d)–6(f). The system subsequently evolves in time to less synchronized states, followed by

more synchronized states, and perpetually repeats this pattern of variation.

We have also studied the coupled neuronal network introduced here for a large variety of

model and empirical network topologies Γ. Here we shall only briefly describe certain of these

results deferring a more detailed account of these cases to a subsequent publication.

We find that the coupled neuronal network defined on a wide diversity of network topolo-

gies Γ, including small-world [51] and scale-free [52] topologies, exhibit exactly analogous

behavior to that found above for the complete network topology. We again see that the time

evolution of the coupling kij(t) between every pair of adjacent neurons i and j in Γ falls into

one of three classes: (1) kij(t) ! 1 as t! 1, resulting in the neurons i and j becoming

completely synchronized; (2) kij(t)! 0 as t! 1, results in i and j becoming completely

unsynchronized; or (3) kij(t) maintains continued oscillations between 0 and 1, results in i and

j being transiently synchronized. The variations in the coupling between adjacent neurons

results in the formation over time of clusters of both the permanently and transiently synchro-

nized neurons in Γ.

The transiently synchronized neurons result in a complex dynamics in which the power spec-

trum of the total coupling K(t) satisfies to an excellent approximation a power-law P(f )∝ 1/f η.
The power spectra for networks Γ of N = 100 neurons with small-world and scale-free topologies

Fig 4. The time-evolution of coupling strengths for I = 2.8 and β = 12. (a) The time-averaged coupling

strength matrix. The average is taken over the time interval [3000, 4000]. Red (right end of colorbar) blocks

show couplings between completely synchronized pairs of neurons (hkiji = 1), blue (left end of colorbar) blocks

show completely unsynchronized pairs of neurons (hkiji = 0), and other colors correspond to couplings

between transiently synchronized pairs of neurons (hkiji 2 (0, 1)). The time evolution of the coupling strength

between pairs of neurons are also shown for: (b) a completely synchronized pair, (c) a completely

unsynchronized pair, (d)—(f) three transiently synchronized pairs. The results shown in (b)—(f) are for the

same pairs of neurons as the results shown in the corresponding panels of Fig 1.

https://doi.org/10.1371/journal.pone.0178975.g004
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are shown in Fig 7. For small-world topologies with rewiring probability 0.3 and mean degree

10 and 20, the power spectra, shown in Fig 7(a), satisfy the power-laws P(f ) ∝ 1/f η, with η =

2.013 ± 0.002 and η = 2.070 ± 0.002, respectively. The power spectra for scale-free topologies

with mean degree 10 and 20, shown in Fig 7(c), satisfy the power-laws P(f ) ∝ 1/f η, with η =

2.094 ± 0.002 and η = 2.028 ± 0.002, respectively. For both small-world and scale-free topologies

the power spectra of the total membrane potential X(t), shown in Fig 7(b) and 7(d), display

greater deviations from power-law behavior than K(t), but nevertheless exhibit variations on a

Fig 5. The time series and the Fourier power spectrum of the total coupling strength K(t) and the total membrane potential X(t) for

I = 2.8 and β = 12. (a) The time series of K(t) showns continual variations between higher and lower total coupling strengths. (b) For K(t), the

power P(f) associated with frequency f satisfies to a good approximation the power-law P(f ) ∝ 1/f η, where η = 2.628 ± 0.002, indicating that

variations in K(t) occur on all time scales. The dashed line indicates the power-law relation. The large amplitude variation in the time series of

K(t) result in a peak in the power spectrum at f� 12, while the smaller amplitude, higher frequency, variations at the bottom of each large

amplitude cycle give a secondary peak at frequency f� 70. (c) The time series of X(t) also shows continual variations. (d) For X(t), the

deviations of the power spectrum from a power-law are greater than for K(t), however, X(t) also shows variations on a wide range of time

scales. The large amplitude oscillation in X(t) results in a peak in the power spectrum at f� 20.

https://doi.org/10.1371/journal.pone.0178975.g005
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Fig 6. The time variation in the order parameter χ(t) for I = 2.8 and β = 12. (a) The time series of χ(t) shows sustained

variations between values close to 1, corresponding to high levels of synchronization, and values close to 0, corresponding to

lower levels of synchronization. The continual variation of χ(t) results from the repeated transient synchronization of neurons in

the network. (b) The power spectrum of χ(t) shows variations on a wide range of time scales, indicative of the complex

dynamics apparent in the time series of χ(t). The large amplitude oscillation in χ(t) results in a peak in the power spectrum at

f� 20, while smaller amplitude, higher frequency, variations give a secondary peak at f� 100. (c)-(f)The distributions of the

