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Summary 
Experiments were conducted to determine whether human lymphokine-activated killer (LAK) 
cells are cytotoxic against cells infected with Toxoplasma gondii. Nylon wool nonadherent (NWNA) 
peripheral blood lymphocytes, as well as purified natural killer cell (NK) (CD3- CDt6 + 
CD56 +) and T (CD3 + CD16- CD56-) cells obtained from five healthy T. gondii seronegative 
volunteers exhibited minimal cytotoxic activity against T. gondii-infected cells. When standard 
LAK (S-LAK) cell preparations were induced by incubation of NWNA cells with recombinant 
interleukin 2, induction of remarkable cytotoxic activity against T. gondii-infected cells was observed 
in LAK cell preparations from each of the volunteers. The phenotype of the LAK precursor 
and effector cells varied depending on the target cell used. Whereas the precursor and the effector 
cells of most of the LAK activity against K562 and Daudi cells were cells with NK phenotype, 
when T. gondii-infected cells were used as targets, both cells with NK and T cell phenotypes 
were precursors and effectors of the lysis. When cytotoxic activity of S-LAK cells was compared 
with the activity of adherent LAK (A-LAK) cells, A-LAK cells displayed higher cytotoxic activity 
against T. gondii-infected cells, as well as against K562 and Daudi cells. Cold target inhibition 
experiments suggested that there is a subset of LAK effector cells capable of lysing both T. gondii- 
infected cells and Daudi cells, whereas other subsets preferentially or exclusively lyse one of these 
target cells. 

Tt oxoplasma gondii is an obligate intracellular protozoan 
hat infects humans throughout the world. Although 

T. gondii is a relatively uncommon cause of disease in im- 
munocompetent individuals, those with a deficiency in cell- 
mediated immunity (i~., AIDS patients, those on high dosage 
of cytotoxic drugs or corticosteroids, newborns, and fetuses) 
may develop severe disease because of this parasite (1, 2). 

Cell-mediated immunity plays a major role in protection 
against T. gondii (3-5). Although both CD4 + and CD8 + T 
lymphocytes are important in this resistance, CD8 + T lym- 
phocytes appear to be the paramount subset in the protective 
response (4, 5). CD8 + T lymphocytes may provide protec- 
tion through lysis of cells infected with the parasite (6-8) 
and/or secretion of cytokines (5). 

The role in T. gondii infection of cells that do not require 
prior sensitization with antigen to respond remains controver- 

sial. Whereas some investigators have reported that NK cells 
are cytotoxic against extracellular tachyzoites of T. gondii (9, 
10), others have been unable to reproduce this observation 
(11, 12). Our previous observation that administration of IL-2 
to mice resulted in significant survival of these animals after 
an ordinarily lethal challenge with T. gondii (13) raised the 
possibility that lymphokine-activated killer (LAK) 1 cells 
confer protection against this parasite. 

LAK cells are effector cells that upon culture with Ib2 
become cytotoxic for NK-resistant targets, including fresh 
autologous and allogeneic tumor cells and tumor cell lines 
(14, 15). LAK cells have been proven effective as adoptive 
immunotherapy in animal models of metastasic tumors and 
viral infection, as well as in patients with some forms of cancer 
(16-20). We considered it interesting to determine whether 
human LAK cells have cytotoxic activity against cells infected 

A portion of this work was presented at the National Meeting of the 
American Society for Clinical Investigation, Baltimore, MD, 1-4 May 1992. 
Clin. Res. 40:175a. 

i Abbreviations used in this paper: A-LAK, adherent lymphokine-activated 
killer; CM, complete medium; DT, dye test; NWNA, nylon wool 
nonadherent; S-LAK, standard lymphokine-activated killer. 
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with T. gondii. In addition, we studied the activity of LAK 
cells termed adherent LAK (A-LAK) cells, which have a high 
cytotoxic activity against tumor cells (21-24) and superior 
in vivo antimetastatic activity compared to standard (unsepa- 
rated) LAK (S-LAK) cells (25). 

