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Abstract
Tests of nonword reading have been instrumental in adjudicating between theories of reading and in assessing individuals’
reading skill in educational and clinical practice. It is generally assumed that the way in which readers pronounce nonwords
reflects their long-term knowledge of spelling–sound correspondences that exist in the writing system. The present study found
considerable variability in how the same adults read the same 50 nonwords across five sessions. This variability was not all
random: Nonwords that consisted of graphemes that had multiple possible pronunciations in English elicited more
intraparticipant variation. Furthermore, over time, shifts in participants’ responses occurred such that some pronunciations
became used more frequently, while others were pruned. We discuss possible mechanisms by which session-to-session variabil-
ity arises and implications that our findings have for interpreting snapshot-based studies of nonword reading. We argue that it is
essential to understand mechanisms underpinning this session-to-session variability in order to interpret differences across
individuals in how they read nonwords aloud on a single occasion.
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In order to read aloud a nonword such as BAMPER, the reader
must utilise their stored knowledge of the relationship be-
tween letters (e.g.,M) and sounds (/m/), as well as larger units
(e.g., ER–/ə/). Nonword reading tasks have been used widely
to probe readers’ knowledge of letter–sound relationships and
how they exploit this knowledge. These tests are used in
schools for assessing the effectiveness of reading instruction
(Castles et al., 2018), and they are used in clinical settings to
diagnose reading impairment (Coltheart, 2006; Rack et al.,
1992). Finally, researchers use nonword reading data to adju-
dicate between theories and models of reading (Andrews &
Scarratt, 1998; Coltheart et al., 2001; Mousikou et al., 2017;
Perry et al., 2007; Plaut et al., 1996; Pritchard et al., 2012).

Large-scale studies have highlighted the fact that nonword
reading in English is variable (Mousikou et al., 2017;
Pritchard et al., 2012). That is, different people may produce

different responses to a single nonword. On one hand, this
variability poses a challenge for existing theories and models
of reading, because it calls into question the concept of the
“average” reader that the models aim to simulate. On the other
hand, this variability can be an asset for the study of individual
differences. This is because individual’s knowledge may be
shaped by their reading experience (Steacy et al., 2019)—that
is, the type and the quantity of texts they encounter.

One example that illustrates how inferences of this type are
drawn comes from a computational study by Zevin and
Seidenberg (2006). The authors implemented multiple ver-
sions of a parallel distributed processing model that learned
to read. These models were trained using different sets of
words, simulating differences in reading experience. The dif-
ferent models came to read nonwords in different ways. Zevin
and Seidenberg’s simulations provide a preliminary answer as
to why nonword reading varies across individual readers:
Their reading experience is different. However, we cannot
interpret differences across readers unless we can confirm that
nonword reading tests adequately reflect the stable spelling–
sound knowledge of an individual.

The goal of the present study is to determine whether
adults’ nonword reading aloud responses are identical from
one testing session to the next. High intersession consistency
would suggest that nonword reading responses reflect a stable
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body of spelling–sound knowledge. In contrast, low interses-
sion consistency would raise a series of further questions
about why variability arises and its implications for making
inferences on the basis of a single snapshot of performance.
We posited two candidate factors that might constrain inter-
session variability: spelling–sound consistency (an item-based
factor) and literacy skill as a proxy for reading experience (a
participant-based factor). We reasoned that if a stochastic
component were added to units within a model of reading
(e.g., Rueckl et al., 2019), then the impacts would be greatest
on reading aloud those graphemes with multiple possible pro-
nunciations (e.g., EA pronounced as short or long, /ɛ/ as in
BREAD or /iː/ as in BREATHE). Likewise, these impacts
should be greatest on readers with a high degree of literacy
skill likely to have greater knowledge of the multiple pronun-
ciations associated with particular graphemes (e.g., due to
their experience with rare words and loan words; see
Siegelman et al., 2020; Steacy et al., 2019; Treiman &
Kessler, 2006). This rationale led us to predict that intersession
variability might be greatest for nonwords comprising graph-
emes with many possible pronunciations and for participants
with a higher degree of reading experience. Our results
prompted further questions regarding the dynamics of
session-to-session variation, which we explored in two post
hoc analyses.

