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Abstract: Monitoring heart electrical activity is an effective way of detecting existing and developing
conditions. This is usually performed as a non-invasive test using a network of up to 12 sensors
(electrodes) on the chest and limbs to create an electrocardiogram (ECG). By visually observing these
readings, experienced professionals can make accurate diagnoses and, if needed, request further
testing. However, the training and experience needed to make accurate diagnoses are significant.
This work explores the potential of recurrent neural networks for anomaly detection in ECG readings.
Furthermore, to attain the best possible performance for these networks, training parameters, and
network architectures are optimized using a modified version of the well-established particle swarm
optimization algorithm. The performance of the optimized models is compared to models created by
other contemporary optimizers, and the results show significant potential for real-world applications.
Further analyses are carried out on the best-performing models to determine feature importance.

Keywords: electrocardiogram; diagnosis; particle swarm optimization; optimization; recurrent neural
networks

1. Introduction

Cardiovascular health is a global concern as the leading cause of death globally [1].
Many factors contribute to this, among which is the more static lifestyle that has become a
standard for most people, and this is especially troublesome as the lack of physical activity
leads to various health issues. Other factors include age, stress, and diet irregularities. Peo-
ple who smoke and drink alcohol regularly are also found to be more prone to heart-related
diseases [2]. All these factors can be attributed to personal choices and, as Keeney et al. [3]
suggest, around 25% of cardiovascular diseases can be avoided just by altering personal
choices without even considering genetics and other factors that influence an individual’s
health. Long periods of time are usually required for health conditions regarding cardio-
vascular health to develop. This is due to their nature, as cardiovascular problems develop
over time and increase in severity. Furthermore, such illnesses are harder to spot, which
jeopardizes the health of the patient.

Traditional ways of monitoring cardiovascular health are open to improvements,
with the emphasis being on the time it takes to diagnose a disease. The heart emits
electrical signals that can be monitored by instruments, and the most applied principle is
the electrocardiogram (ECG) [4]. The standard system consists of 10 sensors [5] distributed
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over the human body for a precise reading, but other variations with more sensors exist as
well. The primary point for the placement of the sensors is the chest due to the position
of the heart. The rest are distributed over the limbs. For example, the standard system
with 10 electrodes produces 12 leads, which are represented by waveforms. The activity
of the heart from specific angles is represented by leads [6]. The ECG provides a graph of
the heartbeat and its rhythm, allowing medical personnel to detect possible irregularities
that can be indicators of diseases. The results of the ECG are visual and readable by
professionals only, but this is not the only hindrance, as the data can have imperfections
due to the nonlinearity and complexity of signals, as well as the low amplitude of recordings,
and noise [7].

Considering the previously mentioned shortcomings of ECG systems, possible solu-
tions are being explored to improve the determination of cardiovascular health. As artificial
intelligence (AI) techniques are beginning to improve daily aspects of humans’ lives, the
medical field is not an exception in this trend [8]. Improvements in ECG systems aim for
faster recognition of patterns, leading to quicker diagnoses. This is of great importance as
it allows patients to begin treatment sooner and reduces the risk of improper medication,
which can occur with manual result interpretation. The ECG data problem is formulated as
a time-series task, which makes it suitable for AI applications. As Wolpert et al. [9] state in
the “no free lunch theorem” (NFL), not one model is perfect and provides equally optimal
results for all problems. For this particular type of problem neural networks provide the
best results, as they are suited for time-series problems due to their architecture being mod-
eled after the human nervous system. Regardless of their previously achieved exceptional
performance in this field, such solutions are not without shortcomings. This is usually
solved by applying an optimization technique that can tune the performance of the main
solution by providing the optimal subset of its configuration parameters. Every problem
requires customized frameworks as the NFL states, and the combinations of such solutions
are vast.

For this study, a recurrent neural network (RNN) is selected as the predictor of heart
conditions due to its high performance with time-series prediction tasks [10]. RNNs can
form feedforward along with feedback connections, with the latter being activated with a
delay to ensure the forming of long-term dependencies. This aspect of the RNN architecture
makes them well-suited for detecting heart-related diseases, given that these conditions de-
velop slowly over time. The idea is to provide a model that can allow for early detection of
these conditions, which has not been achieved in this manner to date. In this context, early
detection and rapid diagnostics are crucial as they allow timely intervention and manage-
ment, potentially preventing complications and improving patient outcomes. The particle
swarm optimization (PSO) algorithm, belonging to the swarm intelligence algorithm family,
has been selected as an optimizer for the RNN hyperparameters. By applying this principle,
the experimentation can result in a model that is as close as possible to optimal, as defined
by the NFL. The problem of health predictions based on waveforms belongs to the group
of problems of non-deterministic polynomial time complexity (NP-hard). For this type of
problem, swarm metaheuristics have proven excellent optimizers. The proposed method
was tested against other RNN models optimized by other high-performing metaheuristics
for the purpose of results comparison.