Synchronization in neuronal networks
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wide range of time scales. It is an intriguing result, worthy of further study, that the power spec-

trum of K(t) conforms to a power-law much more closely on complex networks than on the

complete network. It is also potentially significant that the power-law exponents are almost

equal for quite different complex network topologies, suggesting a possible universality underly-

ing the dynamics of these coupled complex networks of neurons.

complex numbers that define the order parameter on the unit circle in the complex plane at different times. At time t = 13

(shown in (c)) the system is largely unsynchronized, and subsequently evolves in time to successively more synchronized

states at t = 3825 (shown in (d)), t = 3910 (shown in (e)), and t = 4000 (shown in (f)).

https://doi.org/10.1371/journal.pone.0178975.g006

Fig 7. The Fourier power spectrum of the total coupling strength K(t) and the total membrane potential X(t) for small-world and scale-

free networks for I = 2.8 and β = 12. (a) For K(t) on small-world networks with rewiring probability 0.3 the power P(f ) associated with frequency f

satisfies a power-law P(f ) ∝ 1/f η, where η = 2.013 ± 0.002 and η = 2.070 ± 0.002 for both mean degree 10 (red squares) and 20 (blue circles),

respectively. (b) For X(t) on the same small-world networks as in (a) the deviations of the power spectrum from a power-law are greater than for

K(t), however, X(t) also shows variations on a wide range of time scales. (c) For K(t) on scale-free networks P(f ) satisfies a power-law P(f ) ∝ 1/f η,

where η = 2.094 ± 0.002 and η = 2.028 ± 0.002 for both mean degree 10 (red squares) and 20 (blue circles), respectively. (d) For X(t) on the

same scale-free networks as in (c) the deviations of the power spectrum from a power-law are greater than for K(t), however, X(t) also shows

variations over a large range of time scales.

https://doi.org/10.1371/journal.pone.0178975.g007
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Discussion

Most theoretical studies of synchronization in neuronal networks have focused on under-

standing the conditions under which global synchronization of neurons occur [18]. However,

it is clear empirically that many important aspects of neural behavior depend on local, and

often transient, synchronization of groups of neurons in the brain [19]. Here we have studied

adaptively coupled neuronal networks, in which the coupling between two neurons is deter-

mined dynamically by the states of the neurons, and which has the key feature that the cou-

pling between pairs of adjacent neurons that are in a similar state is strengthened, while that

between pairs of adjacent neurons in dissimilar states is weakened. The dynamics of these net-

works result in the spontaneous emergence of locally synchronized groups of neurons, some

of which are permanently synchronized while other show transient synchronization. This pat-

tern of synchronization is found for a significant parameter range in the model. The existence

of transient local synchronization (in addition to permanent local synchronization) results in

the neuronal couplings having a complex dynamics, which is characterized by the power spec-

trum P(f ) of the sum of the couplings obeying a power-law P(f ) ∝ 1/f η. For the complete net-

work topology, we find the same power law for all values of the parameter β that yields local

synchronization. We have also studied the model for other values of α and γ, and find that for

a wide variety of these parameters there exists a significant range of β values for which local

synchronization occurs and for which the total coupling exhibits a power law spectrum. The

exponent of the power law varies with α and γ, but for fixed α and γ is independent of β. For

complex network topologies, including small-world and scale-free topologies, we find no sig-

nificant variation in the power-law exponents for a wide range of the parameters α, β and γ,

which suggests an intriguing universality underlying the dynamics of these adaptively coupled

neuronal networks. The 1/f η power-law in this deterministic model does not depend on any

fine tuning of parameters and appears to be a consequence of an interesting new type of self-

organized criticality.