M a t e r i a l s  a n d  M e t h o d s  

Preparation of PBL. PBMC were obtained after signed consent 
from normal volunteers who were seronegative for T. gondii anti- 
body in the agglutination test and Sabin-Feldman dye test (DT) (26, 
27). PBMC were isolated from heparinized venous blood by cen- 
trifugation on Ficoll-Hypaque gradients (Pharmacia LKB Biotech- 
nology Inc., Piscataway, NJ). Cells were collected from the gra- 
dient interphase and washed three times with RPMI 1640 medium 
(Gibco Laboratories, Grand Island, NY). Cells were then resus- 
pended at a concentration of 20 x 10 + cells/ml in complete 
medium (CM) consisting of RPMI 1640 supplemented with 2 mM 
t-glutamine, 5 x 10 -s M 2-ME, 100 U/ml penicillin, 100 #g/ml 
streptomycin, and 10% heat-inactivated, DT-negative pooled human 
AB + serum (Irvine Scientific, Santa Aria, CA), loaded onto a 
prewashed nylon wool column (Polysciences, Inc., Warrington, PA), 
and eluted from the column after a 1-h incubation at 37~ 5% 
CO2. Removal of monocytes and B cells was confirmed by FACS | 
analysis (Becton Dickinson & Co., San Jose, CA). 

Isolation of NK and T Cells. Purification was performed fol- 
lowing the methodology previously described (28). Briefly, nylon 
wool nonadherent (NWNA) cells were incubated for 30 min on 
ice with either anti-CO3 mAb (Dako Corp., Carpinteria, CA) or 
anti-CO56 mAb (Becton Dickinson & Co.). After two washes, 
magnetic beads coated with goat anti-mouse IgG (Advanced Mag- 
netics, Inc., Cambridge, MA) were added and incubated on ice for 
30 rain with frequent mixing. R_osetting cells were removed with 
a magnet (Dynal, Inc., Great Neck, NY). Addition of magnetic 
beads was repeated once to ensure adequacy of purification. This 
procedure resulted in populations purified for CO3- CD16 + 
CD56 + NK cells (>96% by FACS | analysis) and CO3 § CD16- 
CD56- T cells (>98% by FACS | analysis). 

Preparation of LAK Cells. NWNA cells were cultured at 2 x 
106 cells/ml in CM supplemented with 1,000 U/ml of human 
rib2 (generous gift from Chiron Corporation, Emeryville, CA) 
in a tissue culture flask (Coming Glass Works, Coming, NY) posi- 
tioned on its flat side. A-LAK cells were obtained following the 
protocol of Melder et al. (22). After 24 h incubation at 37~ 5% 
CO2, nonadherent cells were removed and adherent cells washed 
five times with warm R.PMI. Fresh CM supplemented with rlL-2 
plus 50% (vol/vol) conditioned medium (supernatant obtained after 
centrifugation of nonadherent cells) was added to adherent cells. 
Cell concentration was kept below 2 x 106 cells/ml by adding 
fresh medium with rlL-2. In flasks containing standard (unsepa- 
rated) LAK (S-LAK) cells, nonadherent cells were never removed. 
In experiments in which both types of cell populations were com- 
pared, cells were cultured for 8-12 d and fresh rib2 was added 
every 5 d. Before use in cytotoxicity assays, A-LAK cells as well 
as S-LAK cells were incubated with cold 5 mM EDTA in PBS for 
10 rain to detach adherent cells, and then washed three times. In 
some experiments, purified NK and T cells were incubated with 
1,000 U/ml rib2 for 7 d and then used as effector cells in cytotox- 
icity assays. 