An extensive literature survey has shown that there is a research gap in this domain,
particularly, RNN has not been applied with PSO in this domain. Therefore, the primary
goal of this manuscript is to apply PSO to tune the RNN’s hyperparameters for this specific
problem, aiming to develop a lightweight RNN architecture that is capable of achieving
good results in ECG analysis.

The summarized main contributions of this work are provided:

• The proposal of a lightweight solution for an essential issue of cardiovascular health
diagnosis through a robust AI-based framework.

• RNN predictor application for the time-series problem of hearth electrical signal
waveforms.
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• Swarm intelligence PSO algorithm optimizer for the specific point in question of RNN
hyperparameter tuning.

• An extensive analysis of high-end metaheuristic optimizers for RNN optimization.

The organization of the sections is briefly provided: Section 2 provides the funda-
mentals of the research, Section 3 explains the inner workings of the original optimization
algorithm and the performed improvements, and Section 4 provides a basis for experimen-
tation. The experimentation outcomes are presented in Section 5. Finally, Section 6 provides
a summary of the problem formulation, the accomplishments of the research, and grounds
for future work.

2. Background

The utilization of AI in the field of medicine has gained significant attention from
researchers, primarily driven by various compelling factors. Among these factors, the continu-
ally growing demand for healthcare services and the increasing need for rigorous scrutiny
during the diagnostic process serve as powerful motivators for researchers to explore the
integration of automation into the medical domain [11,12]. Moreover, the evolving landscape
of networking and the internet of things (IoT) [13] has generated a heightened demand for
enhanced security measures. Applications of IoT networks in combination with AI have
shown admirable outcomes when applied to issues associated with healthcare [14,15].

One intriguing area where AI finds practical application is in the realm of time-series
analysis. These algorithms enable the observation and prediction of trends within continu-
ous datasets, facilitating the determination of data patterns, directions, and correlations.
Algorithms that can effectively account for temporal aspects within data have exhibited
promising results when applied to complex real-world challenges [16,17]. Furthermore,
advanced data decomposition techniques have been combined with time-series data, fur-
ther enhancing their performance by breaking down signals into a series of component
signals. This approach often leads to improved forecasting outcomes, as complex signals
are inherently challenging to predict, while a series of simpler signals can be more readily
managed and analyzed [18,19].

2.1. AI Approaches in Electrocardiogram Analysis

AI methods have been increasingly employed in the analysis and interpretation of
ECGs to aid in the diagnosis of cardiovascular diseases [20,21]. CNNs are effective for
image-based tasks, and ECG signals can be treated as 1D images. CNNs can automatically
learn hierarchical features from ECG data and can be useful in routine clinical practice,
as shown by [22–24].

RNNs, and their variant long short-term memory networks (LSTMs), are useful for
capturing temporal dependencies in ECG signals, making them suitable for tasks such as
arrhythmia detection. These models are typically lightweight, simple, and show promising
efficiency and accuracy, as discussed by [25,26]. Hybrid methods have also been considered,
such as the CNN-LSTM approach introduced in [27].

Machine learning algorithms have been considered for this problem as well [28,29].
Random forests and decision trees may be used for classification tasks, such as identifying
different types of arrhythmia [30–32]. On the other hand, support vector machines (SVMs)
may be effective for binary classification tasks and have been applied to identify specific
cardiac conditions in ECGs [33].

2.2. Recurrent Neural Networks

With the goal of creating a neural network that is more suitable for problems that
require sequential data analysis, the RNN was created. The difference from the basic neural
network is the existence of recurrent connections between neurons, allowing for future
inputs memory storage. Sequential layers with neurons are connected similarly to the basic
neural network, as well as the weights and biases for connection input evaluation, decision-
making, and output generation. RNNs require optimization in terms of architecture
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in addition to the control parameters for optimal performance. The benefits of using
RNNs less complex in their structure are observable in data interpretation and training.
More complex architecture is required for problems that have to keep track of complex
nonlinear relationships.

