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Abstract
Clinical trials of anti-amyloid-β (Aβ) monoclonal antibodies in Alzheimer disease (AD) infer target engagement from Aβ 
positron emission tomography (PET) and/or fluid biomarkers such as cerebrospinal fluid (CSF) Aβ42/40. However, these 
biomarkers measure brain Aβ deposits indirectly and/or incompletely. In contrast, neuropathologic assessments allow direct 
investigation of treatment effects on brain Aβ deposits—and on potentially myriad ‘downstream’ pathologic features. From 
a clinical trial of anti-Aβ monoclonal antibodies in dominantly inherited AD (DIAD), in the largest study of its kind, we 
measured immunohistochemistry area fractions (AFs) for Aβ deposits (10D5), tauopathy (PHF1), microgliosis (IBA1), 
and astrocytosis (GFAP) in 10 brain regions from 10 trial cases—gantenerumab (n = 4), solanezumab (n = 4), placebo/
no treatment (n = 2)—and 10 DIAD observational study cases. Strikingly, in proportion to total drug received, Aβ deposit 
AFs were significantly lower in the gantenerumab arm versus controls in almost all areas examined, including frontal, 
temporal, parietal, and occipital cortices, anterior cingulate, hippocampus, caudate, putamen, thalamus, and cerebellar gray 
matter; only posterior cingulate and cerebellar white matter comparisons were non-significant. In contrast, AFs of tauopathy, 
microgliosis, and astrocytosis showed no differences across groups. Our results demonstrate with direct histologic evidence 
that gantenerumab treatment in DIAD can reduce parenchymal Aβ deposits throughout the brain in a dose-dependent manner, 
suggesting that more complete removal may be possible with earlier and more aggressive treatment regimens. Although 
AFs of tauopathy, microgliosis, and astrocytosis showed no clear response to partial Aβ removal in this limited autopsy 
cohort, future examination of these cases with more sensitive techniques (e.g., mass spectrometry) may reveal more subtle 
‘downstream’ effects.

Keywords  Clinical trial · Anti-amyloid-β monoclonal antibodies · Alzheimer disease · Digital pathology · PiB PET · CSF

Introduction

Amyloid-β (Aβ) plaques are the neuropathological hall-
mark of Alzheimer disease (AD) [9, 23, 25, 26, 29, 50]. 
In dominantly inherited AD (DIAD), rare pathogenic vari-
ants in the amyloid precursor protein (APP), presenilin-1 
(PSEN1), and presenilin-2 (PSEN2) genes cause an increase 

in aggregation-prone forms of Aβ peptide [42, 49], fostering 
aggressive Aβ plaque formation, neuroinflammation, neu-
rofibrillary tangle pathology, synaptic and neuronal losses, 
and dementia [4, 47]. These observations support the idea 
that accrual of Aβ is a permissive and required first step in 
the path to symptomatic AD [14, 44, 56]. In response, many 
treatment strategies for AD have focused on Aβ as a drug tar-
get, spurring the development of several anti-Aβ monoclonal 
antibody-based therapeutics [27, 33, 37, 51, 55]. Although 
some earlier clinical trials of anti-Aβ monoclonal antibod-
ies in AD failed to meet their cognitive endpoints, more 
recent trials have demonstrated that substantial removal of 
Aβ burden by these agents can slow the rate of cognitive 
decline [20, 52].

Similarly, in the first clinical trial of the Dominantly 
Inherited Alzheimer Network Trials Unit (DIAN-TU-001), 

Data used in the preparation of this article were obtained from the 
Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU). 
As such, the study team members within the DIAN-TU contributed 
to the design and implementation of DIAN-TU and/or provided 
data but may not have participated in the analysis or writing of this 
report. A complete listing of the DIAN-TU Study Team Members 
can be found at https://​dian.​wustl.​edu/​our-​resea​rch/​fundi​ng/.