Complement-mediated Depletion of Lymphocyte Subpopulations. 
S-LAK cells were incubated for 1 h at 4~ with optimal doses 
of either anti-CD5 (pan T) mAb (Becton Dickinson & Co.) or anti- 

CD56 mAb (Coulter Cytometry, Hialeah, FL). This was followed 
by incubation with a 1:8 dilution of baby rabbit complement 
(Cedarlane Laboratories Ltd., Horuby, Ontario, Canada) for 1 h 
at 37~ This treatment was repeated once and resulted in >90% 
depletion of the appropriate lymphocyte subset as demonstrated 
by cytofluorometric analysis. 

Target Cells. Autologous PHA-induced blasts were obtained by 
incubating PBMC in RPMI 1640 with 10% FCS (HyClone Labora- 
tories, Inc., Logan, UT) and 2 #g/ml of PHA-P (Sigma Chemical 
Co., St. Louis, MO) for at least 4 d. Tachyzoites of the RH strain 
of T. gondii were exposed to 1,300 erg of UV light as previously 
described (6) and then used to infect PHA-induced blasts at a mul- 
tiplicity of infection of 10 parasites per PHA-induced blast. 
Tachyzoites that remained extracellular were removed by Ficoll- 
Hypaque density gradient centrifugation (6). Cytocentrifuge prepa- 
rations were made from these cell preparations and the percentage 
of infected cells was assessed by light microscopy (29). Rates of 
infection ranged from 60 to 80%. Tumor cell lines K562 (NK sus- 
ceptible) and Dandi (NK resistant) (American Type Culture Col- 
lection, Rockvilh, MD) were maintained in RPMI 1640 with 10% 
FCS. 

Cytotoxicity Assays. This was performed as previously described 
with minor modifications (6). Briefly, 5 x 103 target cells labeled 
with SlCr were added to wells of 96-well U-bottomed plates 
(Costar Corp., Cambridge, MA) and incubated with different 
numbers of effector cells for 4 h at 37~ 5% CO2 in ILPMI 1640 
with 10% FCS. Supernatants were harvested and radioactivity 
counted using a gamma counter (model 5500 B Beckman Instru- 
ments, Palo Alto, CA). The percent specific SlCr-release was cal- 
culated using the following formula: 100 x [(experimental release 
- spontaneous release)/(maximum release - spontaneous release)]. 

Percent specific SlCr-release represents the mean from triplicate 
wells. When cytotoxic activity was expressed in lyric units, lyric 
unit was defined as the number of effector cells required to lyse 
30% of tumor target cells or 30% of the cells infected with 
T. gondii. Lyric units were calculated using the method of Bryant 
et al. (30). 

In experiments in which supernatants from LAK cell prepara- 
tions were tested for cytotoxic activity, 5 x 103 StCr-labeled target 
cells were resuspended in serial dilutions of the supernatant and 
incubated for 4 h at 37~ 5% CO2. 

Cold Target Inhibition Assay. Different numbers of unlabeled 
target cells were added in quadruplicate to wells containing 5 x 
103 SlCr-labeled target cells before addition of effector cells. E/T 
ratios were chosen so that percent specific S~Cr-release was located 
in the linear portion of the cytotoxicity curve. Percent specific 
SlCr-release was assayed as described above. 

Cytofluoromaric Analysis. Cells adjusted to a concentration of 
107 cells/ml in PBS with 0.1% sodium azide were stained with 
the following mAbs: FITC-conjugated anti-CO3 (Becton Dick- 
inson & Co.), FITC-conjugated anti-CO14 (Becton Dickinson & 
Co.), PE-conjugated anti-CO16 (Becton Dickinson & Co.), PE- 
conjugated anti-CO19 (Caltag Laboratories, South San Francisco, 
CA), and PE-conjugated anti-CO56 (Coulter Cytometry). Cells 
were then analyzed in a FACScan | cytofluorometer (Becton Dick- 
inson & Co.). 

Morphology. Cytocentrifuge preparations of effector cells were 
air-dried and fixed in methanol for 5 rain. Cells were then stained 
with a 10% solution of Giemsa stain for 25 min and examined 
by light microscopy. 

