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Abstract

Copy Number Aberration (CNA) in myelodysplastic syndromes (MDS) study using single nucleotide polymorphism (SNP)
arrays have been received increasingly attentions in the recent years. In the current study, a new Constraint Moving Average
(CMA) algorithm is adopted to determine the regions of CNA regions first. In addition to large regions of CNA, using the
proposed CMA algorithm, small regions of CNA can also be detected. Real-time Polymerase Chain Reaction (qPCR) results
prove that the CMA algorithm presents an insightful discovery of both large and subtle regions. Based on the results of
CMA, two independent applications are studied. The first one is power analysis for sample estimation. An accurate
estimation of sample size needed for the desired purpose of an experiment will be important for effort-efficiency and cost-
effectiveness. The power analysis is performed to determine the minimum sample size required for ensuring at least 100l%
(0vlƒ1) detected regions statistically different from normal references. As expected, power increase with increasing
sample size for a fixed significance level. The second application is the distinguishment of high-grade MDS patients from
low-grade ones. We propose to calculate the General Variant Level (GVL) score to integrate the general information of each
patient at genotype level, and use it as the unified measurement for the classification. Traditional MDS classifications usually
refer to cell morphology and The International Prognostic Scoring System (IPSS), which belongs to the classification at the
phenotype level. The proposed GVL score integrates the information of CNA region, the number of abnormal chromosomes
and the total number of the altered SNPs at the genotype level. Statistical tests indicate that the high and low grade MDS
patients can be well separated by GVL score, which appears to correlate better with clinical outcome than the traditional
classification approaches using morphology and IPSS sore at the phenotype level.
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Introduction

Myelodysplastic syndromes (MDS) are a heterogeneous group

of clonal hematopoietic disorders characterized by peripheral

cytopenia, morphologic dysplasia and susceptibility to leukemic

transformation [1,2]. The classification systems include French-

American-British (FAB), World Health Organization (WHO) and

Internation Prognostic Scoring System (IPSS). Cytogenetic

abnormality is one of the most determinants in the prognosis.

While a large database of cytogenetic data based on metaphase

karyotyping is generated in MDS, and only about 50% clonal

abnormalities of primary MDS are detected by conventional

cytogenetic studies [3–5]. Additionally, there is evidence suggest-

ing that MDS may start with multiple minor clones [6], which may

be missed with conventional cytogenetic studies at the initial

presentation. The detection of copy number variants and related

studies of MDS using single nucleotide polymorphism (SNP) array

data has received increasing attention in recent years and is used

as a powerful tool for molecular karyotyping.

This article is concerned with our latest MDS study using 250 K

Affymetrix SNP arrays. In contrast to other research groups, who

used unsorted bone marrow samples [3–9], we employ flow

cytometry sorting to sort 12 MDS marrow samples into four

different fractions: blastic, erythorid, immature myeloid and

lymphoid. We also exact oral mucosa DNA from buccal swab as

the constitutive DNA samples for each patient. The 250 K SNP

microarray analysis is only conducted with fractions, containing

enough DNA. Using cell sorting, 35 arrays can be generated from

the various fractions derived from 12 MDS patients. This set is split

in a test set and normal references consisting 21 and 14 arrays,

respectively (See Table S1 in supplementary material for details).

One goal of SNP array studies is to detect the regions of Copy

Number Aberration (CNA) in the whole genome. Traditional

methods to infer the copy number from a SNP array can be
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referred to segmentation, modeling and regression approaches.

Olshen et al.[10] proposed a new algorithm called Circular Binary

Segmentation (CBS), which models the data explicitly as a series of

segments, with unknown boundaries and heights, and then one

can set up some performances or optimize an objective function.

In [11], the authors fitted the data to specific models, such as

hidden Markov models, which is implemented in the software

CNAG (Copy Number Analyser for GeneChipH). And in [12] the

authors considered LASSO type regression. The principle of SNP

arrays is very similar to DNA microarrays. SNP arrays contain

hundreds of thousands of immobilized sequences with individual

SNPs and only parts of them have CNA. However, CNA of

individual SNP or very few consecutive SNPs might be caused by

noise. One key question is how patterns with altered SNPs can be

selected first. Therefore, we propose to use a so-called Constraint

Moving Average (CMA) algorithm. To detect the abnormal

regions, the results of this approach are validated by real-time

Polymerase Chain Reaction (qPCR). This pattern-selection based

method picks up the subsets of copy number altered SNPs from

hundreds of thousands of individual SNPs in each array and is

afterwards compared with others, computational and intuitional (a

more detailed description can be found in Materials and Methods

& Discussion and Conclusion). The comparison of the results

indicates that our pattern-selection based CMA algorithm has the

capability to detect both large and subtle results. In order to see

the performance of the CMA algorithm, we also compare the

number of abnormal chromosomes (i.e. the chromosomes that

contain CNA regions) detected by both CMA and CNAG (see the

evaluation of the results in Discussion and Conclusion part). In a

way, it proves that our CMA algorithm sheds lights on clinical

prognosis at the genotype level.