Methods

Participants

Participants were 27 undergraduate students at Royal
Holloway, University of London. Testing took place between
November 2019 and March 2020, with each participant attend-
ing five sessions. Data from five participants were removed due
to technical issues or because the participants dropped out of the
study. Two further participants of the remaining 22 completed
only four sessions; testing was interrupted due to the coronavi-
rus pandemic. Their data were retained. Participants were, on
average, 21 years old (range was 19–28 years; four males and
18 females). All described themselves as native English
speakers with no history of reading, spelling, or learning diffi-
culties. Participants were paid for their time.

Materials

Fifty nonwords were selected from a megastudy of disyllabic
nonword reading (Mousikou et al., 2017). In order to ensure
that the selected nonwords varied in terms of how much var-
iability they elicited across participants in the original study,
we drew random samples repeatedly until a normal distribu-
tion was obtained (see Appendix). Five practice items were
also selected randomly from the same study.

Literacy skill was estimated using spelling and vocabulary
tests. Vocabulary knowledge was assessed using the corre-
sponding subscale of the Shipley Institute of Living Scale
(Shipley, 1940). The test required participants to select the
most appropriate meaning out of four alternatives and includ-
ed 40 printed words of increasing difficulty. The spelling test
required participants to type the spellings of 40 words adapted
from Burt and Tate (2002). Each word was played through
headphones, first in isolation and then in a sentence context.

Measures

Item consistency This was a continuous measure that
characterised a nonword’s graphemes in terms of how predict-
able their pronunciations are in real English words. First, we
measured the certainty with which graphemes were associated
with their pronunciation(s) in a corpus of existing English
words. Then, we applied these measures to graphemes in our
nonwords. We reasoned that if a grapheme corresponds to
multiple pronunciations in the English writing system, then
nonwords comprising such graphemes would be read more
variably.

Real-word grapheme-to-phoneme statistics were obtained
in the following way. We considered monosyllabic and poly-
syllabic words that most English speakers know (i.e.,
prevalent words; Brysbaert et al., 2019). Phonemic transcrip-
tions for these words were obtained from the CELEX database
(Baayen et al., 1993). We parsed individual syllables1 in
CELEX words into graphemes using the parsing algorithms
implemented in the DRC model (Coltheart et al., 2001). Only
syllables where the number of parsed graphemes was equal to
the number of phonemes were analysed (433,833 syllables, or
37,019 unique words), so that each grapheme could be unam-
biguously put into correspondence with its phoneme. Some
within-syllable contextual information was retained. This in-
formation was related to the position of graphemes within
syllables and in specific cases, surrounding graphemes (as
indicated by the DRC model). For example, grapheme I tends
to sound as /I/ in word beginnings (e.g., ILLUSION), whereas
it receives more varied pronunciations word-finally (e.g., /aɪ/
as in FUNGI, and /i/ as in KIWI). Further, graphemes’ pro-
nunciations often depend on the surrounding context. For ex-
ample, grapheme C’s most frequent pronunciation is /k/
(ACORN); however, when it precedes vowels, such as E, I,
Y, the pronunciation is more likely to be /s/ (MERCY). Using
this approach, we extracted 500 context-dependent grapheme-
to-phoneme correspondences from CELEX along with their
relative frequencies (i.e., the frequency of grapheme-to-

1 This decision is not meant to reflect any theoretical assumption regarding
syllable identification being an early stage of word processing in all individ-
uals. This was done for purely practical reasons (i.e., to increase the number of
words from which grapheme-to-phoneme correspondences can be reliably
extracted).
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phoneme correspondence divided by the frequency of this
grapheme). Next, we calculated entropy of possible pronunci-
ations for each grapheme in the real-word corpus using the
formula Σ[–pi × ln(pi)] (Shannon, 1948), where pi is relative
frequency of each grapheme-to-phoneme correspondence for
this grapheme.