Author Dr. Francisco Lopera passed away in September, 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s00401-025-02890-7&domain=pdf
https://dian.wustl.edu/our-research/funding/
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in which participants with DIAD received an anti-Aβ mono-
clonal antibody (gantenerumab or solanezumab) or placebo, 
neither treatment slowed cognitive decline, despite evi-
dence for partial clearance of Aβ burden by gantenerumab 
(inferred by Aβ positron emission tomography [PET] and 
cerebrospinal fluid [CSF] biomarkers Aβ42/40, p-tau181, 
and t-tau) [46]. However, recent pre-specified analyses sug-
gest that DIAN-TU-001 study participants who received the 
longest dosing regimens of gantenerumab in the trial and the 
subsequent open label extension period showed far lower 
beta-amyloid burdens and a delay in symptom onset and 
clinical progression, with reduced hazard ratios for time to 
recurrent progression in CDR-SB relative to controls [6]. 
Although these top responders and most other participants 
remain alive, a small subset of DIAN-TU-001 participants 
succumbed to end-stage AD and generously underwent 
brain donation. To measure the effects of these treatments 
on Aβ clearance more directly, we examined the first ten 
postmortem cases from the DIAN-TU-001—recipients 
of gantenerumab (n = 4), solanezumab (n = 4), placebo/
no treatment (n = 2)—and ten postmortem cases from the 
DIAN Observational Study (DIAN-Obs) using quantitative 
immunohistochemistry to measure Aβ deposits in ten brain 
regions. For context, we also compared these results to their 
corresponding antemortem Aβ PET and CSF biomarker 
measurements, as well as quantitative immunohistochemical 
measurements of microgliosis, astrocytosis, and tauopathy.

Materials and methods

Study approval

This study was conducted in accordance with the 
Declaration of Helsinki (version 7) and the International 
Conference on Harmonization and Good Clinical Practice 
guidelines. Protocols for the study have received prior 
approval by the local Institutional Review Board (IRB) of 
Ethics Committee of each DIAN site, and by the Washington 
University IRB for the Knight ADRC. Participants or their 
caregivers provided written informed consent. The clinical 
trial registration number is NCT01760005.

Study participants

The first ten postmortem cases of the DIAN-TU-001 were 
selected for inclusion in this study (Table 1). Investigators 
were blinded to the drug arm of each DIAN-TU-001 
participant (gantenerumab, solanezumab, or placebo).

Ten additional postmortem cases were included from 
among the brain donor participants in the DIAN-Obs 
study and from family members of DIAN-Obs participants 
who were not enrolled in DIAN-Obs, but volunteered for 

brain donation (Table 1). These ten observational controls 
were selected for numerical balance and to represent 
approximately the same proportions of APP, PSEN1, and 
PSEN2 mutations as the first ten postmortem DIAN-TU-001 
cases; they also had sufficient high-quality tissue samples 
available for the immunohistochemical experiments included 
in this study.

Postmortem neuropathology

Brain tissues were collected at the time of autopsy following 
an established protocol [12, 15, 16], in which left hemibrains 
are fixed in 10% neutral-buffered formalin for at least two 
weeks and right hemibrains are frozen. However, two 
cases deviated from this protocol; DIAN-Obs Case #3 
(see Table 1) was processed with a reversal of standard 
left and right hemibrain processing, and DIAN-TU-001 
Case #6 (see Table 1) was fixed whole in observation of 
institutional COVID-19 pandemic restrictions at the autopsy 
site. After formalin fixation, the supratentorial portion of 
each fixed hemibrain was sliced in the coronal plane; the 
hemicerebellum, parasagitally; and the hemibrainstem, 
axially. Tissue samples were taken from up to 16 
representative brain regions, then processed in standard 
fashion for histology of formalin-fixed, paraffin-embedded 
tissue. Histologic sections were cut at 6-μm thickness and 
mounted on glass slides. Histologic slides were stained 
with hematoxylin and eosin and by 3,3′-diaminobenzidine 
(DAB) immunohistochemistry using antibodies for 
amyloid-β (10D5, Eli Lilly and Company, Indianapolis, IN, 
USA, an antibody directed at amyloid-β that also detects 
amyloid-β-containing full-length APP and APP C99), 
phosphorylated tau (PHF1, formerly a gift from Dr. Peter 
Davies, now from Feinstein Institute for Medical Research, 
Manhasset NY, USA), phosphorylated alpha-synuclein (Cell 
Applications, San Diego, CA, USA), and phosphorylated 
TAR DNA binding protein of 43 kDa (TDP-43, Cosmo Bio 
USA, Carlsbad, CA, USA); for three DIAN-Obs cases, a 
modified Bielschowsky silver impregnation stain was also 
applied. Postmortem neuropathologic assessment of cases 
included a systematic evaluation of histologic slides; AD 
neuropathologic changes were assessed using criteria 
described within the National Alzheimer Coordinating 
Center Neuropathology Diagnosis Coding Guidebook, 
supplemented by criteria for TDP-43 proteinopathy [31, 39, 
40].