Statistical Analyses. Data were analyzed using Student's t test 
and Spearman's rank correlation coef~cient. 
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Results 

Cytotoxic Activity of Resting PBL. Resting N W N A  cells 
from five donors displayed minimal cytotoxic activity against 
T. gondii-infected cells (Fig. 1 a). Cytotoxicity against unin- 
fected cells was not observed in any case. NK and T cells 
were purified from resting N W N A  cells and their cytotox- 
icity tested against T. gondii-infected cells, K562 cells, and 
Daudi cells. Whereas purified NK cells displayed higher cyto- 
toxic activity against K562 cells than N W N A  cell prepara- 
tions, purified T cells had no lytic activity against these target 
cells (Fig. 1 b). In contrast, neither NK nor T cells displayed 
any significant cytotoxic activity against T. gondii-infected cells 
(Fig. 1 a). None of the cell populations were cytotoxic for 
Daudi cells (data not shown). 

Effect of Incubation of PBL with rlL~2. For each of the 
donors, incubation of N W N A  cells with rIL-2 to generate 
LAK activity (S-LAK ceils) induced significant cytotoxicity 
against T. gondii-infected cells but not against uninfected cells 
(Fig. 2 a). Incubation with rib2 also resulted in increased 
cytotoxic activity against K562 cells, as well as induction of 
cytotoxic activity against Daudi cells (Fig. 2 b). Enhance- 
ment of the cytotoxic activity against T. gondii-infected cells 
and Daudi cells required the presence of rib2 since N W N A  
cells incubated in CM without rlL,2 did not exhibit significant 
cytotoxic activity against either of these targets (Fig. 2, a 
and b). 
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Figure 1. Cytotoxic activity of resting PBL against either T. gondii- 
infected or uninfected cells (a), and K562 cells (b). (a) NWNA cells against 
either T. gondii-infected (I )  or uninfected (El) cells; NK (A) and T cells 
(O) against T. gondii-infected calls. Results obtained with uninfected cells 
were similar for all the effector cells. (b) NWNA cells (I),  NK cells (A), 
and T cells (O). Results are representative of those obtained in six separate 
experiments. 

Kinetics of induction of LAK activity was studied by in- 
cubating N W N A  cells with 1,000 U/ml rlL-2 for 4, 7, and 
12 d. As can be seen in Fig. 3, a and b, maximal cytotoxic 
activity against T. gondii-infected cells and tumor cell lines 
was observed after 7 d of culture. Prolonging duration of 
incubation resulted in a decrease in cytotoxic activity. 

To determine whether LAK cell supernatants alone effect 
the cytotoxicity observed in our assays, uninfected and T. gondii- 
infected cells, as well as Daudi cells, were resuspended in con- 
centrations of LAK cell supernatant that ranged from 100 
to 1% (vol/vol) in CM. Significant cytotoxic activity was 
not observed at any of the concentrations of supernatants tested 
against any of the target cells (data not shown). 

Characterization of Precursor Cells. N W N A  cells as well 
as purified NK and T cells were incubated with 1,000 U/m1 
rib2 for 7 d. As shown in Fig. 4, a and b, whereas the precursor 
ceils responsible for most of the cytotoxic activity against 
tumor cells had the NK phenotype, when T. gondii-infected 
cells were used as targets, both cells with NK and T cell pheno- 
types gave rise to effector cells with significant cytotoxic ac- 
tivity against these target cells. 