Two independent applications of our CMA algorithm are

studied. The first one is the power analysis. An important aspect

of experimental design is to determine the number of the samples

required in order for the results to be statistically interpretable. It

usually refers to power analysis. To perform power analysis, we

establish a hypothesis first, and then statistical testing is implement-

ed to decide whether the null hypothesis is accepted or rejected. The

power of a test is the probability of getting a statistically significant

result, given that the null hypothesis is false (the flowchart is given in

Result part). Power is proportional to the sample size, significance

level and the effect size, and is also inversely proportional to the

variance in the population. Statistical and biological significance can

be linked through the use of power analysis. And once given the

significance level, the effect size and the desired power, the sample

size can be directly estimated for target power.

To estimate the number of the required samples for the purpose

of genotype array studies, there already exist some standard

methods of power analysis. Like in gene microarray studies, people

usually identify the differentially expressed genes across disease

subtypes by employing some algorithms, such as Principle

Component Analysis (PCA), Significance Analysis of Microarrays

(SAM) [13], which are used to solve the typical curse-of-

dimensionality problem, or just simply using the p-value [14] for

the comparison of each gene across the arrays. Then based on the

assumption of homogeneous sampling from the entire population

of each class, statistical hypothesis test are performed to determine

the minimum sample size by using different test statistics. For

instance, two group t-test based on differences of group means

[15], Wilk’s lambda score [16], or nonparametric Wilcoxon rank

sum test based on differences of rank sums in groups [15]. These

algorithms and statistical measurements have already been

adopted and proved effectively. However, these methods are only

valid in the studies with diseases that have significant homogeneity.

However, the methods mentioned above are due to heteroge-

neity of the disease invalid in MDS studies. In our experiments,

copy number variants in the same regions can hardly be found in

SNP arrays from different patients or even in the different

hematopoietic fractions (erythroid, myeloid or blastic fraction

sorted by flow cytometry) of the same patient. To the best of our

knowledge, there is no existing work that attempts to quantify the

statistical power in for MDS studies. The major obstacle of such

kind of work is that the heterogeneity makes it difficult to design

statistical tests and to give an accurate estimated sample size. This

motivated us to consider other approaches to deal with this issue.

Based on the CNA regions selected by the CMA algorithm,

power analysis can be performed to determine which sample size

can ensure that the detected regions are statistically different from

the normal references (details are shown in the Results part). Since

the heterogeneity of MDS leads to fewer common CNA regions (i.e.

CNA regions that are in the same location for different samples)

among the sample arrays, the required sample sizes may vary in

order to make sure that the detected specific regions will be

significantly different from the reference in the sense of statistical

reliability. Therefore, we formulate the problem to detect at least

100l% (0vlƒ1) CNA regions at a desired power. The minimum

number of array samples required in the experiments can then be

estimated by using statistical tests to ensure the statistically

significance and expected power. The adjustable proportional

parameter l allows us to determine the needed sample sizes for

detecting the desired regions. As expected, power increases with

increasing sample size with a fixed significance level.

The second application of our pattern-selection based CMA

algorithm is to identify the different MDS grades of patients. As we

know, the well separated stages of MDS patients (high and low

grades MDS patients) can guide the prognosis and survival analysis.

The existing methods for discrimination of the grade of MDS

patients can refer to both cell morphology and International

Prognostic Scoring System (IPSS) score, which belong to methods at

the phenotype level. As already mentioned, due to the heterogeneity

reflected in the SNP arrays to study this complex group of diseases

and consequently the lack of common CNA regions, the traditional

classification approaches generally used for analysis at genotype

level are no longer available Therefore, we need a new approach to

overcome this obstacle. Based on the CMA algorithm, the Risk

Likelihood Function and General Variant Level (GVL) score are

proposed for each array. The GVL score integrates the information

of CNA, such as the number of abnormal chromosomes, the total

number of altered SNPs, and return a unified measurement to make

the different arrays comparable. Afterwards related analyses

according to GVL are considered to discriminate between high

and low grade MDS patients. (It is worth to mention that we pay

attention to individual patient instead of single arrays here. If we

have more than one array for one patient, we need to calculate the

GVL for all arrays of this patient, and the average GVL score will be

the final GVL score for this patient.) Two group t-tests indicate that

the GVLs are significantly different for high/low grade (defined by

both cell morphology and IPSS score) MDS patients. It gives us a

hint that we can set a critical value of GVL as a classification

criterion for SNP array analysis. .The classification results achieved

with GVL scores at the genotype level appear to be consistent with

that of the cell morphology and the IPSS scores. Since the

discrimination of the high/low grade MDS is an important issue in

the prognosis and the analysis of the chances of survival for the

patient, our proposed GVL score gives an analytical criterion for the

analysis using SNP arrays.

Our novel contributions are: (i) we develop a new pattern-

selection based method to detect the regions of CNA for a

MDS Study by SNP Array
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heterogeneity disease such as MDS by using sorted bone marrow

SNP arrays. Real time PCR results prove that besides large CNA

region, the CMA algorithm also presents an insightful discovery of

subtle regions; (ii) based on the results of the CMA algorithm, two

independent applications are studied. (a) Sample size estimation of

the experiment based on selected patterns can be easily done by

using statistical. (b) According to the results of the CMA algorithm,

the high and low grade MDS patients can be well separated by

using the proposed GVL score, which gives a unified measurement

to make it comparable among the different arrays. (iii) For

comparative analysis, we demonstrate that the number of the

abnormal chromosomes detected by CMA is significantly different

between patients suffering from high grade and those affected by

low grade MDS. Such difference cannot be observed using CNAG.