The mechanism responsible for driving continuous oscillations in the couplings between

pairs of transiently synchronized neurons appears to be a type of dynamical frustration. In this

frustration process distinct groups of completely synchronized neurons form in the network,

and since the oscillations between different synchronized groups are typically out of phase

this results in pairs of neurons spanning different groups having a constantly changing differ-

ence in their membrane potentials, which in turn leads to a continuously changing coupling

strength between such pairs of neurons. The operation of this process between all pairs of neu-

rons spanning different completely synchronized groups results in many pairs of transiently

synchronized neurons with couplings varying on a wide range of time scales. Thus, this deter-

ministic dynamical system apparently self-organizes into a state in which variations in the cou-

plings between transiently synchronized neurons occur on all time scales and, therefore, the

emergence of a power-law spectrum in this deterministic model, which does not depend on

any fine tuning of parameters, seems to be a consequence of a novel form of self-organized

criticality [53]. Concepts of self-organized criticalty, while having been applied to a variety of

problems in neuroscience [54–57], including certain aspects of synchronization [58], appears

not to have been previously connected to synchronization in networks of neurons adaptively

coupled through electric synapses.

The frustration process that we have suggested here to underlie the emergence of a power-

law spectrum in an adaptively coupled network of Hindmarsh-Rose neurons is novel in that it

depends upon frustration occurring between dynamically formed clusters of neurons, where

the neurons within a given cluster are completely synchronized, but neurons lying in different

clusters are unsynchronized. We note here that a different, and more conventional type of
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geometric frustration process plays an important role in other types of neuronal networks

[59–62]. Obtaining a deeper understanding of the dynamical frustration process we have sug-

gested for adaptively coupled neuronal networks, and elucidating the connection to power-law

spectra seems to be an important task for future research.

In this paper we have considered adaptively coupled networks of Hindmarsh-Rose neurons,

where the membrane input current I is set to produce bursting behavior for the neurons, as

this is known to be a key aspect of information processing in the brain [30, 63]. We have also

explored the behavior of our adaptively coupled networks when the membrane input current

I is set to give spiking behavior for the neurons. We find that the outcome for spiking neurons

is very similar to the case of bursting neurons, with the spontaneous emergence of groups of

completely synchronized neurons and also of clusters of transiently synchronized neurons,

the latter of which result in a complex dynamical process analogous to that found for bursting

neurons.

We should also like to mention that the type of adaptively coupled neuronal networks that

we have considered here may be relevant to the problem of pattern selection. It is known that

complex pattern formation, including spiral waves, can occur in some neuronal networks and

it would be an interesting topic for future research to investigate whether such pattern forma-

tion occurs in the adaptively coupled Hindmarsh-Rose networks that we have considered here

[64–67].

Finally, we remark that while we have focused here on neuronal synchronization it is possi-

ble that the type of adaptive coupling we have postulated may have broader applications to the

study of local synchronization in other networked systems.
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10. Néda Z, Ravasz E, Brechet Y, Vicsek T, Barabási AL. Self-organizing processes: The sound of many

hands clapping. Nature. 2000; 403(6772):849–850. https://doi.org/10.1038/35002660

11. Uhlhaas P, Pipa G, Lima B, Melloni L, Neuenschwander S, NikolićD, et al. Neural synchrony in cortical

networks: history, concept and current status. Front Integr Neurosci. 2009; 3:17. https://doi.org/10.

3389/neuro.07.017.2009 PMID: 19668703

12. Gray CM, König P, Engel AK, Singer W, Oscillatory responses in cat visual cortex exhibit inter-columnar

synchronization which reflects global stimulus properties. Nature. 1989; 338(6213):334–337. https://

doi.org/10.1038/338334a0 PMID: 2922061

13. Kreiter AK, Singer W. Stimulus-dependent synchronization of neuronal responses in the visual cortex of

the awake macaque monkey. J Neurosci. 1996; 16(7):2381–2396. PMID: 8601818

14. Roelfsema PR, Engel AK, Konig P, Singer W. Visuomotor integration is associated with zero time-lag

synchronization among cortical areas. Nature. 1997; 385:157–161. https://doi.org/10.1038/385157a0

PMID: 8990118

15. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ. Perception’s shadow: long-dis-

tance synchronization of human brain activity. Nature. 1999; 397(6718):430–433. https://doi.org/10.