In the current study, ten brain regions were ultimately 
selected for quantitative histologic analysis: the frontal lobe 
(middle frontal gyrus), temporal lobe (superior and middle 
temporal gyri), parietal lobe (angular gyrus), occipital lobe 
(calcarine sulcus and parastriate cortex), hippocampus (in 
the coronal plane of the lateral geniculate nucleus), caudate 
and putamen (at or near the coronal plane of the anterior 
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commissure), thalamus (including subthalamic nucleus), 
anterior cingulate gyrus (in the coronal plane of the genu of 
the corpus callosum), and posterior cingulate gyrus (includ-
ing precuneus, in the coronal plane of the splenium). Two 
more brain regions—the cerebellar gray matter and cerebel-
lar white matter—were also selected to measure Aβ depos-
its in these commonly used reference regions for Aβ PET 
imaging. To enable quantitative studies of astrocytosis and 
microgliosis, slides from these brain regions were stained by 
DAB immunohistochemistry using antibodies for astrocyte 
marker GFAP (Anti GFAP, Rabbit, Dako, Carpinteria, CA, 
USA) and microglial marker IBA1 (Anti Iba1, Rabbit, FUJI-
FILM Wako Pure Chemical Corporation, Richmond, VA, 
USA). Histologic slides were digitized with a 20 × bright-
field objective at 0.46 μm/pixel resolution on a Hamamatsu 
NanoZoomer 2.0-HT slide scanner (Hamamatsu Photonics 
K.K., Hamamatsu, Japan). Quantification of each digitized 
slide was performed using QuPath, an open source software 
for digital pathology [2].

First, for each slide, a tissue region of interest (ROI) was 
manually delineated according to the following guidelines: 
for regions sampled from the cerebral cortex (frontal, 
temporal, parietal, and occipital lobes, and anterior and 
posterior areas of the cingulate gyrus), a cortical ribbon 
defined by the pial surface and the gray/white boundary 
was drawn. For the hippocampus, caudate and putamen, and 
thalamus, a tissue ROI was drawn according to the Atlas of 
the Human Brain, 4th edition [36]. For the cerebellum, a 
gray matter ROI and a white matter tissue ROI were drawn. 
For all regions, processing artifacts (e.g., bubbles trapped 
between the coverslip and the tissue sample, or “edge” 
artifacts wherein non-specific immunohistochemistry 
staining often occurs at the edges of tissue sections) were 
excluded. Next, color deconvolution was used to generate 
DAB, hematoxylin, and residual channels from the original 
RGB channels of the digitized slide [45]. Then, the StarDist 
extension for QuPath was used to segment pathologic 
features of interest from the DAB channel [48]. For 10D5 
slides, StarDist was used to segment cored/compact Aβ 
plaques and cerebral amyloid angiopathy (CAA); for 
PHF1 slides, neurofibrillary tangles; for GFAP slides, 
astrocyte cell bodies; and for IBA1 slides, microglia cell 
bodies. However, cored/compact Aβ plaques and CAA, 
neurofibrillary tangles, and astrocyte and microglia cell 
bodies are not the only pathologies present: for 10D5 slides, 
there can also be diffuse Aβ plaques; for PHF1 slides, there 
can also be neuropil threads and neuritic plaques; and for 
GFAP and IBA1 slides, there can also be extensive ramified 
processes extending from and/or appearing entirely detached 
from a cell body. Thus, for each slide, the minimum optical 
density for each segmented Aβ plaque/tau tangle/astrocyte/
microglia was found, and the 95th percentile of all such 
values was used to define the threshold of a pixel classifier. 

Then the area of each tissue ROI with optical density greater 
than the defined threshold was divided by the total area of 
the tissue ROI to generate an area fraction. All analyses 
were done on 4 × downsampled images (1.84 μm/pixel 
resolution) for efficiency. All segmentations were reviewed 
by neuropathologist R.J.P. for accuracy.

Antemortem MRI acquisition

Participants were scanned on DIAN-approved 3T MRI 
scanners [8, 38]. Across all scanners, T1-weighted head 
MR images were acquired using a magnetization prepared 
rapid gradient echo generalized autocalibrating partial 
parallel acquisition sequence with a repetition time = 2300 
ms, echo time = 2.95 ms, flip angle = 9°, and voxel 
resolution = 1.1 × 1.1 × 1.2 mm3.