The comparison of different algorithms indicates that our method

is less complicated and also computable for SNP arrays with high

resolution.

Materials and Methods

The data-set
Altogether, 35 SNP arrays are generated from 12 MDS

patients, 21 and 14 of are treated as test samples and references,

respectively. Genomic DNA from each fraction was extracted with

Qiagen Allprep RNA/DNA Mini Kit (Qiagen Valencia, CA) and

stored at 280uC. Constitutional/control DNA consisted of buccal

mucosa and lymphoid fractions of the patients and one marrow

sample without evidence of MDS sorted into blastic, erythroid,

and myeloid fractions (see Table S1. in supplementary material).

The quality and quantity of genomic DNA were assessed by

NanoDrop ND-1000 spectrophotometer (NANoDrop Technolo-

gies, Wilmington, DE). Genotyping is performed using 250 K

NspI SNP-microarray chips (Affymetrix, UK) and processed

according to the manufacture’s instruction. 250 ng of genomic

DNA was digested with NspI for 2 hours at 37uC followed by

adaptor ligation, PCR amplification, fragmentation, labeling and

hybridization. Three micro-liter of the PCR and 4.5 ul of the

fragmentation product were electrophoresed to confirm the

processing of the DNA. The Affymetrix 450 fluidics station and

the Affymetrix gene scanner were used to wash, stain and scan the

arrays. Signal intensity and SNP calls are analyzed using CNAG

and Genotyping Console.

Due to the high variability of the mean intensities across

different SNP arrays, normalization is necessary to make different

SNP arrays comparable [17]. In this study, the sums of intensities

of the perfect match probes for alleles A and B are normalized

using invariant set method by [18,19]. After normalization, the

log-2-ratio features are extracted using the ‘best-fit’ method also

used in CNAG [20].

Pattern-selection based CMA for CNA region detection
Consider the pair of tumor and normal samples from the same

patient (but different tissue), the SNP is genotype call conflicting in

these pair samples, if the genotype of one SNP is homozygous in

the normal sample, but heterozygous in the tumor sample, or both

are homozygous but have different alleles. In order to reduce the

risk of false positives or false negatives in the final results, SNPs

with conflicting genotype call between samples and references are

filtered right at the beginning. Table 1 displays the number of

SNPs with conflicting genotype calls considering all arrays. It also

the probabilities of such conflicts occur due to random errors,

which are calculated assuming that the observed conflicting SNPs

completely caused by random errors follow the binomial

distribution B(n, p), with the parameters n denoting the total

number of SNP arrays (in our case, n = 35) and p being calculated

as follows

p~
# Genotyping Conflicting SNPs

262264|35
, ð1Þ

where 262264 is the total number of the SNPs in one array. Then

the probability of the observed SNPs in all arrays caused by

random error can then be calculated by

Pr ob random error with k SNPsð Þ~
35

k

� �
pk 1{pð Þn{k ð2Þ

The smaller the probability is, the higher is the possibility that the

genotype call is wrong.

By virtue of the small probabilities that indicate the conflicting

SNPs appearing at least in 3 of the arrays, only the remaing

235413 (171057+38094+26262) SNPs will be analyzed in the next

stage.

In the next step, we use Genotyping Console to automatically obtain

the list of SNPs spanning over the regions of known CNA or

segmental polymorphism. These SNPs were reported in the

literatures, indicating the occurrence of CNA in healthy

population (population without MDS). By filtering those SNPs,

170795 SNPs in each array are finally left for the further analysis.

On account of CNA in part of the arrays, we need to detect

those regions first. Among the methods for copying number

estimation, CNAG and dChip receive more concerns, especially

CNAG, because CNAG uses a different normalization method

which can remove the baselines of raw data. Both of them use the

Hidden Markov Model (HMM). However in the HMM, only the

current observation and the previous hidden state are employed to

infer the current hidden state, which makes it easily susceptible to

false detections due to strong noisy data. Here we propose a

straightforward method making use of the fact that the copy

Table 1. Results for genotype conflicting analysis for 35 arrays.

# conflicting arrays 0 1 2 3 4 5

# SNPs 171057 38094 26262 10919 7069 3770

Prob. of random errors 0.362959 0.142516 0.036324 0.006756 0.000977

# conflicting arrays 6 7 8 9 10 .10

# SNPs 2384 1242 734 386 216 181

Prob. of random errors 0.000114 1.12E-05 9.22E-07 6.56E-08 4.07E-09 2.33E-10

E.g. there are 3770 genotyping conflicting SNPs, each of which appears in 5 arrays, and if such conflicts are just due to random error (i.e. can not be regarded as wrong
genotyping calls), the probability is 0.000977.
doi:10.1371/journal.pone.0005054.t001
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number is a constant in one region. Copy number variations of

single or fewer SNPs may not be correct because noise in the data

and therefore we focus on detecting a pattern of copy number

variations in this study. In order to use the contextual cues, a so-

called Constraint Moving Average (CMA) algorithm with length

five is performed. For all the maintained SNPs in genome, ranging

from chromosome 1 to chromosome 22, every five consecutive

SNPs are taken into account as one region. We check the average

log-2 ratio of each region in samples, by comparing them with

their corresponding references. We select a specific region as an

abnormal one if it satisfies the following condition C.