Characterization of Effector Cells. Experiments were con- 
ducted to assess the cytotoxic activity of the lymphocyte subsets 
present in 7-d S-LAK preparations against T. gondii-infected 
cells. Treatment of effector cells with either anti-CD5 or anti- 
CD56 mAb and complement resulted in populations of cells 
purified (>90% by FACS | analysis) for CD3-  CD56 + and 
CD3 + CD56- ceils, respectively. Fig. 5, a and b demon- 
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Figure 2. Cytotoxic activity of S-LAK cells after 7 d of incubation with 
rlL-2. T. gondii-infected cells (J) and uninfected cells (0) (a); K562 cells 
(A) and Daudi cells (Q) (b). Cells incubated in CM without rlL-2 for 
7 d were also tested against T. gondii-infected cells (O) (a) and against 
Daudi cells (O) (b). Results are representative of those obtained in seven 
separate experiments. 
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Figure 3. Kinetics for induction of cytotoxic activity against T. gondii- 
infected calls (a) and Daudi cells (b). Cells were incubated with rib2 for 
4 ( I ) ,  7 (k ) ,  or 12 (Q) d. Results are representative of those obtained 
in two separate experiments. 

strates that cells purified for CD3 + CD56- lymphocytes ex- 
hibited a significantly lower cytotoxic activity against tumor 
cells than cells purified for CD3-  CD56 + lymphocytes. 
When T. gondii-infected cells were used as targets, both groups 
of effector cells exhibited significant cytotoxicity. 
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Fil~'~  5. Characterization of effector cells responsible fi~r lysis of 17, gondii- 
infected cells (a) and tumor cells (b shows results obtained with Daudi 
cells; similar results were ohserved with K562 cells). Before cytotoxicity 
assays, effector cells were treated with complement alone (I-l), anti-CD5 
( I ) ,  or anti-CD56 mAb plus complement ( I ) .  Results are representative 
of those obtained in three separate experiments. 

Comparison of Cytotoxic Activity of S-LAK and A-LAK 
Cells. Selection of cells induced to attach to plastic by incu- 
bation with rib2 (A-LAK cells) resulted in enrichment for 
CD3-  CD56 § cells and for cells with LGL morphology 
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Figure 4. Characterization of precursor cells for lytic activity against 
T. gondii-infected cells (a) and tumor cells (b shows results obtained with 
Daudi cells; similar results were observed with K562 cells). Either NWNA 
cells (D), NK cells ( I ) ,  or T cells (Q) were incubated with lb2 for 7 d. 
Results are representative of those obtained in four separate experiments. 

Table  1. Cytofluorometric and Morphologic Analysis of S-LAK 
Cells and A-LAK Cells 

Percent positive cells 

C D 3 - C D 5 6  + C D 3 + C D 5 6  + C D 3 + C D 5 6  - LGL 

Donor 1 
S-LAK 62 4 33 63 

A-LAK 97 1 1 99 

Donor 2 
S-LAK 46 7 45 52 

A-LAK 93 2 4 98 

Donor 3 
S-LAK 32 5 62 60 

A-LAK 58 1 41 97 

Donor 4 
S-LAK 22 12 64 42 
A-LAK 51 9 39 86 

Donor 5 
S-LAK 9 13 76 31 
A-LAK 20 16 62 74 
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(Table 1). Cytofluorometric analysis of A-LAK call prepara- 
tions revealed that distribution of the three main subsets of 
cells (CD3- CD56 +, CD3 + CD56 +, and CD3 + CD56-)  
varied among donors. Whereas in donors 1 and 2, A-LAK 
cells consisted of highly purified CD3-  CD56 + cells 
(> 90% by FACS | analysis), this subset represented only 20% 
of the A-LAK cells from donor 5. The different phenotypic 
composition of A-LAK calls among donors was reproduc- 
ible in separate experiments performed with independently 
obtained A-LAK cell preparations from these individuals. 

A-LAK cells from each of the five donors displayed higher 
cytotoxic activity against tumor cells than did S-LAK cells 
(Table 2). Furthermore, when seven independently obtained 
A-LAK preparations were analyzed, a significant correlation 
between cytotoxic activity of A-LAK cells against tumor cells 
and the percentage of CD3-  CD56 + cells in the A-LAK 
preparations was observed (p <0.05). Preparations with the 
highest percentage of CD3-  CD56 + cells tended to have the 
highest cytotoxic activity, whereas A-LAK preparations with 
the lowest percentage of CD3-  CD56 + cells usually had the 
lowest cytotoxic activity (Tables 1 and 2). 