1038/17120 PMID: 9989408

16. Von der Malsburg C. The what and why of binding: the modeler’s perspective. Neuron. 1999; 24(1):95–

104. https://doi.org/10.1016/S0896-6273(00)80825-9 PMID: 10677030

17. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and

pathophysiology. Neuron. 2006; 52(1):155–168. https://doi.org/10.1016/j.neuron.2006.09.020 PMID:

17015233

18. Arenas A, Diaz-Guilera A, Kurths J, Moreno Y, Zhou C. Synchronization in complex networks. Phys

Rep. 2008; 469(3):93–153. https://doi.org/10.1016/j.physrep.2008.09.002

19. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex

brain networks. Trends Cogn Sci. 2004; 8(9):418–425. https://doi.org/10.1016/j.tics.2004.07.008 PMID:

15350243

20. Fell J, Axmacher N. The role of phase synchronization in memory processes. Nat Rev Neurosci. 2011;

12(2):105–118. https://doi.org/10.1038/nrn2979 PMID: 21248789

21. Maistrenko YL, Lysyansky B, Hauptmann C, Burylko O, Tass PA. Multistability in the Kuramoto model

with synaptic plasticity. Physical Review E. 2007; 75(6):066207. https://doi.org/10.1103/PhysRevE.75.

066207 PMID: 17677340

22. Bayati M, Valizadeh A. Effect of synaptic plasticity on the structure and dynamics of disordered net-

works of coupled neurons. Physical Review E. 2012; 86(1):011925. https://doi.org/10.1103/PhysRevE.

86.011925 PMID: 23005470

23. di Volo M, Livi R, Luccioli S, Politi A, Torcini A. Synchronous dynamics in the presence of short-term

plasticity. Physical Review E. 2013; 87(3):032801. https://doi.org/10.1103/PhysRevE.87.032801

24. Bennett MVL, Zukin RS. Electrical coupling and neuronal synchronization in the mammalian brain. Neu-

ron. 2004; 41(4):495–511. https://doi.org/10.1016/S0896-6273(04)00043-1 PMID: 14980200

25. Hindmarsh JL, Rose RM. A model of the nurve impulse using two first-order differential equations.

Nature. 1982; 296(5853):162–164. https://doi.org/10.1038/296162a0 PMID: 7063018

26. Hindmarsh JL, Rose RM. A model of neuronal bursting using three coupled first order differential equa-

tions. Proc R Soc Lond B Biol Sci. 1984; 221(1222):87–102. https://doi.org/10.1098/rspb.1984.0024

PMID: 6144106

Synchronization in neuronal networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0178975 June 2, 2017 14 / 16

https://doi.org/10.1109/22.81670
https://doi.org/10.1109/22.81670
https://doi.org/10.1103/PhysRevLett.76.404
http://www.ncbi.nlm.nih.gov/pubmed/10061448
https://doi.org/10.1103/PhysRevE.57.1563
https://doi.org/10.1103/PhysRevB.82.144520
https://doi.org/10.1016/j.anbehav.2009.07.007
https://doi.org/10.1016/j.anbehav.2009.07.007
https://doi.org/10.1126/science.166.3907.891
http://www.ncbi.nlm.nih.gov/pubmed/17815755
https://doi.org/10.1038/35002660
https://doi.org/10.3389/neuro.07.017.2009
https://doi.org/10.3389/neuro.07.017.2009
http://www.ncbi.nlm.nih.gov/pubmed/19668703
https://doi.org/10.1038/338334a0
https://doi.org/10.1038/338334a0
http://www.ncbi.nlm.nih.gov/pubmed/2922061
http://www.ncbi.nlm.nih.gov/pubmed/8601818
https://doi.org/10.1038/385157a0
http://www.ncbi.nlm.nih.gov/pubmed/8990118
https://doi.org/10.1038/17120
https://doi.org/10.1038/17120
http://www.ncbi.nlm.nih.gov/pubmed/9989408
https://doi.org/10.1016/S0896-6273(00)80825-9
http://www.ncbi.nlm.nih.gov/pubmed/10677030
https://doi.org/10.1016/j.neuron.2006.09.020
http://www.ncbi.nlm.nih.gov/pubmed/17015233
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.tics.2004.07.008
http://www.ncbi.nlm.nih.gov/pubmed/15350243
https://doi.org/10.1038/nrn2979
http://www.ncbi.nlm.nih.gov/pubmed/21248789
https://doi.org/10.1103/PhysRevE.75.066207
https://doi.org/10.1103/PhysRevE.75.066207
http://www.ncbi.nlm.nih.gov/pubmed/17677340
https://doi.org/10.1103/PhysRevE.86.011925
https://doi.org/10.1103/PhysRevE.86.011925
http://www.ncbi.nlm.nih.gov/pubmed/23005470
https://doi.org/10.1103/PhysRevE.87.032801
https://doi.org/10.1016/S0896-6273(04)00043-1
http://www.ncbi.nlm.nih.gov/pubmed/14980200
https://doi.org/10.1038/296162a0
http://www.ncbi.nlm.nih.gov/pubmed/7063018
https://doi.org/10.1098/rspb.1984.0024
http://www.ncbi.nlm.nih.gov/pubmed/6144106
https://doi.org/10.1371/journal.pone.0178975