C (1) The mean of the log-2 ratios for a set of consecutive five

SNPs in a region across the chromosomes satisfies either .0.35

or ,20.35, which correspond to the critical values of a copy

number of three and one, respectively.

(2) The standard deviation (SD) of those five log-2 ratios should

be ,0.15.

The threshold of log-2 ratio here is 60.35, the same as in [17].

Finally, all the selected CNA regions in the samples are

recombined in order to exclude the overlapping cases. Figure 1

illustrates the CMA algorithm for MDS-2 Myeloid.

The CMA algorithm reduces the complexity of the model, and

fewer parameters are employed, which makes it robust and easy to

be performed and computable for high resolution SNP arrays. In

addition, the mean of the log-2 ratio gives an intuitional hint of the

real copy number variations and together with the restriction on

the standard deviation. It avoids false positives caused by strong

noises. Compared with the results of CNAG, the proposed CMA

algorithm presents an insightful discovery of subtle regions, which

could be ‘‘missed’’ by other approaches (like CNAG and CBS). The

results are supported by real time PCR. Table 2 shows the region

located in chromosome 7q34 in MDS-3, starting from the 85974th

SNP and ending at 85978th SNP. Blast and Erythroid fractions are

used as test samples, and Lymphoid is the corresponding

reference. These three fractions are from the same patient. The

region covers the gene FOXP2. CMA results indicate that,

compared with the reference Lymphoid, only Erythroid has

deletion in this region. The result is supported by real-time PCR

(see Table 2; see also in [21]). However, this CNA region is missed

by CNAG and CBS.

Results

Our CMA algorithm has the capability to detect both large and

subtle regions. The comparison of the results with other algorithms

and the choice of parameters will be discussed in the Discussion

and Conclusion section. The CMA approach has two independent

applications. The first one is the power analysis to estimate the

required sample size that ensures statistical difference between the

detected regions and the normal references. We also want to pay

attention to the MDS patients. Based on the results of the CMA

algorithm, we propose to distinguish the high grade MDS patient

from the low grade one by using the GVL scores. These two

applications are exhibited in the following two subsections.

Minimum sample size estimation by power analysis
Using the pattern-selection based CMA algorithm, the CNA

regions can be detected for each array. Figure 2 is a sketch map of

the CNA regions detected by CMA algorithm. For each selected

CNA regions all across the genome, the behavior may not be

accordant in different arrays. Some appear repeatedly for different

sample arrays (CNA regions marked with green circle), whereas

some others emerge rarely (CNA regions marked with red circle).

The goal of power analysis is to determine the minimum sample

sizes required to ensure that the detected CNA regions are

statistically different from normal references, (rather than

occurring randomly). For a specifically selected CNA region, we

use the average log-2 intensity to estimate the copy numbers. Then

we compare the average intensity of the same regions between

samples and references. The hypothesis of the power analysis can

be formulated as the testing of the null hypothesis H0 against the

alternative hypothesis H1.

Figure 1. Illustration of the CMA algorithm. MDS-2 Lymphoid is the reference, and MDS-2 Erythroid is the test sample. In the test sample, the
average log-2 intensities of every five consecutive SNPs in the circled region are higher than 0.35, with the small SDs (, = 0.15). Selected overlapping
regions are merged into a large region.
doi:10.1371/journal.pone.0005054.g001

Table 2. Output of the CMA algorithm results for a region
located in chromosome 7q34 and the corresponding real-time
PCR results.

Sample Fraction Mean SD PCR

MDS-3 Lymphoid (control) 0.0951 0.1220 1

Blast (test sample) 0.1869 0.1724 0.91

Erythroid (test sample) 0.3563 0.1229 0.65

Three fractions from the same patient are displayed. The Lymphoid is the
normal reference. Blast and Erythroid serve as test samples. The log 2 ratio
behaviors them are different. As normal one, the log 2 ratio of Lymphoid is
closed to 0. There is a significant loss in Erythroid, but for Blast, the log 2 ratio is
not low enough. The real time PCR of Lymphoid is normalized as 1. Comparing
with the reference, Erythroid is concluded as copy number aberration. However,
such abnormality can not be observed in Blast.
doi:10.1371/journal.pone.0005054.t002
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H0: For the specific region, the average intensity between

samples and references is same (log-2 ratio = 0),

H1: For the specific region, the average intensity between

samples and references is significantly different (log-2 ratio?0).

To estimate the sample size, usually one refers to power

analysis. There are four quantities in the power analysis, sample

size, effect size, significance level a and power. With three known,

the fourth will be determined. In statistics, the terms Type I error

(also referred as significance level a, of false positive) and Type II

error (also known as b error, of false negative) are used to describe

possible errors made in a statistical process (the target power is

usually defined as 1{b). They are usually called as ‘‘two sources of

error’’, namely,

a: The error of rejecting a hypothesis that should have been

accepted;

b: The error of accepting a hypothesis that should have been

rejected.