The hidden state in the previous time step ht−1 is combined with the current at the
time step t. The process is described by Equation (1).

at = b + Wht−1 + Uxt, (1)

where at is the input activation, b the bias term, and W and U represent the weight matrices
of recurrent and input connections, respectively.

Equation (2) describes the process of the alteration of the hidden state after every input
with the φ activation function over the at.

ht = φ(at) (2)

Based on the prediction goal, different functions can be used as φ. The output of the network
is derived from the hidden state. The previously described process is mathematically
formulated by Equation (3).

yt = Wht (3)

While RNNs have a unique ability of working with and reacting to changes in sequen-
tial data, certain drawbacks can be observed in the basic model. This class of networks
is particularly sensitive to vanishing and exploding gradients [34], making good models
difficult to construct. Furthermore, RNNs can only retain an influence of one previous
input, which can limit their applicability for longer term forecasts. Certain methods have
been developed to deal with these issues. such as the gated recurrent unit (GRU) and long
short-term memory networks (LSTMs). However, while these versions of RNNs offer some
advantages, they come at the cost of an increased complexity relative to the base algorithm.

2.3. Metaheuristics

The field of metaheuristic algorithms became popular due to the algorithms’ pro-
ficiency in solving NP-hard problems. The main challenge is to find solutions to these
problems within a reasonable timeframe, while also maintaining reasonable hardware
requirements. The algorithms can be divided further into subgroups, but there is no
formal definition. The grouping that is recognized by most researchers includes the dif-
ferentiation by the phenomena used for inspiration of the algorithm. In this manner,
the different groups include swarm, genetic, physics, human, and the most novel group of
these, the mathematically inspired algorithms.

Swarm-inspired solutions take inspiration from species that live in large groups and
the aspects of their lives that benefit from group behavior [35]. This is often the case when a
single unit is incapable of completing a task on its own, and that is where other units of the
same species come into play. The swarm group of algorithms has provided excellent results
with solutions to NP-hard problems, but to reach their maximum potential, hybridization
with similar solutions is advised. The issue of these stochastic population-based algorithms
is that they usually favor one of the two phases between exploration and exploitation,
which can be overcome by incorporating a mechanism from a different solution. Notable
algorithms from the swarm family include PSO [36], genetic algorithm (GA) [37], sine
cosine algorithm (SCA) [38], firefly algorithm (FA) [39], grey wolf optimizer (GWO) [40],
reptile search algorithm (RSA) [41], as well as the COLSHADE [42] algorithm.

Swarm metaheuristics find application in a wide range of real-world problems. Some
of the implementations include glioma MRI classification [43], detection of credit card
fraud [44,45], global optimization problems and engineering optimization [46–48], cloud
computing [49], prediction of the number of COVID-19 cases [50], feature selection [51],
and wireless sensor networks [52,53].
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Ahmadpour et al. [54] developed a genetic-algorithm-based solution to track subjects’
blood pressure, significantly improving their overall quality of life and allowing for the early
detection of preventable diseases. Khan et al. [55] explore an IoT environment that enables
all-day monitoring of patients’ conditions and greatly improves their cardiovascular health.

Examples of AI-assisted medical diagnosis include diabetic retinopathy detection [56],
skin lesion classification [57], lung cancer classification [58], and magnetic resonance imag-
ing (MRI), among diverse other applications in medicine.

Although it is one of the first metaheuristics algorithms, proposed over twenty years
ago, PSO is still considered a very powerful optimizer. Recently, the PSO algorithm has
been successfully implemented, either in a basic or modified version, to tackle numerous
problems in the medical and other domains. Notable examples include tuning LSTM for
ECG-based biometric analysis [59], CNN-based classification of cardiac arrhytmias and
healthcare monitoring [60,61], and RNN-based cloud balancing [62], to mention a few.

3. Methods

The following section describes the base algorithm that serves as a basis for modifica-
tion. The algorithm is selected empirically, based on previous research where significant
potential has been observed. Following the description of the basic algorithm, its initializa-
tion, and search mechanisms, we highlight observed limitations and present a potential
solution. Finally, the pseudocode of the final modified approach is provided.

3.1. The Original PSO

The original PSO was introduced in 1995 by Kennedy and Eberhart [36]. The flocking
of birds and fish was the main inspiration for this metaheuristic. Particles are represented
as search agents and are considered a part of the population. Discrete as well as continuous
problems can be solved by the PSO.