27. Jirsa VK. Dispersion and time delay effects in synchronized spike-burst networks. Cogn Neurodyn.

2008; 2(1):29–38. https://doi.org/10.1007/s11571-007-9030-0 PMID: 19003471

28. Storace M, Linaro D, de Lange E. The Hindmarsh–Rose neuron model: bifurcation analysis and piece-

wise-linear approximations. Chaos. 2008; 18(3):033128. https://doi.org/10.1063/1.2975967 PMID:

19045466

29. Belykh I, de Lange E, Hasler M. Synchronization of bursting neurons: what matters in the network topol-

ogy. Phys Rev Lett. 2005; 94(18):188101. https://doi.org/10.1103/PhysRevLett.94.188101 PMID:

15904412

30. Dhamala M, Jirsa VK, Ding M. Transitions to synchrony in coupled bursting neurons. Phys Rev Lett.

2004; 92(2):028101. https://doi.org/10.1103/PhysRevLett.92.028101 PMID: 14753970

31. Connors BW, Long MA. Electrical synapses in the mammalian brain. Annu Rev Neurosci. 2004;

27:393–418. https://doi.org/10.1146/annurev.neuro.26.041002.131128 PMID: 15217338

32. Hestrin S, Galarreta M. Electrical synapses define networks of neocortical GABAergic neurons. Trends

Neurosci. 2005; 28(6):304–309. https://doi.org/10.1016/j.tins.2005.04.001 PMID: 15927686

33. Manor Y, Rinzel J, Segev I, Yarom Y. Low-amplitude oscillations in the inferior olive: a model based on

electrical coupling of neurons with heterogeneous channel densities. J Neurophysiol. 1997; 77

(5):2736–2752. PMID: 9163389

34. Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL. Synchronous activity of inhibitory networks in

neocortex requires electrical synapses containing connexin36. Neuron. 2001; 31(3):477–485. https://

doi.org/10.1016/S0896-6273(01)00373-7 PMID: 11516403

35. Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JRP, et al. Fast synaptic inhibition promotes

synchronized gamma oscillations in hippocampal interneuron networks. Proc Nat Acad Sci USA. 2002;

99(20):13222–13227. https://doi.org/10.1073/pnas.192233099 PMID: 12235359

36. Leznik E, Llinás R. Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J

Neurophysiol. 2005; 94(4):2447–2456. https://doi.org/10.1152/jn.00353.2005 PMID: 15928056

37. Blenkinsop TA, Lang EJ. Block of inferior olive gap junctional coupling decreases Purkinje cell complex

spike synchrony and rhythmicity. J Neurosci. 2006; 26(6):1739–1748. https://doi.org/10.1523/

JNEUROSCI.3677-05.2006 PMID: 16467522

38. De Gruijl JR, Bazzigaluppi P, de Jeu MTG, De Zeeuw CI. Climbing fiber burst size and olivary sub-

threshold oscillations in a network setting. PLoS Comput Biol. 2012; 8(12):e1002814. https://doi.org/10.

1371/journal.pcbi.1002814 PMID: 23271962

39. Traub RD. Model of synchronized population bursts in electrically coupled interneurons containing

active dendritic conductances. J Comput Neurosci. 1995; 2(4):283–289. https://doi.org/10.1007/

BF00961440 PMID: 8746402

40. Traub RD, Schmitz D, Jefferys JGR, Draguhn A. High-frequency population oscillations are predicted to

occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuro-

science. 1999; 92(2):407–426. https://doi.org/10.1016/S0306-4522(98)00755-6 PMID: 10408594

41. Ostojic S, Brunel N, Hakim V. Synchronization properties of networks of electrically coupled neurons in

the presence of noise and heterogeneities. J Comput Neurosci. 2009; 26(3):369–392. https://doi.org/

10.1007/s10827-008-0117-3 PMID: 19034642

42. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus.

Nature. 1993; 361(6407):31–39. https://doi.org/10.1038/361031a0 PMID: 8421494

43. Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain. 2006; 129(7):1659–1673.

https://doi.org/10.1093/brain/awl082 PMID: 16672292
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