Another principal challenge posed in the field of power analysis

is how to define the effect size. The effect size is a measure of

biological significance. It gives the difference between the results

predicted by the null hypothesis and the actual state of the

population being tested. In a clinical study, when the interest is to

target the power for different effect sizes, sample size can be

estimated to ensure that the endpoint with the smallest effect size is

sufficiently powered with a fixed significance level a. Thus, if the

measurements are meaningful on a practical level, it is encouraged

to give the effect size by one’s experience. One of most accepted

opinions to determine the effect size is the one mentioned in [22],

where 0.2 indicates of a small effect, 0.5 a medium and 0.8 a large

effect size.

Due to the limited amounts of SNP arrays used in our MDS

study, it is difficult to define an appropriate effect size empirically.

Therefore, we prefer to use the standardized effect size from [23],

defined as

di~
mi{m0j j

SDi

, ð3Þ

for the selected abnormal region i, where m0 is the critical value set

as 0 (the log-2 ratio is 0 if the average intensity is not different

between the samples and the references) in our case, mi and SDi

are the mean and standard deviation of all sample for a specific

region, respectively.

When H0 is true, the test statistic T (see the definition in

Figure 3.) follows t distribution with degree of freedom N{1 (N is

Figure 2. CNA regions selected by CMA algorithm. Compared with the references, the regions with circles indicate the CNA regions. For
different samples, the CNA regions may occur in the different locations. Some appear repeatedly (the ones with green circles), and some others rarely
occur (the ones with red one).
doi:10.1371/journal.pone.0005054.g002
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the number of total test arrays); when H1 is true, T follows the

non-central t distribution with degree of freedom N{1 and non-

central parameter di. Given a type I error a and a type II error b,

and the formulation of effect size di, the power analysis algorithm

for the estimation of minimum sample size follows the flowchart

showing in Figure 3, where Si
� is the estimation standard

deviation of test samples.

Since the repeatability number of each detected CNA region is

different, the effect size varies. It results in altered sample sizes for

the detection of the different specific regions. For some regions, the

effect sizes are so small that we can hardly see any CNA region in

the test samples. Sometimes, only a fraction of the CNA regions

are receiving attentions according to the purposes of experiments.

Especially for those frequently appearing regions, only a fewer

samples will be required for statistical interpretation. While for

rarely emerging regions, we need a huge sample size to ensure the

statistical significance of tests. Therefore, the sample size depends

on the desirability of the study. It does not necessarily require

identification of all abnormal regions at the same time. Accurate

sample size estimation will be important to an efficient and

economical study design. To implement it, we first collect the

abnormal regions derived by CMA algorithm. For each detected

region i, we calculate the corresponding effect size di, and sort

them decreasingly. A proportion parameter l (0vlƒ1) now is

employed, and the number of sample arrays required to detect at

least 100l% can be obtained following the methods shown in the

flowchart of Figure 3, with the effect size chosen as the k-th one in

the decreasing sequence, where k denotes the smallest integer

larger than 100l. Usually, for frequently appearing regions, the

effect sizes are much larger than that of others, which implies that

smaller sample sizes are needed.

According to our CMA algorithm, in total 1117 of the detected

regions are non-overlapping. Power analysis is executed according

to the flowchart in Figure 3. We calculate the effect sizes (See

equation (3)) for each region. The sorted effect sizes range from

0.0004 to 1.062, the median and mean are 0.282 and0.317,

respectively. 889 out of 1117 are less than 0.5, which implies that

most of them are small ones. The average of those less than 0.5

(the 889 ones), is only 0.229 (low), while the average of the rest is

0.652 (high). Figure 4 shows the sample size under different views

of effect size with fixed significance level at 0.05.

Table 3 summarizes the sample sizes needed for a detection

proportion from 40% to 80%. With the estimated sample sizes,

target power can be reached under the most frequently used

significance level 0.1, 0.05, 0.01. As expected, an increase of the

desired proportion increases requires more and more samples.

Since for most of the detected regions, the corresponding effect

sizes calculated by equation (3) are small ones, we suggest that one

can choose effect sizes from 0.2 to 0.3 can be chosen for a rough

estimation.

Figure 3. Power analysis algorithm for the estimation of the
minimum sample size.
doi:10.1371/journal.pone.0005054.g003

Figure 4. Power curves and sample size estimation under different views of effect sizes. The significance level is set as 0.05.
doi:10.1371/journal.pone.0005054.g004
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The discrimination of patients with high and low grade
MDS

The discrimination of high and low grade of MDS patient is an

important issue in the prognosis and survival analysis of MDS

studies. Biologists use cell morphology and the IPSS score to

determine the assessment of patient’s MDS severity. Those kinds

of classification are important to clinical survival analysis in the

future. However, at the genotype level, to the best of our

knowledge, there is no relative research focusing on this issue. As

an application of the proposed CMA algorithm, we first define the

Risk Likelihood Function and the General Level (GVL) score as in

(4) and (5); then the GVL score will be used for the discrimination

between the high and low grade MDS. Some statistical tests show

that, high and low grade MDS can be well separated by the

definition of GVL. The difference between the two groups is

significant, which implies that it can give a quantitative criterion

for the classification when using SNP arrays.