The model of the algorithm works such that every particle is assigned an initial velocity,
which can be regarded as the position in the population. During one iteration the particles
change their location in search of a better one. The weight component describes how fast
the particles move. The weights are the old velocity, the best obtained so far, and the best
yet obtained by the neighboring particle.{−→vi ← −→vi +

−→
U (0, φ1)

⊗
(−→pi −−→xi ) +

−→
U (0, φ2)

⊗
(−→pg −−→xi )

−→xi ← −→xi +
−→vi ,

(4)

In Equation (4), the component-wise multiplier is shown as
⊗

, the range of all the
components from vi is [−Vmax,+Vmax], and the vector

−→
U (0, φ1) represents every particle

randomly generated and uniformly distributed in the range [0, φi]. The value of pi denotes
the best solution for particle i while pg denotes the global best particle. Any of the particles
is a possible solution in a D-dimensional space and its position is defined by Equation (5),
the best position obtained before the update is shown in Equation (6), and the velocities are
given in Equation (7):

Xi = (xi1, xi2, . . . , xiD) (5)

Pi = (pi1, pi2, . . . , piD) (6)

Vi = (vi1, vi2, . . . , viD) (7)

The best solutions overall and in the group are noted as pi and pg, respectively.
The search agent takes both pieces of information into account before deciding on the next
move in terms of the distance currently between its position and pi and pg.
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With the application of the inertia weight approach, this behavior can be modeled as
in Equation (8):

vid = W ∗ vid + c1 ∗ r1 ∗ (Pid − Xid) + c2 ∗ r2 ∗ (Pgd − Xid) (8)

The relative influence inertia factors are shown in Equation (8) as w, c1, and c2, used
for cognitive and social components, respectively. r1 and r2 are random numbers, while the
particle velocity and the current position are given, respectively, as vid and xid. pid and pgd
are the pi and pg, respectively.

Equation (9) describes the inertia factor. wmax is the initial weight, while wmin is the
final weight; T is the maximum number of iterations, and the current iterations are given
as t.

w = wmax −
wmax − wmin

T
· t (9)

3.2. Genetically Inspired PSO (GIPSO)

Although the original PSO shows good performance, it exhibits certain shortcomings
when evaluated using standard CEC [63] evaluation functions. To address these issues
and enhance the PSO, this study introduces hybridization techniques. Drawing inspiration
from the genetic algorithm (GA) [37], we create a new algorithm known as the genetically
inspired PSO (GIPSO).

In the GIPSO algorithm, a novel introduction mechanism is activated after each
iteration. It selects a random agent and combines it with the best solution obtained so far.
The algorithm uniformly combines their parameters, and this combination is governed by a
control parameter, denoted as pc. Empirically, the optimal value for pc has been determined
to be 0.1. Furthermore, an additional modification involves parameter mutation. When
triggered, this process selects a random value within a specified parameter constraint. Half
of this selected value is either added to or subtracted from the parameter, depending on the
mutation direction parameter md. Once again, the value for md is determined empirically,
set to 0.1.

After generating a new solution, the worst-performing solution in the swarm is
replaced by the new agent. The evaluation of the new solution is deferred until the next
iteration, maintaining the computational complexity of the original algorithm.

From a mathematical perspective, the introduced algorithm follows the random-
ness influence initialization pattern of the the PSO algorithm as described in the original
study [36]. Updates are also also performed as described in the original algorithm. Each
agent A contains a vector of values that represent the genetic structure as

Ai = (a1, a2, . . . aD) (10)

where Ai represents a given agent and a a given parameter and D the number of parameters
dependent on the dimensionality of the search space. Once crossover is initialized, two
agents are selected and recombined:

cj = α · aj + (1− α) · bj (11)

where cj denotes the resulting child parameter, aj and bj are the j-th parameters of agents
A and a randomly selected second agent B, and α is a random factor. The agent parameters
are then further mutated as

Aik = Aik + md · rnd or Aik = Aik −md · rnd (12)
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This equation represents the mutation of the k-th parameter in an agent, where md is
the mutation direction parameter, and rnd is a random value within a specified parameter
constraint. The mutation can either add or subtract half of rnd from the original parameter
value, depending on the mutation direction. Once an agent has been combined and
mutated, the worst solution in the population based on an objective function is replaced.
The objective function f (obj) can be adjusted depending on the optimization problem
being tackled.