Antemortem Aβ PET acquisition

Participants were scanned on DIAN-approved PET 
scanners [8, 38]. Participants received a single 14.5 ± 2.5 
(mean ± standard deviation) mCi intravenous bolus 
injection of Pittsburgh Compound-B (11C-PiB) at each 
imaging session. Emission data were collected 40–70 min 
post injection. List-mode data were reconstructed using 
ordered subset expectation maximization. A low-dose CT 
scan preceded PET acquisition for attenuation correction. 
Reconstructed PET images were processed using the PET 
Unified Pipeline (https://​github.​com/​ysu001/​PUP) [54]. 
After segmenting MR images into ROIs using FreeSurfer 
version 5.3 [22], regional standardized value update ratios 
(SUVRs) were defined from the reconstructed PET images 
using a cerebellar gray reference region.

Antemortem CSF collection

CSF was collected under standardized operating procedure. 
Participants underwent lumbar puncture (L4-L5) in the 
morning following overnight fasting. Twenty to 30 mL 
of CSF was collected in a 50-mL polypropylene tube via 
gravity drip using an atraumatic Sprotte 22 gage spinal 
needle. CSF was kept on ice and centrifuged at low speed 
within 2 h of collection, then transferred to another 50-mL 
tube. CSF was aliquoted at 500 μL into polypropylene 
tubes and stored at -80°C [21]. CSF samples not collected 
at Washington University in St. Louis but at other USA 
sites were shipped overnight on dry ice to Washington 
University in St. Louis, whereas samples collected at 
non-USA sites were stored at  minus 80° C and shipped 
quarterly on dry ice to Washington University in St. 
Louis. Prior to analysis, samples were brought to room 
temperature per manufacturer instructions. Samples were 
vortexed and transferred to polystyrene cuvettes for analysis. 

https://github.com/ysu001/PUP
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Concentrations of Aβ40, Aβ42, t-tau, and p-tau181 were 
measured by chemiluminescent enzyme immunoassay using 
a fully automated platform (LUMIPULSE G1200, Fujirebio, 
Malvern, Pennsylvania, USA) according to manufacturer’s 
specifications. Concentrations of p-tau217 and p-tau217 
phosphorylation occupancy (pT217/T217) were measured 
by high-resolution mass spectrometry (HRMS) as previously 
described [3].

Statistical analysis

Statistical analyses were conducted in R version 4.1.0 
[43]. Welch two sample t-tests were used to estimate 
statistical differences in postmortem neuropathology 
(Aβ, tau, microglia, and astrocyte area fractions) between 
either the gantenerumab or solanezumab treatment arms 
and the control group for each brain region, and p values 
were adjusted for false discovery rate (FDR) control by 
the Benjamini–Hochberg procedure [7, 16]. Linear mixed-
effects models were used to estimate statistical differences 
in longitudinal change of antemortem biomarkers (Aβ PET, 
CSF Aβ42/40, CSF p-tau181, CSF t-tau, CSF p-tau217, 
and CSF pT217/T217) between either the gantenerumab 
or solanezumab treatment arms and the control group. The 
fixed effects were Drug, Time, and their interaction, and the 
random effects were individual-level random intercepts to 
account for the correlation across repeated measurements 
from the same individual over time [17]. For Aβ PET, 
linear mixed-effects models were used for each brain 
region, and p values were adjusted for FDR control by the 
Benjamini–Hochberg procedure [7].

Results

Participant characteristics

Participants in this study were either enrolled in the 
DIAN-TU-001 gantenerumab arm (n = 4), the DIAN-TU-001 
solanezumab arm (n = 4), the DIAN-TU-001 placebo arm 
(n = 1), the DIAN-TU CRI (Cognitive Run-In, n = 1), or 
the DIAN-Obs study (n = 8), or were a family member of 
a DIAN-Obs participant (n = 2). Participants from the last 
four groups were pooled together to form the control group 
for the current study (n = 12).

Imaging‑to‑pathology comparison: illustrative 
example

First, to facilitate understanding, we compare Aβ PET 
imaging and Aβ neuropathology findings for a pair of 
well-matched participants from the gantenerumab arm 
(DIAN-TU-001 Case #5 in Table 1) and the placebo arm 

(DIAN-TU-001 Case #6 in Table 1). By antemortem Aβ 
PET imaging, the participant in the gantenerumab arm 
showed a substantial decrease in SUVR in the caudate and 
putamen over the course of the trial, whereas the partici-
pant in the placebo arm showed little to no corresponding 
decrease (Fig. 1a). Likewise, postmortem Aβ neuropathol-
ogy revealed a far lower burden of striatal Aβ deposition in 
this gantenerumab-arm participant compared to their pla-
cebo arm counterpart (Fig. 1b–d). Next, we examine changes 
in longitudinal biomarkers and neuropathologic findings 
across the rest of the cohort.