A-LAK cells also displayed higher cytotoxic activity than 
S-LAK cells against T. gondii-infected cells (Table 2). How- 
ever, no correlation between the percentage of CD3-  
CD56 + cells in A-LAK preparations and cytotoxic activity 
of these effector cells against T. gondii-infected targets was 
observed ~ ;>0.5). 

Cold Target Inhibition Assays. Fig. 6, a and b demonstrates 
that when unlabeled (cold) Daudi cells were added to wells 
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Figure 6. Effect of addition ofurdabded (cold) target cells on cytotoxic 
activity against either slCr-labeled T. gondii-infected cells or slCr-labded 
Daudi cells. (a) addition of unlabeled 17. gondii-infected cells ( I )  or unla- 
beled Dandi cells (O) to wells containing SlCr-labeled 7?. gondii-infected 
cells. (b) addition of unlabeled T. gondii-infected cells ( I )  or unlabeled 
Daudi cells (O) to wells containing slCr-labeled Dandi cells. E/T ratio 
was 10:1 and 3:1 for experiments shown in a and b, respectively. Results 
are representative of those obtained in three separate experiments. 

Table 2. Cytotoxic Activity of S-LAK Cells and A-LAK Cells 
against T. gondii-infected Cells, K562 Cells, and Daudi Cells 

Lytic units/107 cells 

T. gondii-infected K562 Daudi 

Donor 1 
S-LAK 788 5768 3238 
A-LAK 854 8858 5482 

Donor 2 
S-LAK 868 4620 2250 
A-LAK 1645 13838 5196 

Donor 3 
S-LAK 409 4230 1474 
A-LAK 761 7121 3180 

Donor 4 
S-LAK 1031 1543 1064 
A-LAK 1397 4043 1793 

Donor 5 
S-LAK 1390 580 1339 
A-LAK 4446 1426 2813 

Results are expressed in lytic units per 107 effector cells. 
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containing SlCr-labeled T. gondii-infected cells, a significant 
dose-dependent inhibition of the lysis of the latter was ob- 
served (p <0.02 at inhibitor/target ratios from 4:1 to 16:1). 
In parallel experiments, addition of unlabeled T. gondii-infected 
cells resulted in a significant dose-dependent inhibition oflysis 
of SlCr-labeled Daudi cells (p <0.008 at all inhibitor/target 
ratios tested). However, both T. gondii-infected cells and Dandi 
cells were more efficient inhibitors of the lysis of their respective 
(homologous) SlCr-labeled target cells (p <0.001 at inhib- 
itor/target ratios from 8:1 to 16:1). Uninfected cells did not 
have any demonstrable inhibitory effect on the lysis of either 
T gondii-infected cells or Daudi cells (data not shown). 
The results of cold target inhibition assays were not depen- 
dent on the phenotype of the effector cells since similar 
results were obtained with LAK cell preparations that were 
either highly homogeneous by FACS | analysis (97% CD3- 
CD56 +) or not (50% CD3- CD56+). 

Discussion 

Here we report that induction of LAK activity by incuba- 
tion of human PBL from seronegative donors with II.,2 results 
in the induction of significant cytotoxic activity against human 
cells infected with the obligate intracellular parasite T. gondii. 
This effect of rlI~2 may represent a mechanism of defense 
against this parasite. Of  importance in this regard is the ob- 
servation of Sharma et al. (13) who reported that in vivo ad- 



ministration of rlL-2 resulted in prolonged survival of mice 
after a lethal challenge with T. gondii. Although the mecha- 
nism by which rlL-2 conferred the protection was not fully 
elucidated, it is possible that it was, at least in part, due to 
induction of LAK cells. 