To provide a comprehensive understanding of the algorithm, we present its pseu-
docode in Algorithm 1.

Algorithm 1 Pseudocode of the introduced GIPSO.

Initialize a population, denoted as P
while t is less than T do

Evaluate the solutions in P using the objective function
for Each solution X in P do

Update agent locations by applying the PSO search
Generate a new solution, referred to as NS, using a genetically inspired mechanism
Mutate the parameters of NS
Replace the worst solution in P with NS

end for
end while
return The best solution attained within P

The computational complexity of the introduced algorithm remains the same relative
to the original as evaluations are only carried out after a new solution has been generated
and the worst option replaced. Nevertheless, it is important to note that the implementation
complexity of the introduced modified version might be slightly higher compared to the
original. However, this potential drawback is considered acceptable when considering the
increased boosts to performance.

4. Experimental Setup

The dataset exploited in this research is the heart rate time series from the Massachusetts
Institute of Technology (MIT), publicly available online (https://www.kaggle.com/datasets/
ahmadsaeed1007/heart-rate-time-series-mitbih-database, accessed on 13 December 2023).
The data are prepared for ML processing and consist of 1800 measurements evenly spaced at
intervals of 0.5 s, measured for up to a total of 15 min of monitoring. Readings are captured
from 12 sensors (electrodes) on the chest. A visualization of the dataset can be observed
in Figure 1. The shown features are time steps that have shown the highest importance
following the best-model analysis described later in this work. Normal activity is indicated
by a white background while anomalous activity has a red background. Anomalous
activity can be considered as any irregular or abnormal heartbeat, otherwise known as an
arrhythmia [64].
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Figure 1. Dataset visualization.
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In the experimentation, 15 lags of data, approximately equivalent to 1
8 of a second

of EEG readings, are used. These inputs are provided to 15 input neurons of an RNN.
The number of hidden layers is optimized within [1, 3], favoring lighter networks in order
to reduce computational demands, and neuron counts in each of the hidden layers are
selected in a range of [ lags

2 , lags]. In this research, neuron optimization is, therefore, carried
out in a range of [8, 15]. The training parameters are also optimized. The number of
training epochs is tuned from the range [30, 60], learning rate from the range [0.01, 0.0001],
and dropout from [0.2, 0.05].

The large search space presented by the hyperparameters warrants the use of algo-
rithms capable of effectively addressing complex optimizations. Several contemporary opti-
mization metaheuristics are employed alongside the introduced GIPSO. The metaheuristics
are implemented under identical conditions with a population size of 6, and allocated
8 iterations to improve the population quality. To account for variations due to random
factors associated with metaheuristic algorithms, the experiments are repeated over 30 in-
dependent runs. This also provides a base for further statistical validation of the outcomes.
The algorithms included in the comparative performance analysis include the original
algorithms used as inspiration, the PSO [36] and GA [37] algorithms, as well as other well-
established optimizers, the FA [39], SCA [38] GWO [40], RSA [41], and COLSHADE [42]
algorithms.

During the experiments, the initial 70% of the data are used to train the models with
parameters selected by the metaheuristic algorithms. A subsequent 10% of the remaining
data are used as validation data. The constructed models are repeatedly evaluated using the
validation dataset, and their control parameters updated accordingly using metaheuristics.
To ensure a valid comparison, the remaining 20% of the data are reserved only for testing.
The best constructed models are verified to ensure that no over-fitting has occurred using
the elbow method, and early stopping is used to help prevent over-training, with a patience
of one-third of the total number of selected epochs.

To provide a comprehensive assessment of the constructed models in comparison to
those constructed by other contemporary optimizers, a battery of standard classification
metrics including accuracy, precision, recall, and F1 score [65] are utilized. The error rate
is used as the objective function for optimization, determined as Error = 1− accuracy.
Further metrics include Cohen’s kappa [66], described in Equation (13), which gives a more
complete assessment in cases when unbalanced datasets are utilized:

κ =
zo − ze

1− ze
(13)

in which zo and ze represent the observed and expected classification values. Cohen’s
kappa is used as the indicator function during the optimizations

Finally, Figure 2 illustrates the experimental framework flowchart.
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Figure 2. Experimental framework flowchart.

5. Experimental Outcomes

The experimental outcomes, in terms of the best and worst, as well as the mean and
median outcomes throughout 30 independent executions, are provided in Table 1. Further
outcomes, in terms of the standard deviation and variance that demonstrate the stability of
each optimum, are also provided. Indicator function outcomes are showcased in the same
format in Table 2.