The Risk Likelihood Function. The Risk Likelihood

Function defined as follows, takes account of two aspects, one is

the chromosome abnormalities, and other one is the number of

altered SNPs.

f ni,lið Þ~ 1

3
ln 1z

ni

n

� �
z

2

3
1{e{li=5
� �

, ð4Þ

where ni is the number of abnormal chromosomes in array i, n
stands for the average abnormal chromosome of the test samples,

and li denotes the total number of the abnormal SNPs across the

genome in array i, setting the denominator as 5 in the power due

to the length of the CMA algorithm (also see Materials and

Methods). The first term focuses on the proportion of abnormal

chromosomes across the whole array. Since the slowly varying

function ln 1zxð Þ*x, as x?0, when there are a fewer the

abnormal chromosomes (ni is small), it will not change much; but

for the larger one, it varies slowly. The slowly varying function will

eliminate the influence of extremely large or small ni. The second

part is an analogy to the Haldane map function defined in hidden

Markov model [18]. Besides the altered SNPs, the risk function

also includes the number of abnormal chromosomes of individual

SNP array, and the overall average number of abnormal

chromosomes of the all population. Obviously, the array with

more abnormal chromosomes and more altered SNPs will suffer

high risk.

The General Variant Level (GVL). The General Variant

Level presenting the log-2 ratio variant with the Risk Likelihood

Function can be defined as

gi~f ni,lið Þ
Xni

j~1

vi,j si,j

�� ��, ð5Þ

where si,j

�� �� describes the absolute value of average intensities of the

j-th chromosome in array i. The GVL integrates the risk function

and quantity of CNA regions with weights vi,j . It depicts the

overall information of the SNP array. Here we take the absolute

values of the average intensities, because our hypothesis focuses on

whether the copy number changes or not for the samples changes

in contrast to the references. We only need to see how far they

deviate from normal. We give the weights vi,j to the absolute value

of average intensities according to the proportion of the number of

the abnormal regions appearing in all samples. For instance, in the

Myeloid fraction of MDS-7, there are three abnormal

chromosomes, chromosome 3, 4 and 18. In the total of 21

samples, 4 arrays contain abnormal regions in chromosome 3, 6

arrays in chromosome 4, and 5 arrays in chromosome 18. Hence,

in this case the weight v is v~ v7,1,v7,2,v7,3ð Þ~ 4
15

, 6
15

, 5
15

� �
.

Though there are only a few common regions among the

sample arrays, using the proposed CMA algorithm and the GVL

score, we make the arrays comparable. Thereby, high and low

grade MDS patients can be well separated. Table 4 displays the

discrimination of 12 severe and less affected patients by

morphology and IPSS score. The 12 patients are separated into

two groups by morphology; one is high grade (H), and other is low

grade (L). By IPSS, there are four different grades, i.e. low (L),

inter-median I (Int-1), inter-median II (Int-2), and high (H). We

merge the low and inter-median I as a low group; inter-median II

and high as a high group in IPSS classification. Then for each

array, we calculate its GVL.

From Table 4, we notice that the number of abnormal

chromosomes for the low grade MDS cases is usually less than

5, in contrast to the high grade ones. Also, the total number of the

altered SNPs is much smaller for low grade MDS (, = 30) than

that of high grade one. The argument of the classification results

by cell morphology is acceptable in the sense that to set critical

value of the average GVL score of a patient as 0.2. MDS-7 is a

special case. The morphological classification shows no significant

evidence to which grade it belongs. It is claimed as uncertain.

However, by our CMA algorithm and the GVL score calculation,

its two fractions exhibit different behaviors, with lower GVL score

in the Myeloid and higher GVL score in Blast. However, the

Table 3. Sample size estimation to detect at least l~0:4, 0.5, 0.6, 0.7 and 0.8 truly altered regions for the desired power up to 0.8
and 0.9, with different significance level.

l d a~0:1 a~0:05 a~0:01

P = 0.8 P = 0.9 P = 0.8 P = 0.9 P = 0.8 P = 0.9

0.4 0.344 54 74 69 91 102 129

0.5 0.283 79 109 101 134 150 190

0.6 0.230 118 163 150 200 224 284

0.7 0.171 215 296 272 364 406 516

0.8 0.108 528 731 671 897 998 1271

(P: Power).
doi:10.1371/journal.pone.0005054.t003
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average GVL score seems high. Another interesting case is MDS-

1. Although it classified to high grade by cell morphology,

according to IPSS score, it is a low grade MDS. However, we can

see a large scale of deletion in chromosome 7 for both Blast and

Erythroid fractions; hence the average GVL for this patient is

high. Since the GVL of MDS-1 is in favor of the classification

result by morphology, we have reason to define MDS-1 as high

grade.

Based on the classification results by cell morphology and IPSS

score, we perform the two-group t-tests to compare the GVL

between high and low grade MDS. Results are listed in Table 5.

The tests include two cases; one is without the uncertain MDS-7,

and the other is with MDS-7. The p-value shows that the GVL

scores of two groups are significantly different, which indicates that

high and low grade MDS can be well separated by using the

proposed GVL score. Even though the GVL results tend to have a

minor discrepancy compared with IPSS, the t-test results can still

prove the significance difference between two groups. Therefore,

the results of GVL appear to correlate better with clinical outcome

than the traditional classification approaches using cell morphol-

ogy and IPSS score.