Longitudinal changes in antemortem biomarkers

In the greater DIAN-TU-001 trial, participants in the 
gantenerumab arm showed evidence of longitudinal 
reductions of Aβ burden, as measured by Aβ PET and CSF 
biomarkers Aβ42/40, p-tau181, and t-tau; participants in 
the solanezumab arm did not [46]. To determine whether 
the participants included in our smaller study might 
accurately represent this larger DIAN-TU-001 trial cohort, 
and whether our control group might adequately mimic the 
DIAN-TU-001 placebo arm, we examined and compared 
their antemortem biomarker measurements.

Longitudinal changes in regional Aβ PET SUVR of par-
ticipants in the gantenerumab arm, the solanezumab arm, 
and the control group are presented in Fig. 2a. Note that five 
participants in the control group and one participant in the 
solanezumab arm do not have PET-imaging data, because 
they enrolled in the trial when no study drug was available 
(DIAN-TU CRI, n = 1), or they were family members of 
DIAN-Obs participants who consented to brain donation 
but did not otherwise participate in the study (n = 2), or 
their PET-imaging session failed quality control (n = 3). In 
general, consistent with composite findings from the larger 
cohort [46], the regional Aβ PET SUVRs of participants in 
the gantenerumab arm decreased more rapidly than those 
of the control group, with decreases in temporal cortex, 
caudate, putamen, and thalamus reaching significance. It is 
worth noting, however, that these Aβ PET SUVR results 
were obtained with cerebellar gray matter as the reference 
region—a standard approach for studies of sporadic or late-
onset AD. In previous work, we have shown that, in DIAD, 
cerebellar gray often harbors substantial Aβ deposits, and 
its use as a reference region may lead to underestimation 
of amyloid burden in Aβ PET studies [46]. With cerebel-
lar white matter used as an alternative reference region for 
our smaller cohort, regional effect sizes were larger and the 
gantenerumab-associated decrease in the anterior cingu-
late SUVR reached significance (Supplementary Fig. 2). 
Also consistent with composite findings from the larger 
cohort, regional Aβ PET SUVRs of the solanezumab arm 
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participants generally decreased, but without significant dif-
ferences from controls, regardless of reference region used.

Longitudinal changes in CSF Aβ42/40, p-tau181, t-tau, 
p-tau217, and pT217/T217 are presented in Fig. 2b. Note that 
five participants in the control group do not have longitudinal 
CSF biomarker data, because they enrolled in the trial when 
no study drug was available (DIAN-TU CRI, n = 1), or 
they were family members of DIAN-Obs participants who 
consented to brain donation but did not otherwise participate 
in the study (n = 2), or they had only one visit with CSF 
collection (n = 2). Nevertheless, generally consistent 
with findings from the larger DIAN-TU-001 cohort, CSF 
Aβ42/40 increased (p value = 0.0002; suggestive of lower 
burdens of Aβ plaques [21] and/or protofibrils [1]) and 
CSF t-tau decreased (p value = 0.024) more rapidly in our 
gantenerumab-arm participants than in our control group; 
CSF p-tau181, p-tau217, and pT217/T217 also decreased, 
but did not reach significance (p values = 0.071, 0.18, 0.88, 
respectively). In the solanezumab arm, longitudinal changes 
in CSF t-tau and CSF p-tau181 did not differ significantly 
from controls; CSF p-tau217 and pT217/T217 decreased 
more rapidly than in the control group, but CSF p-tau217 
did not reach significance (CSF p-tau217 p value-0.056; CSF 

pT217/T217 p value = 0.017); CSF Aβ42/40 measurements 
were not available for the solanezumab arm participants in 
our study (n = 4).

Postmortem Aβ neuropathology

In kind with the illustrative case pairing described in Fig. 1, 
the regional Aβ deposit area fractions of the gantenerumab-
arm participant group were significantly lower than those of 
the control group in the caudate and putamen, but they were 
also lower in the frontal, temporal, parietal, and occipital 
cortices, hippocampus, thalamus, cerebellar gray matter, 
and anterior cingulate (Fig. 3a). Although Aβ deposit area 
fractions of participants in the solanezumab arm appeared 
qualitatively lower than those of the control group in some 
brain regions, no brain region showed a statistically signifi-
cant difference between the solanezumab arm and controls.