These real-word grapheme entropy values were applied to
our nonwords in the following way. Nonwords were manually
parsed into syllables. and grapheme parsings were obtained
for these, as was done with real words. We calculated the
several metrics of nonword-level consistency by averaging
or adding entropy values for individual graphemes and then
syllables, or selecting the highest value within each unit (see
the corresponding R script for details).2 The consistency value
that had the highest correlation with the dependent variables
(DVs) used in this paper was entropy of the most inconsistent
syllable within the nonword (where grapheme entropies with-
in each syllable were averaged), so we chose to use this metric
(see the R script for details). The metric was multiplied by –1
so that low consistency values indicated that the nonword
includes graphemes that have unpredictable pronunciations
(ARROSTE has item consistency of –1.05), whereas high
consistency values indicate that the nonword consists of
graphemes whose pronunciat ions are predictable
(BLISPLE’s item consistency is –0.21). In what follows, we
will refer to this measure as “item consistency” for simplicity.
The variable was logarithm-transformed and then centred.

Literacy skill Spelling and vocabulary measures were correlated
with each other (r= .5,N = 21, p = .021).We therefore designed
a composite measure for use in the statistical model to avoid
multicollinearity. This composite measure was the average be-
tween normalised spelling and vocabulary scores. The variable
ranged between –1.5 and 1.6, with a mean of –.01.

Procedure

Testing took place at Royal Holloway, Department of
Psychology. Each participant was required to come to the lab
five times. Sessions were separated by at least 7 days (maximum,
58 days; mean, 8 days; median, 7 days). DMDX software was
used for stimulus presentation and response recording (Forster &
Forster, 2003). Participants were asked to read words aloud as
quickly and clearly as possible.3 Experimental nonwords

appeared in a random order, one at a time in the centre of the
screen, white on black background. Stimuli were presented in a
28-point Courier New font. Each stimulus was displayed for
3,000 ms. Participants’ distance from the monitor and viewing
angle were not controlled. Participants’ reading-aloud responses
were recorded. The duration of each reading-aloud session was
under 5 minutes. In two out of the five sessions, each participant
received either the vocabulary or the spelling test in addition to
the read-aloud task, which increased the duration of these ses-
sions by up to 10 minutes. These tasks were administered using
E-Prime 2.0. Time for responding was unrestricted.

Analysis 1: Is there variability in how
individuals read nonwords aloud on different
occasions?

Reading-aloud responses were transcribed by Oxana
Grosseck. We ignored information about lexical stress for
simplicity. All analyses were performed in the statistical soft-
ware R (Version 4.0.4; R Core Team, 2021). For each non-
word and participant, we counted the number of different re-
sponses produced across sessions. This number ranged from 1
(i.e., response was the same across all occasions) to 5 (i.e.,
response was different on each occasion). These data are rep-
resented visually in Fig. 1. Averaged across nonwords (the
columns of the matrix in Fig. 1), participants differed in their
variability across sessions. Participant variation ranged from a
minimum of 1.28 to a maximum of 2.86. On average, partic-
ipants produced 1.61 different pronunciations to each non-
word across sessions, which is significantly different from
the population mean of 1, μ = 1; t(21) = 7.271, p < .001.
For items, the mean number of different responses produced
across sessions ranged from 1.14 to 2.27 (mean was 1.61;
significantly different from μ = 1; t(49) = 15.841, p < .001.
This analysis demonstrates that people do not read nonwords
in the same way when tested repeatedly.

Analysis 2: What drives variability
across sessions?

Figure 1 suggests that variability that we observed across test-
ing sessions is not random: Certain participants (such as
CW19) and certain nonwords (such as ARROSTE) generate
demonstrably more variability across sessions than others. We
sought to assess whether this variability could be explained by
an item-level factor measuring print-to-sound consistency of
nonwords and a participant-level factor reflecting participants’
literacy skill (see Materials for details).

Our dependent variable, response diversity, captured vari-
ability within a given participant’s responses to a given non-
word across all sessions. This variable was operationalised as

2 We are unaware of any standard means of calculating the consistency of a
polysyllabic word, although typically consistency for monosyllables is an
average of the consistency of all grapheme constituents (Mousikou et al.,
2017).
3 Though we were not interested in response times, we included an instruction
that emphasised speed because this is relatively standard in experiments in-
volving nonword reading (e.g., Pritchard et al., 2012). It is possible that re-
sponses are more variable when instructions emphasise speed, although it is
also possible that greater variability should arise when participants have more
time to reflect on their responses.
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entropy (H) for consistency with previous research (Mousikou
et al., 2017). Response diversity was calculated using the for-
mula Σ[–pi × ln(pi)], where pi is the proportion of sessions
where a given nonword was pronounced in a specific way. For
example, participant AF16 reading BLISPLE in the same way
across all five sessions corresponds to response diversity of 0
(the minimum value). Participant KP15 pronounced
BUDGORD in five different ways (response diversity is 1.6,
the maximum value for five sessions).