Discussion

With the proposed CMA algorithm, we detect the CNA regions

using the mean and SD of every five consecutive SNPs as criteria.

Actually, computing the mean in a region can be regarded as a

constant regression to predict the real log-2 ratios. We have also

tried different methods than constant regression, such as local

linear regression, quadratic regression to select the CNA regions

by the threshold of mean and SD. Most of the selected CNA

regions of CMA algorithm can be included by performing the

local linear regression, because the local linear regression will not

change the mean of a region. However, due to the correction of

SD, it almost abolishes the restriction of SD, which leads to

overestimation, especially in the case of heavy noise data. Since the

quadratic regression will essentially change both the mean and SD

of a specific regions and cannot give an intuitionist view of the log-

2 ratio, hence it is not robust enough.

Statistical approaches for analyzing copy number data are

aimed at detecting the regions of genomic alteration. One

Table 4. The average GVL of MDS patients and the discrimination between the high grade MDS and the low grade MDS by both
cell morphology and IPSS score.

Sample Fraction ni li GVL Average
High/Low by
morphology IPSS

MDS-1 Blast 8 365 0.3871 0.3835 H Int-1

Erythroid 6 53 0.3799

MDS-2 Myeloid 12 74 0.3581 0.4011 H Int-2

Erythroid 15 174 0.4441

MDS-6 Blast 4 16 0.3336 0.2725 H Int-2

Erythroid 3 15 0.3119

Myeloid 1 6 0.1719

MDS-8 Blast 5 1610 0.3635 0.3561 H Int-1

Erythroid 3 875 0.3286

MDS-10 Myeloid 6 4586 0.3742 0.3742 H H

MDS-3 Blast 0 0 0 0.1123 L Int-1

Myeloid 0 0 0

Erythroid 4 30 0.3369

MDS-4 Myeloid 0 0 0 0.0895 L L

Erythroid 1 5 0.1790

MDS-5 Erythroid 1 5 0.1808 0.1808 L L

MDS-9 Erythroid 1 5 0.1939 0.1939 L L

MDS-11 Myeloid 0 0 0 0 L Int-1

MDS-12 Myeloid 0 0 0 0 L Int-1

MDS-7 Blast 15 198 0.4264 0.3842 uncertain Int-1

Myeloid 3 38 0.3421

A GVL of zero implies that there is no selected abnormal region in the corresponding arrays.
doi:10.1371/journal.pone.0005054.t004

Table 5. Two group t-test results for the discrimination of
MDS grade of using General Variant Level score in the sense
of cell morphology and IPSS.).

Morphology IPSS

Without MDS-7 t-value df p-value t-value df p-value

9.3989 9 0.0001 4.2432 9 0.0022

With MDS-7 t-value df p-value t-value df p-value

5.6028 10 0.0002 3.6182 10 0.0047

The cutoff value of copy number one and three in CNAG is 20.35 and 0.35, and
the window size of moving average is 5. The t-value is the value of statistics in
the t test, and df is the degree of freedom of the test.
doi:10.1371/journal.pone.0005054.t005
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alternative method is to model the data explicitly as a series of

segments, with unknown boundaries and heights, and then one

can set up some performances or optimize an objective function,

like proposed in [19] to use a new algorithm called Circular Binary

Segmentation (CBS). Others have fitted the data as specific

models, such as hidden Markov model in [18], and LASSO type

regression in [20]. In essence, our algorithm is a kind of regression-

based method. We compare it with other methods to evaluate its

efficiency and the accuracy the results. First of all, we use the

LASSO based penalized least square estimation discussed in [20].

We define the same cutoff values as the authors. However, the

algorithm fails when applied to our data. It takes more than

6 hours for each sample array to run, but nothing can be found.

The examples shown in [20] are CGH data with about

2000 points in each array, whereas our data set contains 250 K

single SNPs in each array. The failure might occur because the

LASSO based method is time-consuming for high resolution SNP

array. Table 4 compares the selected abnormal regions in

chromosome 7 by CMA (regression based method) algorithm

with CNAG (HMM based method) and CBS (segmentation based

method). When the abnormal regions are large, the results are

consistent for the different methods. However, although HMM

used in CNAG gives a reasonable inference of copy numbers, it

does not treat the log-2 ratio in a local region as a pattern, some

individual SNPs are reported as abnormal ones, which are not

reliable. Sometimes CBS can find many small regions with very

fewer altered SNPs, but the SDs of these regions may be much

larger than what we expected, which results in a high number of

false positives. Furthermore we want to take a look at the mean

and the SD of the remaining regions that were found by CNAG

and CBS, but missed with the CMA algorithm in Table 6. As

displayed in the brackets, the CMA algorithm drops those regions

mainly because that some of them consist just single altered SNPs,

which might be caused by the noise in the data; and also because

some dissatisfy the thresholds (the fluctuations (SD) in a local

region are too large). This implies that the proposed CMA

algorithm is robust. Another advantage is that the CMA algorithm

dramatically reduces the complexity of the model, and enables an

insightful discovery for subtle discovery.