By classic neuropathologic classification, only 
DIAN-TU-001 Case #5 (featured in Fig. 1) qualified for Thal 
phase 3, reflecting an essential absence of Aβ plaques from 
diagnostic slides from striatum, thalamus, brainstem, and 
cerebellum; all other gantenerumab-arm cases, as well as all 
solanezumab arm cases and control cases, showed robust Aβ 

Fig. 1   An exemplar imaging-neuropathology comparison. (a) Aβ 
PET imaging from a participant in the gantenerumab arm (top row, 
DIAN-TU-001 Case #5 in Table  1) and a participant in the pla-
cebo arm (bottom row, DIAN-TU-001 Case #6 in Table 1) showing 
annualized increases (red) and decreases (blue) in SUVR over the 
course of the trial in the caudate and putamen (here shown near the 
coronal plane of the anterior commissure). (b) Corresponding coronal 
slices from the participants’ brain donations after formalin-fixation. 

Differences in ventricularvolume between antemortem imaging and 
postmortem photography are due to ex  vivo fixation. (c) Digitized 
sixmicron  histology sections representing the caudate and putamen 
from both participants, batch-stained with standard  DAB immuno-
histochemistry for Aβ (10D5 antibody). The red square indicates the 
location of the detail shown in the next panel. (d) Detail of the 10D5 
staining. Scale bars are 250 μm
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plaques in these regions, meeting criteria for Thal phase 5. 
CERAD NP scores (based on the regionally maximal density 
of tau-immunoreactive and/or argyrophilic neuritic plaques 
in middle frontal gyrus, superior/middle temporal gyri, and 
angular gyrus) did not differ at all among the gantenerumab, 
solanezumab, and control groups (Table 2). Likewise, global 
CAA severity did not differ between the gantenerumab arm 
and control group (W-value = 18, p value = 0.49, Wilcoxon 
rank-sum test), nor between the solanezumab arm and 
control group (W-value = 25, p value = 0.95, Wilcoxon rank-
sum test).

Gantenerumab dose response

Beyond a signif icant reduction in response to 
gantenerumab treatment, the Aβ area fractions in some 
brain regions—notably, caudate and putamen—appeared 
to show a dose-dependent response (Figs. 3a-c). To explore 
this possibility further, we examined the relationship 
between cumulative gantenerumab dose and global Aβ 
burden at the time of antemortem Aβ PET and, later, at 
autopsy. Although cumulative gantenerumab dose received 
before the final Aβ PET visit showed no significant linear 
relationship with Centiloid values (Fig.  3d), the much 
larger range of cumulative gantenerumab doses received 
by the time of postmortem assessment (approaching 

50,000 mg for one participant) did show a statistically 
significant linear relationship with Aβ area fractions across 
all brain regions (t-value = −2.3, p value = 0.036, Fig. 3e), 
suggesting that Aβ deposit clearance by gantenerumab 
is, indeed, dose dependent. This result holds even after 
removing the caudate and putamen data points identified 
as outliers in Fig. 3a (t-value = −2.2, p value = 0.049).

Postmortem tau, microglia, and astrocyte 
neuropathology

Given our immunohistochemical evidence for incomplete 
but widespread and regionally substantial Aβ clearance 
in response to gantenerumab treatment, we applied a 
similar immunohistochemical approach to evaluate 
whether several other major neuropathological features of 
Alzheimer disease (tauopathy, microgliosis, astrocytosis), 
considered to be “downstream” of amyloid deposition, 
were also affected by gantenerumab treatment. In this 
cohort, no regional tau, microglia, or astrocyte area 
fraction was significantly lower in the gantenerumab 
or solanezumab arms compared to the control group 
(supplementary Figs. 3, 4, and 5, respectively).

Fig. 2   Longitudinal change in Aβ PET and CSF biomarkers. (a) Lon-
gitudinal change in regional Aβ PET  SUVRs in the gantenerumab 
arm (blue, n=4), control group (black, n=7), and solanezumab arm 
(red, n=3). The  transparency of each dot corresponds to the total 
drug received by the time of the final Aβ PET (darker colors  repre-
sent higher doses; exact dose values can be found in Table  1). (b) 
Longitudinal change in CSF Aβ42/40, ptau181, and t-tau in the gan-
tenerumab arm (blue, n=4), control group (black, n=7), and solan-
ezumab arm (red, n=4). The transparency of each dot corresponds to 
the total drug received by the time of the final CSF (darker colors rep-

resent higher doses; exact dose values can be found in Table 1). Note 
that there are no participants from the solanezumab group (n=4) with 
CSF Aβ42/40 measurements available for this study. Also note that 
five participants from the control group did not have longitudinal CSF 
measurements, so, for all comparisons, there is an n=7 for the con-
trol group. Asterisks denote p-values < 0.05 (*) associated with the 
t-value of the Gant:Time interaction term in the linear mixed-effects 
model Outcome~Drug*Time+(1|Case); no Sola:Time interaction was 
significant. Abbreviations: Gant=Gantenerumab, Sola=Solanezumab
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Discussion