The model of response diversity included item consistency
and literacy skill, their interaction, two random intercepts: one
for subjects and one for items, and a slope for item consistency
on participant intercepts. Here and elsewhere, we used the
maximal random effect structure that did not cause conver-
gence problems. Linear mixed modelling was implemented
using the lme4 (Version 1.1-26; Bates et al., 2015) and
lmerTest packages (Version 3.1-3; Kuznetsova et al., 2018).
The mode l fo rmula was ‘ r e sponse_d ive r s i t y ~
item_consistency × literacy_skill + (1|item) + (1 +
item_consistency|participant)’. Full model outputs for all
models can be found on OSF. Here and elsewhere, when the
independent variables were centred and an interaction term
was present in the model, each main effect should be
interpreted as an effect when other variables take their average
values.

Results indicated a significant main effect of item consis-
tency (B = –.048, SE = .020, df = 42.486, t = –2.347, p = .024).
Nonwords that comprised more inconsistent graphemes
yielded greater response diversity than nonwords that

comprised more consistent graphemes (see Fig. 2). No other
effects reached significance. We calculated coefficients of de-
termination (i.e., R2 for the entire model) using the
r.squaredGLMM function from the MuMIn package
(Version 1.43.17; Barton, 2009). The conditional R2 of the
entire model was 17%, while the marginal R2 indicating how
much variance was explained by fixed effects was 2%. These
2% were explained by item consistency.

Analysis 3: How does session influence
intrasubject variability?

In this section, we take advantage of trial-level mixed modelling
and develop a new DV, novel pronunciation use, in order to
investigate the dynamics of pronunciation change from session
to session. Each pronunciation in Sessions 2, 3, 4, and 5 was
coded as novel (1; i.e., not used by this participant for this non-
word in any previous session) versus old (0; i.e., used previous-
ly). For example, the responses of participant AF16 for nonword
item BLISPLE were identical across sessions. Therefore, they
were coded as 0, 0, 0, 0 (in Sessions 2 to 5, respectively). This
participant’s responses to BEBELwere coded as 1, 0, 0, 0, as this
participant changed their response from /bɛbəl/ to /bɛbɛl/ in
Session 2. Note that novel pronunciations could arise in late
sessions without any changes in prior sessions. This was the case
for participant AH21, whose response for DEBOME changed in
Session 4 (to /dɛbɒm/) from the pronunciation they had been
using earlier in Sessions 1–3 (/dɛbəʊm/).
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Fig. 1 The number of different pronunciations assigned to every
nonword (x-axis) by every participant (y-axis). The axes were arranged
according to the average number of pronunciations that were generated

across occasions, ranging from the least variable to the most variable
nonword (from left to right) and participant (from bottom to top)
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We used generalised mixed effects modelling for a bi-
nomial outcome. The model of novel pronunciation use
included three predictors (item consistency, literacy skill,
and session number) and all their two-way interactions, as
well as two random intercepts, one for subjects and one for
items. Session was a numeric variable. All variables were
centred. The model formula was ‘novel_pronunciation ~
session × item_consistency + session × literacy_skill +
item_consistency × literacy_skill + (1|participant) +
(1|item)’.

Results indicated a significant main effect of session (B =
–.841, SE = .057, z = –14.653, p < .001) and a significant main
effect of item consistency (B = –.21, SE = .103, z = –2.046, p =
.041). These effects are illustrated in Fig. 3. Nonwords with
low item consistency that consisted of unpredictable graph-
emes generated novel pronunciations more often. Further, the
likelihood of novel nonword pronunciations was higher in
earlier sessions than in later sessions. No other effects reached
significance. The conditional R2 of the entire model was 27%,
while the marginal R2 indicating how much variance was ex-
plained by fixed effects was 17% (theoretical values; the cor-
responding delta values were 12% and 8%, respectively).
Further, we inferred the amount of variance accounted for
by each significant fixed effect using the partR2 package

(Version 0.9.1; Stoffel et al., 2020). The fixed effect of session
explained 6.9% of variance and the effect of item consistency
accounted for 0.5% of variance.