Next we want to compare the CNA regions discovered with the

CMA algorithm and CNAG. The average number of chromosomes

containing CNA regions and the corresponding standard devia-

tions are listed in Table 7. The parameters in CNAG are set

consistent with CMA, i.e. the length of moving average is 5 (the

default is 10); the cutoff values of copy number one and three are

20.35 and 0.35, respectively (the default are 20.49 and 0.30,

respectively). Using the CMA algorithm, the classification results

for cell morphology show that the number of abnormal

chromosomes that CNAs (for cases with multiple fractions tested,

the average abnormal chromosomes of all fractions are used) is

significantly smaller (p-values are close to zero) in low grade MDS

cases than it is in patients with high MDS cases using CMA. Such

difference cannot be observed by CNAG. The same conclusions

can be made in IPSS scores classification. In addition, more

comparisons with different parameters in CNAG are made. Notice

that a chromosome may only have one single altered SNP

according to the CNAG’s output; therefore, we also exclude those

chromosomes in the comparison in order to reduce the false

positives. The conclusion is quite similar as what we display is

Table 7 (See Table S2, S3, S4 in supplementary material for

details).

At last we want to discuss the length of CMA algorithm, as it is a

critical parameter for the success of our study. Notice that the

overlapping regions selected by the CMA algorithm will be

merged to large and non-overlapping regions; therefore, the length

of final copy number aberration regions may not be fixed at five.

In this study, we can regard the length five as an initial length. Our

choice is based on the real-time PCR results, indicating that the

copy number aberration region will not be selected, if we change

the length to six, due to the dissatisfaction of both mean and SD

Table 6. Comparison of selected abnormal regions in
chromosome 7 by CMA algorithm, CNAG and CBS. Y and N
denote if the region is selected or not, respectively.

Arrays Regions CMA CNAG CBS

MDS-8 B Chr 7 monosomy (validated by PCR) Y Y Y

MDS-8 E Chr 7 monosomy (validated by PCR) Y Y Y

MDS-1 B 7q34–7q36.1 Y Y Y

MDS-3 E 7q34 (validated by PCR) Y N N

MDS-1 B 7p21.3 Y N N

MDS-2 E 7p14.2 Y N N

MDS-1 E 7q14.1 (mean = 0.56; SD = 0.47) N Y N

MDS-1 E 7q34 (mean = 0.25; SD = 0.20) N Y N

MDS-2 E 7p31.1 (mean = 0.24; SD = 0.34) N Y N

MDS-2 M 7p31.3 (single SNP) N Y N

MDS-2 M 7q34 (mean = 0.29; SD = 0.28) N Y N

B: Blast; E: Erythroid.
doi:10.1371/journal.pone.0005054.t006

Table 7. Copy number aberrations comparison of CMA algorithm and CNAG (MDS-7 is excluded).

CMA H L t-value df p-value

mean SD mean SD

Morphology 5.93 2.83 0.64 0.56 7.07 9 0.0001

IPSS 6.22 3.67 1.85 2.44 4.72 0.0011

CNAG H L t-value df p-value

mean SD mean SD

Morphology 14.30 2.96 9.17 5.03 2.01 9 0.0753

IPSS 12.38 1.67 11.18 5.68 0.35 0.7344

Two-group t-test are performed under the null hypothesis, that mean of two groups are no significant different.
doi:10.1371/journal.pone.0005054.t007
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for the log-2 ratios of six consecutive SNPs’. The mean and the SD

for a length of five are 20.356269 and 0.1229, respectively.

However, they change to 20.296754 and 0.1826 for a length of

six. Furthermore, we think that if the initial length is too short, we

may find much more false positive regions. By trying different

lengths, we conclude that the proposed one of five is the most

suitable and it can be the minimum length for the selection of

CNA regions. However, the user may change the initial length

appropriate to the data. If the user has prior knowledge about the

data, we recommend that the initial length should be chosen

according to the prior information.

Supporting Information

Table S1 Details of the used SNP arrays. The references are

marked in shade.

Found at: doi:10.1371/journal.pone.0005054.s001 (0.05 MB

DOC)

Table S2 Copy number aberrations comparison of CMA

algorithm and CNAG (MDS-7 is excluded). The cutoff value of

copy number one and three in CNAG is 20.35 and 0.35, and the

window size of moving average is 5 (chromosomes with only single

altered SNP excluded). Two-group t-test are performed under the

null hypothesis that the means of two groups are no significant

different.

Found at: doi:10.1371/journal.pone.0005054.s002 (0.03 MB

DOC)

Table S3 Copy number aberrations comparison of CMA

algorithm and CNAG (MDS-7 is excluded). The cutoff value of

copy number one and three in CNAG is 20.49 and 0.30 (default

setting), and the window size of moving average is 5. Two-group t-

test are performed under the null hypothesis that the means of two

groups are no significant different.

Found at: doi:10.1371/journal.pone.0005054.s003 (0.03 MB

DOC)

Table S4 Copy number aberrations comparison of CMA

algorithm and CNAG (MDS-7 is excluded). The cutoff value of

copy number one and three in CNAG is 20.49 and 0.30 (default

setting), and the window size of moving average is 5 (chromosomes

with only single altered SNP excluded). Two-group t-test are

performed under the null hypothesis that the means of two groups

are no significant different.

Found at: doi:10.1371/journal.pone.0005054.s004 (0.03 MB

DOC)
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