Overall the metrics indicate that the introduced GIPSO algorithm attained the best
outcome in the best-case scenario. However, the relatively novel RSA shows an impressive
performance, attaining better outcomes for the worst-case execution, and thereby showing
better outcomes in terms of the mean and median. This improvement carries over to
algorithm stability, with the RSA demonstrating higher levels of stability in terms of
objective as well as indicator functions. Nevertheless, the modifications applied to the PSO
algorithm demonstrate improvements, with the GIPSO algorithm outperforming the original
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algorithm as well as the GA across all test cases and showing a significant improvement in
terms of stability.

Table 1. Objective function outcomes over 30 independent runs. Best results are written in bold.

Method Best Worst Mean Median Std Var

RNN-GIPSO 0.020718 0.022790 0.021984 0.022445 0.000906 8.21 × 10−7

RNN-PSO 0.021754 0.029006 0.026473 0.028660 0.003340 1.12 × 10−5

RNN-GA 0.023481 0.032459 0.026819 0.024517 0.004010 1.61 × 10−5

RNN-SCA 0.024862 0.027624 0.025783 0.024862 0.001302 1.70 × 10−6

RNN-FA 0.022790 0.024862 0.023596 0.023135 0.000906 8.21 × 10−7

RNN-GWO 0.021409 0.023135 0.021984 0.021409 0.000814 6.62 × 10−7

RNN-RSA 0.021409 0.022099 0.021639 0.021409 0.000326 1.06 × 10−7

RNN-COLSHADE 0.022445 0.029351 0.026128 0.026588 0.002838 8.05 × 10−6

Table 2. Indicator function outcomes over 30 independent runs. Best results are written in bold.

Method Best Worst Mean Median Std Var

RNN-GIPSO 0.918695 0.912862 0.914520 0.912862 0.002973 8.84 × 10−6

RNN-PSO 0.915662 0.884873 0.895986 0.887422 0.013952 1.95 × 10−4

RNN-GA 0.907855 0.873338 0.895263 0.904598 0.015561 2.42 × 10−4

RNN-SCA 0.902434 0.891184 0.898684 0.902434 0.005303 2.81 × 10−5

RNN-FA 0.911728 0.902800 0.907884 0.909124 0.003749 1.41 × 10−5

RNN-GWO 0.916143 0.909804 0.913765 0.915348 0.002819 7.95 × 10−6

RNN-RSA 0.915985 0.913923 0.915662 0.915985 0.001308 1.71 × 10−6

RNN-COLSHADE 0.912168 0.885572 0.897502 0.894767 0.011029 1.22 × 10−4

Comparisons in terms of algorithm stability across the objective and indicator functions
are further reinforced by the outcomes shown in Figure 3.
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Figure 3. Objective and indicator function distributions.

Clear stability improvements over the best PSO and GA can be observed for the GIPSO
algorithm. However, the admirable performance of the RSA also needs to be noted, as the
metaheuristic demonstrated impressive stability in comparison to competing metaheuristics.

Improvements in the convergence can be observed in the convergence graphs for the
best-performing models shown in Figure 4.

It is important to note that the exploitation power of the algorithm plays a significant
factor in this optimization. And it is evident that the introduced algorithm managed to
avoid local optima and locate the most promising region within the local search space
that presents the best outcomes. Further, detailed metrics for the best-performing models
formulated by each metaheuristic are provided in Table 3.
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Table 3. Detailed metrics of the best-performing models. Best results are written in bold.

Method Metric Normal Anomalous Accuracy Macro Avg Weighted Avg

RNN-GIPSO Precision 0.948357 0.984615 0.979282 0.966486 0.979081
Recall 0.914027 0.991035 0.979282 0.952531 0.979282
F1 score 0.930876 0.987815 0.979282 0.959345 0.979124

RNN-PSO Precision 0.931663 0.986569 0.978246 0.959116 0.978189
Recall 0.925339 0.987775 0.978246 0.956557 0.978246
F1 score 0.928490 0.987172 0.978246 0.957831 0.978215

RNN-GA Precision 0.938967 0.982996 0.976519 0.960982 0.976276
Recall 0.904977 0.989405 0.976519 0.947191 0.976519
F1 score 0.921659 0.986190 0.976519 0.953925 0.976341