Analysis 4: How does repeated testing
influence variability across individuals?

The finding that session order negatively affected the likeli-
hood of a novel response indicated that participants were grad-
ually “settling” on one of their prior responses. The question
is, were all participants settling on the same response for each
nonword, or were they settling on different responses? If so,
we would expect that differences across participants that we
observed in early sessions would simply propagate into later
sessions.

We characterised the extent to which each participant’s
response set differs from the response set of every other par-
ticipant within each session. Response set refers to all re-
sponses given by a participant to 50 nonwords in a given
session. Note that the final session data from two participants
was not available, therefore we had 108 response sets in total.
We constructed five (number of participants) × (number of
nonwords) matrices and calculated distances between every
two rows within each matrix. The difference between two
response sets was expressed in terms of Gower distances using
the daisy function from the R package cluster (Version 2.1.0;
Maechler et al., 2019). The total number of distances was
1,114 (231 two-set combinations for Sessions 1–4 and 190
two-set combinations for Session 5).

The distance values served as a DV in a linear mixed model
that included with session number (scaled) and two random
intercepts, one for each participant in the pair. Random slopes
for the effect of session were also included. The model formu-
la was ‘distance ~ session + (1 + session|participant1) + (1 +
session|participant2)’. The effect of session was significant (B
= –.022, SE = .004, df = 28.071, t = –5.344, p < .001), such
that distances between every two participants decreased
through Sessions 1 to 5. Our model explained 68% of variance
with 5.6% of variance explained by the fixed effect. These
results are illustrated in Fig. 4.

Analysis 5: How does repeated testing
influence participants’ pronunciations?

Our Analysis 4 indicated that participants may have aban-
doned some pronunciations for at least some nonwords. This
prompted a further question:Which pronunciationsweremore
likely to be pruned?

Our DV, pronunciation frequency, indicated how many
participants used a pronunciation in a given session. For ex-
ample, pronunciation /eɪdæs/ was used for ADASE twice (i.e.,
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by two participants) in Session 1. Pronunciation frequency
ranged from 0 (i.e., not used by anyone in a given session)
to 22 (used by everybody in a given session). We excluded
Session 5 from this analysis because fewer participants took
part in it, and this could bias our DV and our results. The
variable was centred. In order to identify pronunciations
whose frequencies decreased, we fitted a linear model
‘pronunciation_frequency ~ 1 + (1 + session|pronunciation)’
and extracted the intercepts and the slopes associated with the
random effect. The intercepts characterised relative differ-
ences in pronunciation frequency among pronunciations,
while the slopes characterised the extent of session-to-
session change in their frequency of use. For example,
/əðeɪs/ was characterised by the intercept of –0.42 (indicating

that this pronunciation was among the least frequent; inter-
cepts ranged between –0.56 and 3.79) and the slope of –.03
(indicating that its frequency of use decreased over time;
slopes ranged between –.15 and .21). The correlation between
intercepts and slopes was r = .52 (N = 386, p < .001) suggest-
ing that more frequent pronunciations tended to spread across
participants over time, while less frequent pronunciations
tended to drop out of use.

General discussion

We asked skilled adult readers to read aloud the same set of 50
English nonwords on five occasions. We found that partici-
pants did not pronounce these in the same way from session to
session. Contrary to our prediction, we found no evidence that
the measures of literacy, as indexed by vocabulary and spell-
ing tests, explained any variability across or within individ-
uals. It is likely that our study with 22 participants was under-
powered for explaining participant-based variation.
Nonetheless, substantial variation both within and across in-
dividuals clearly exists. Our view is that a good understanding
of how and why nonword reading varies within individuals is
essential for understanding variability across individuals and
issues surrounding the formation and exploitation of spelling–
sound knowledge more generally.