In this largest autopsy study to date of individuals treated 
with anti-Aβ monoclonal antibodies, we provide direct 
immunohistochemical evidence of gantenerumab-mediated 
Aβ deposit removal, complementing and extending the 

timeline and dosage monitored by antemortem Aβ PET and 
CSF biomarkers during the DIAN-TU-001 trial [46].

Because gantenerumab dosage was adjusted upwards 
relatively late in the trial [44, 55] and administration con-
tinued after final Aβ PET, a few of our autopsied partici-
pants received far greater cumulative doses by the time 

Fig. 3   Aβ deposits and Gantenerumab dose-response. (a) Regional 
Aβ area fractions in the gantenerumab  arm (blue, n=4), control 
group (black, n=12), and solanezumab arm (red, n=4). The transpar-
ency of each datapoint  corresponds to the total drug dose received 
at that point in time (darker colors represent higher doses; exact 
dose values can be found in Table 1). For thalamus, data were avail-
able from only three participants from the  solanezumab arm. †One 
participant from the gantenerumab arm with comparatively very 
high levels of Aβ  deposition in the caudate and putamen (over 1.5 
times the interquartile range above the third quartile) was treated as 
an outlier for the statistical comparison versus controls in the cau-
date and putamen. (b) Detail of digitized 10D5  slides of the cau-
date (location approximates the red square in Fig.  1) from the four 
gantenerumab-treated  participants sorted from lowest total drug 
received (top) to highest (bottom). (c) Detail of digitized 10D5 
slides of the  caudate from four participants from the control group, 
approximately matched to the gantenerumab-treated  participants on 

the basis of family mutation [49] and age at death (Supplementary 
Table 1). Scale bars are 250 μm. Whole-mount images of slides from 
which photomicrographs in b and c were taken are shown in Sup-
plementary  Fig.  1. Asterisks denote p-values < 0.05 (*) associated 
with Welch two-sample t-tests comparing Aβ area fractions between 
the control group and the gantenerumab arm or the solanezumab 
arm. Abbreviations:  Gant=gantenerumab, Sola=solanezumab. Gan-
tenerumab dose response at (d) final Aβ PET visit and (e) postmor-
tem Aβ (10D5) neuropathologic assessment (inset shows results with 
outliers removed). The transparency of each  datapoint corresponds 
to the total drug dose received at that point in time (darker colors 
represent higher doses).  Asterisks denote p-values < 0.05 (*) asso-
ciated with the t-value of the Dose term in the linear mixed-effects 
model Outcome~Dose+(1|Case), where Outcome is Aβ PET SUVR 
or Aβ area fraction, Dose is a fixed effect term indicating the cumula-
tive dose of gantenerumab received for each case, and Case is a ran-
dom intercept term
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of brain donation than they had received at the time of 
Aβ PET. This may account for the finding of more wide-
spread Aβ deposit removal at autopsy (eight/ten brain 
regions) versus Aβ PET (five/ten brain regions). In addi-
tion, our gantenerumab participants represented a broad 
range of four different cumulative dosages at each of the 
two timepoints; at least in part, this may account for the 
wide range of Aβ burden observed among the four gan-
tenerumab recipients—most notably within the caudate 
and putamen but also more broadly, across all ten brain 
regions combined. Together, these findings of variability 
suggest (1) that some brain regions may be more readily 
cleared of Aβ deposits than others, (2) that Aβ deposit 
removal is dose-dependent, and (3) that greater clearance 
of Aβ deposits may be possible with sustained high doses 
over a longer period—as has also recently been confirmed 
through pre-specified analyses of biomarker measurements 
from living DIAN-TU-001 participants treated with sus-
tained high doses of gantenerumab during the open label 
extension of DIAN-TU-001 [6]. We also acknowledge 
that some gantenerumab-arm participants may have re-
accumulated Aβ deposits during the interval between drug 
discontinuation and death (0 years for Case #5; 2 years 
for Cases #2, #4, and #10), and that such re-accumulation 
may have been greater in some than in others. Importantly, 
this possibility of re-accumulation does not undermine 
the conclusions above; if anything, it suggests that the 
treatment-associated nadir of Aβ deposit burden in these 
participants may actually have been lower than what was 
measured at autopsy.