RNN-SCA Precision 0.800000 0.800000 0.902434 0.890642 0.902434
Recall 0.995475 0.802434 0.902434 0.890368 0.902696
F1 score 0.887096 0.801214 0.902434 0.890458 0.902860

RNN-FA Precision 0.927273 0.986156 0.977210 0.956715 0.977169
Recall 0.923077 0.986960 0.977210 0.955018 0.977210
F1 score 0.925170 0.986558 0.977210 0.955864 0.977189

RNN-GWO Precision 0.906143 0.926253 0.916143 0.904172 0.916143
Recall 0.970588 0.926445 0.916143 0.916517 0.916207
F1 score 0.904225 0.926348 0.916143 0.911682 0.916567

RNN-RSA Precision 0.946009 0.984211 0.978591 0.965110 0.978380
Recall 0.911765 0.990628 0.978591 0.951196 0.978591
F1 score 0.928571 0.987409 0.978591 0.957990 0.978429

RNN-COLSHADE Precision 0.939394 0.984191 0.977555 0.961793 0.977354
Recall 0.911765 0.989405 0.977555 0.950585 0.977555
F1 score 0.925373 0.986791 0.977555 0.956082 0.977417

Support 442 2454

As can be observed in Table 3, the best-performing model constructed by the intro-
duced metaheuristic demonstrates a clear superiority in comparison to other metaheuristics,
attaining the best evaluation score across all but one metric. The best-performing model is
further assessed with the ROC and PR curves demonstrated in Figure 5 and the confusion
matrix in Figure 6.
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It can be deduced that the introduced algorithms constructed a model with parameters
optimized for the task of ECG anomaly detection, altering the model to the provided data
in such a way that the attained classification accuracy for normal activity reached 91.4%
with misclassifications occurring in only 8.6% of cases. Anomalous activity is detected with
an even higher accuracy of 99.1%, with misclassifications occurring in only 0.9% of cases.

To encourage experimental repeatability by independent researchers, the parameters
selected by each optimization algorithm for their respective best-performing model are
provided in Table 4.

Table 4. Indicator function outcomes over 30 independent runs.

Method Learning Rate Dropout Epochs Layers Neurons L1 Neurons L2

RNN-GIPSO 0.007225 0.150573 58 1 12 /
RNN-PSO 0.008380 0.102960 60 2 15 12
RNN-GA 0.010000 0.050000 54 1 15 /
RNN-SCA 0.007023 0.185083 53 1 8 /
RNN-FA 0.010000 0.200000 49 2 15 15
RNN-GWO 0.003352 0.198888 53 1 13 /
RNN-RSA 0.007580 0.078741 53 2 14 15
RNN-COLSHADE 0.008961 0.112279 48 1 5 /

5.1. Statistical Validation of Outcomes

Because experimental results alone are frequently insufficient to state that one algo-
rithm surpasses its competitors, scientists in modern computer research must establish if
the offered enhancements are statistically significant. This study put eight techniques for
configuring RNN networks for time-series classification of aberrant cardiac activity to the
test, including the proposed GIPSO metaheuristics.

According to the recommendations in [67], statistical tests in such scenarios should
involve creating a representative collection of outcomes for each method, which involves
creating a sample of outcomes by determining average objective values over several inde-
pendent executions for each problem. However, this technique may not be appropriate
when dealing with outliers that originate from a non-normal distribution, perhaps leading
to misleading findings. According to [67], an unresolved debate remains about whether
using the mean objective function value in statistical tests is acceptable for comparing
stochastic approaches. Despite these possible disadvantages, the classification error rate
objective function was averaged across 30 separate runs to compare 10 approaches for
detecting ECG anomalies.
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After performing the Shapiro–Wilk test [68] for single-problem analysis using the de-
scribed procedure, a decision was made: a data sample was constructed for each algorithm
and each problem by gathering the results of each run, and the corresponding p-values
were computed for all method–problem combinations. Table 5 shows the resultant p-values.

Table 5. Shapiro–Wilk test scores for the single-problem analysis.

Problem GIPSO PSO GA SCA FA GWO RSA COLSHADE
ECG 0.024 0.026 0.017 0.021 0.029 0.035 0.031 0.039

These outcomes are further enforced in Figure 7, showing the distributions of objective
function outcomes of each optimizer over 30 independent runs.
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Figure 7. Objective function outcome KDE plots for each metaheuristic.