In the donors tested, we were unable to demonstrate lysis 
of T gondii-infected cells by either resting N W N A  cells, 
purified NK, or purified T cells. Of interest in this regard 
are the reports in which the cytotoxic activity of NK cells 
against extraceilular tachyzoites of T. gondii was assessed. Dan- 
nemann et al. (12) demonstrated that human NK cells did 
not display significant cytotoxic activity against this form of 
the parasite. Although similar results were reported by Hughes 
et al. (11) using murine splenic NK calls from animals in- 
fected with T. gondii, Hanser et al. (9) and Goyal et al. (10) 
observed that murine splenic NK cells from infected animals 
were cytotoxic against extracellular tachyzoites of the para- 
site. Although resting PBL in the donors reported here did 
not have significant cytotoxic activity against T. gondii-infected 
cells, we have recently tested PBL from a seronegative donor 
whose resting cells were cytotoxic for these targets (Subauste, 
C. S., andJ. S. Remington, unpublished observations). Evalu- 
ation of further cases to determine the frequency of this oc- 
currence, and characterization of the effector cell responsible 
for this activity are under way. 

LAK cells are a heterogeneous population of cells that are 
comprised of both CD3- CD5- cells and CD3 + CD5 + 
cells (31-33). Experimental evidence indicates that, when tested 
against tumor cells and ceils infected with microorganisms 
such as HTLV-1, Legionella imeuraophila, and Mycobacterium 
avium-intracellulare, LAK activity generated from human PBL 
originates from and is effected mainly by ceils with NK pheno- 
type (31-36). However, LAK cells with T cell phenotype 
have also been reported to Iyse tumor cell targets (31-33). 
Under the experimental conditions used, our results indicate 
that, compared to ceils with NK phenotype, cells with T 
cell phenotype play a minor role as precursors and effectors 
of the lytic activity against tumor cells. In contrast, in the 
case of T. gondii-infected cells, both cells with NK and T cell 
phenotypes play a significant role as precursors and effectors 
of cytotoxicity. Pertinent to these results is the observa- 
tion of Ballas et al. (37, 38) who reported that the pheno- 
type of precursor and effector cells in murine LAK cell prepa- 
rations varied depending on the type of target cell used. 
Whereas the lytic activity against the tumor cell line YAC-1 
originated from and was effected by cells with NK pheno- 
type only, TNP-modified lymphoblasts could be lysed only 
by cells originating from and expressing T cell phenotype. 
It would appear that modification of the cell membrane after 
treatment with TNP or infection with T. gondii renders the 
cell particularly susceptible to lysis by LAK cells with T cell 
phenotype. 

Recently, it has become possible to generate highly cyto- 
toxic LAK cells from purified NK cell cultures (21-24). Vuja- 
novic et al. (21) noted that incubation with Ib2 resulted in 
attachment of NK cells to plastic and applied this observa- 
tion to establish populations of LAK (A-LAK) cells which 

are highly cytotoxic against tumor cells. It is interesting to 
note that although generation of A-LAK cell preparations 
results in enrichment for cells with the CD3- CD56 + 
phenotype, our studies as well as those from other investi- 
gators (22, 39) show that these populations of cells are at 
times still heterogeneous by FACS| We observed 
that A-LAK cells had higher cytotoxic activity than S-LAK 
cells against T. gondii-infected cells and tumor cells although 
no significant correlation between the percentage of CD3- 
CD56 + ceils in the A-LAK preparations and cytotoxicity 
against T. gondii-infected ceils was observed. A-LAK cells not 
only have a change in their phenotypic composition com- 
pared to S-LAK, but they have also been reported to have 
higher expression of adhesion molecules (40, 41). It has been 
proposed that higher expression of these molecules might be 
associated with superior cytotoxic activity of A-LAK ceils (41). 