Readers showed greater session-to-session variability in
their responses and were more likely to come up with a novel
pronunciation on a testing occasion when nonwords consisted
of graphemes that could be pronounced in multiple ways
across English words. This effect is likely to arise because
individuals’ spelling–sound knowledge is probabilistic in
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nature. In line with this, readers’ behaviour has been shown to
mirror variations in the linguistic environments to which they
are exposed (Siegelman et al., 2020; Ulicheva et al., 2020). It
is not surprising then that when such variations are present (as
for inconsistent patterns), individuals show increased varia-
tion from session to session.

Our study has implications for interpreting snapshot studies
of nonword reading. We found evidence that pronunciation
variability was not uniformly distributed across sessions.
Novel pronunciations were less likely in later sessions
(Analysis 3), and participants became more similar to each
other as the sessions progressed (Analysis 4), suggesting that
some pronunciations were selectively pruned. Further exami-
nation suggested that infrequent pronunciations were those
most likely to decrease in frequency across sessions
(Analysis 5). This implies that these pronunciations may not
reflect individuals’ underlying spelling–sound knowledge.
This interpretation would suggest that repeated testing reduces
random variation across individuals, leaving us with differ-
ences more strongly related to underlying knowledge.
Therefore, one implication of this work is that when the non-
word reading task is used on a single occasion, infrequent
pronunciations may not be characteristic of long-term
spelling–sound knowledge and should be analysed and
interpreted with caution.

The second implication of this work has to do with
how participant-level and item-level effects on variability
in snapshot-based studies are interpreted. For instance, an
effect of spelling–sound consistency has been reported on
pronunciation variability across individuals in snapshot-
based studies (Siegelman et al., 2020; Steacy et al.,
2019; Treiman & Kessler, 2006; see also Mousikou
et al., 2017). In these studies, the effect of pattern incon-
sistency on variability in nonword pronunciations across
participants has been ascribed to differences in individ-
uals’ spelling–sound knowledge. On the other hand, we
reported here that inconsistent patterns also elicit more
intrasubject variability. This prompts the question: Does
the variation in responses to inconsistent patterns ob-
served across individuals truly stem from differences in
their long-term knowledge, as has been suggested? Our
findings suggest that at least some of the variation that
has been previously interpreted as reflecting differences
across individuals may be explained by stochastic pro-
cesses that occur within individuals. Thus, researchers
should evaluate the possibility that differences across in-
dividuals observed on a single occasion could be induced
by processes that occur at the level of a single individual.
In order to make progress in interpreting differences aris-
ing across individuals, it is essential to develop techniques
for isolating true differences across participants from
those that stem from intraindividual variation.

One way to advance our understanding of variability in
nonword reading involves computational modelling. This re-
quires the development of specific testable hypotheses regard-
ing the mechanisms that promote and constrain session-to-
session variability. For example, variation from session to
session might emerge if noise is present in the reading system
(e.g., the amount of phonological noise in the PDP models;
Rueckl et al., 2019). This variation could be constrained by
prior exposure to certain pronunciations or even people’s re-
cent experiences with words (cf. Rodd et al., 2016).

In sum, we observed that a single individual may vary in
how they pronounce nonwords across occasions. We have
argued that understanding session-to-session variability is
essential for interpreting variability across individuals that
has been documented in single-snapshot studies of non-
word reading aloud. Furthermore, we have shown that in-
tersession variability is an interesting phenomenon in its
own right and may be able to shed light of the form of
spelling–sound knowledge that people possess and exploit
on a given occasion.

Appendix

Fifty nonwords used in the multisession experiment. These
nonwords were selected from Mousikou et al. (2017), so that
they vary in terms of how many different responses they elic-
ited across participants in that study (entropy values for select-
ed nonwords ranged from 0.38 to 2.35). The histogram sug-
gests a normal distribution of across-participant entropy
values.

abast, adase, arroste, bairtul, bastle, bebel, bedit, beglets,
blisple, budgord, byfane, clisple, confant, conglire, debome,
debort, drafforn, enmil, esude, evove, exbrafe, finklood,
flactuse, forsose, glorak, hanep, hanslood, huckep, imbroths,
ingote, ingrap, jemsim, jubtle, juckem, miscleaf, muntod,
nasple, outslom, pasake, pazim, practash, rebuse, reote,
shigack, stramble, suldend, tactond, tactosh, turlang, unbove.
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