The null hypothesis may be rejected since the p-values in Table 5 are all less than the
significance threshold, denoted as α, which is set to 0.05. As a result, the data samples
for solutions do not all come from the Gaussian distribution, implying that using the
average objective value in future statistical tests is not appropriate. As a consequence,
the best results were used for further statistical analysis in this study. Because the normalcy
assumption was not met, parametric tests were inapplicable. As a consequence, in the
next stage, the non-parametric Wilcoxon signed-rank [69] test was utilized. This test
can be conducted on the same data series that contains the best values obtained in each
metaheuristic run.

In this test, the developed algorithm serves as the control algorithm, and the Wilcoxon
signed-rank test was performed on the supplied data series. In all three observed occur-
rences, the estimated p-values were less than 0.05. Using the alpha = 0.1 significance
threshold, these findings reveal that the new algorithm statistically outperformed all com-
peting techniques by a significant margin. The total results of the Wilcoxon signed-rank
test are shown in Table 6.

Table 6. Wilcoxon signed-rank test values exhibiting p-values for experiments (GIPSO vs. others).

Problem PSO GA SCA FA GWO RSA COLSHADE
ECG-RNN 0.003 0.018 0.037 0.04 0.027 0.031 0.028

5.2. Best Model Interpretation

It is increasingly important to build trust in ML models, especially when tackling
important topics such as healthcare and diagnosis. Further model analysis can highlight
issues with the model and help improve methods of data collection. There are several
methods for tackling model interpretation. Determining model sensitivity is one approach.
However, when dealing with complex multi-layer networks it is often helpful to consider
methods that apply model approximations.



Sensors 2023, 23, 9878 14 of 18

The Shapley additive explanations (SHAP) [70] technique relies on game theory in
order to build a better understanding of features and their impact on model decisions.
Furthermore, this unique approach allows us to consider individual interactions between
feature contributions. This work applies the Python implementation of SHAP to analyze
the best-constructed anomaly detection model. The outcomes are demonstrated in Figure 8.

Figure 8. SHAP analysis summary and feature impact outcomes.

The impact of the values in each step of the ECG sequence can be observed in the
interpretation outcomes. Each individual sample in the ECG is numerically labeled. It
can be observed that early samples have the highest influence of anomalous ECG activity,
latter sequences also indicate abnormal readings. However, a fairly consistent importance
is observed across all features.

6. Conclusions

The conducted research applied metaheuristic algorithms in order to optimize an
RNN architecture and training parameters in order to construct models that demonstrate
the best results when applied to ECG anomaly detection and classification. A total of
seven contemporary metaheuristics were assessed for their ability to optimize hyperpa-
rameters and the constructed models were applied and evaluated on a publicly available
real-world dataset. An additional modified metaheuristic was introduced that combined
ideas borrowed from the GA and incorporated them into the PSO algorithm to improve
performance. Several metrics were included in order to provide in-depth comparisons
between algorithms. The introduced algorithm created the single best-performing model,
outperforming the base PSO algorithm as well as the GA, attaining an accuracy of 91.8695%.
Improvements to the exploration and exploitation power of the algorithm were observed in
the modified metaheuristic. Additionally, it is important to note the observed great perfor-
mance of the RSA as well, which demonstrated good performance despite not attaining an
optimal model. The constructed models were rigorously statistically validated to confirm
the improvements, and the best-performing model was subjected to rigorous sensitivity
analysis to attain further insight into the decision-making process.

Some limitations exist within this research. Due to limited computational resources,
smaller populations and limited executions were carried out. Only a small subset of
available optimization algorithms were evaluated on this problem. Additionally, the ca-
pabilities of RNN variants such as LSTM and GRU were explored due to computational
constraints. These algorithms present a potential future point of focus in subsequent works.
Nevertheless, the proposed method may be used in clinical monitoring for near-real-time
analysis. The hardware dictates the execution speed much more than the algorithm itself.
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Additionally, the execution period is negligibly small compared to optimization. Results
may be obtained almost in real-time; only the initial lag must pass as a delay.

In future works wehope to address some of the limitations of this research, expand
on the available set of tools for experts and care providers, and offer a better diagnostic
technique. Additionally, the potential of recognizing and providing specific disease diag-
noses will be explored to further enhance the clinical utility of the model. Furthermore,
the potential of the introduced modified algorithm will be explored on other pressing
optimization challenges. Finally, modified versions of the RSA will be explored for tackling
optimization for ECG data in combination with other algorithms, as significant potential
has been observed in this research.
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