In a previous series of studies on LAK cells from our labo- 
ratory, Dannemann et al. (12) reported that human LAK ceils 
displayed weak cytotoxidty against extracellular tachyzoites 
of T gondii and that this activity was enhanced by prior incu- 
bation of the parasite with serum containing anti-T, gondii 
antibodies. Cytotoxicity of LAK cells against isolated T. gondii 
cysts could not be demonstrated (12). Since T. gondii is pre- 
dominantly situated intracellularly, the significance of cyto- 
toxic activity against extracellular tachyzoites remains unclear, 
although it may play a role when parasites are released from 
infected cells. 

Other investigators have reported cytotoxic activity of LAK 
cells against nonviral intracellular pathogens such as Rkk- 
ettsia prowazekii, Rickettsia typhi, L. pneuraophila, M. aviura- 
intracellulare, and Leishmania major (35, 36, 42-43). However, 
Zychlinsky et al. (44) were unable to demonstrate lysis of 
murine macrophages infected with L. pneuraophila, Listeria 
monocytogenes, M. aviura, T. gondii, or Trypanosoma cruzi by 
highly purified murine splenic LAK cells (A-LAK cells). 

The nature of the site(s) that LAK ceUs recognize on target 
cells remains undefined. Our results may be analogous to the 
observation of Grimm et al. (45) who reported that LAK 
cells recognize cells with "altered seW'. These authors demon- 
strated that whereas normal human PBL were not suscep- 
tible to lysis by LAK cells, TNP-modified PBL were lysed. 
The results of our cold target inhibition experiments sug- 
gest that LAK cells are heterogeneous in their capacity to 
recognize and lyse different target cells. Our results suggest 
that there is a subpopulation of LAK cells that recognizes 
both types of target ceils (T. gondii-infected and tumor cells), 
whereas other subsets preferentially or exclusively recognize 
only one of these targets. Similar evidence that suggests that 
LAK cells display patterns of preferential target ceU lysis was 
reported by Frodich et al. (34). Furthermore, heterogeneity 
in the mechanisms of recognition of target ceUs has also been 
suggested by others (46). 

Wisseman et al. (47) reported that soluble factors produced 
by human leukocytes stimulated with either mitogen or 
R. prowazekii antigen (in the case of immune leukocytes) are 
cytolytic against cells infected with this intracellular pathogen 
but not against uninfected cells. The results of our experi- 
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ments performed with supernatants from LAK cell prepara- 
tions suggest that soluble cytotoxic factors alone do not 
mediate to a significant extent the cytotoxic activity of LAK 
cells in short term cytotoxicity assays. However, we cannot 
rule out the role of cytotoxic molecules secreted by LAK cells 
after these cells contact T. gondii-infected cells. 

The cytotoxic activity of LAK cells against T. gondii-infected 
cells may prove to be a mechanism by which LAK cells pro- 
tect against infection with this parasite. Destruction of in- 
fected cells would not only deprive the parasites of their re- 
quired intracelhlar habitat, but also would expose them to 
activated phagocytic cells and/or to anti-T, gondii antibodies 
resulting in the destruction of these organisms (27, 48). 
Cytokines produced by LAK calls (39) may also result in pro- 
tection through induction of kiUing or inhibition of the in- 
tracellular multiplication of the parasites. 

Current antimicrobial regimens for the treatment of toxo- 
plasmosis, although effective, result in a significant incidence 
of side effects that frequently require their discontinuation 
in immunocompromised hosts (49). The development of new 
effective alternative therapeutic modalities is therefore crit- 
ical. Immunotherapy using adoptive transfer of LAK cells, 
usually in conjunction with IL-2, has been proven effective 
in animal models of metastatic tumors and viral infection and 
in patients with some forms of cancer (16-20). Furthermore, 
adoptive transfer experiments performed in animals have 
demonstrated that, when compared to S-LAK cells, A-LAK 
cells have a superior antimetastatic effect and result in 
prolonged survival of the animals (25). Our results in vitro 
suggest that administration of LAK cells might prove of 
therapeutic use in immunocompromised patients with toxo- 
plasmosis. 
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