Our findings also illustrate the value of applying a 
quantitative histologic approach to postmortem studies like 
this one. Classic neuropathologic staging systems for Aβ 
plaque pathology (e.g., Thal phase and CERAD NP score) 
are extremely valuable for categorizing cases of ADNC [29] 
and may be able to register the large reductions in Aβ plaque 
distribution/density that seem to be required for clinical 
benefit, but they lack sensitivity for small differences and 
show “low ceiling” effects; indeed, they did not effectively 
represent the clear significant differences between groups in 
this study of DIAD participants.

In addition to confirming target engagement with ‘gold-
standard’ neuropathology, this study began to explore 
downstream effects of antibody-mediated Aβ removal 
using quantitative immunohistochemistry for tauopathy, 
microgliosis and astrocytosis. In AD, tauopathy correlates 
more closely with cognitive decline than does Aβ plaque 
burden [10, 11, 24], and astrocytes and microglia play 
important roles in both AD pathogenesis and antibody-
mediated clearance of Aβ deposits [18, 19]. Given that 
Aβ removal was incomplete and cognitive endpoints 
were not reached in the DIAN-TU-001 cohort during the 
trial, it may not surprise that area fractions of tauopathy, Ta
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microgliosis, and astrocytosis did not differ between 
treatment arms and the control group in this study.

Nevertheless, it is worth considering that area fractions 
of GFAP and IBA1 immunohistochemistry preparations 
measure only one of the myriad changes that astrocytes 
and microglia [30] undergo in AD. Future evaluations 
of glial features such as activation states, cytokine 
production, etc., may identify truly salient differences 
between gantenerumab-treated and control groups. It may 
also be worth considering that other neurodegenerative 
features, such as synaptic/neuronal losses, may be more 
relevant than tauopathy for monitoring downstream 
effects of Aβ plaque clearance, because synaptic/neuronal 
losses correlate even more closely with cognitive decline. 
Although such analyses are beyond the scope of this 
preliminary study, evaluation of this autopsy cohort with 
a broad range of techniques (e.g., proteomics, snRNA seq) 
might identify important regional changes associated with 
gantenerumab-mediated amyloid clearance, even if Aβ 
plaque clearance was incomplete and slowing of cognitive 
decline was not observed within this autopsy cohort.

Recently, other anti-Aβ antibody therapies have been 
reported to remove Aβ deposits and slow cognitive decline 
in sporadic AD [20, 52]. Further, those with the most 
complete Aβ plaque removal also showed the clearest 
clinical and cognitive benefits [34]. From that perspective, 
it is appealing to wonder if higher doses of gantenerumab, 
sufficiently maintained, could have a measurable effect 
on cognitive decline—and, perhaps, also on gliosis and 
tauopathy. To that point, recent pre-specified evaluation 
of DIAN-TU-001 participants who received the largest 
cumulative doses of gantenerumab and who showed 
the greatest reduction of Aβ burden, does suggest a 
delay in symptom onset and clinical progression, with 
reduced hazard ratios for time to recurrent progression 
in CDR-SB relative to controls [6]. Clearly, future AD 
clinical trials would benefit from a more comprehensive 
understanding of the pathophysiological processes that are 
altered by anti-Aβ antibody therapies and associated with 
their therapeutic effects [32]. Some pathophysiological 
alterations may be gleaned from antemortem biomarker 
studies; other alterations that can only be evaluated using 
tissue must wait until relevant brain donations become 
available.

Despite its valuable findings, this study has limitations. 
For example, the death rate within the DIAN-TU-001 cohort 
limited the DIAN-TU-001 participant number for this study 
to n = 10, and only one of these ten had been assigned to 
the placebo arm; to create a control group for this study, 
specimens from one DIAN-TU CRI participant, several 
DIAN-Obs participants, and a few DIAN-Obs family 
members were carefully selected for inclusion from among 
existing DIAN-Obs study brain donors.

Nevertheless, the Aβ PET and CSF biomarker data from 
this study’s included participants do resemble those of their 
DIAN-TU-001 cohorts of origin and the DIAN-TU-001 
placebo group, suggesting that they adequately represent 
at least these key features of the larger groups in 
DIAN-TU-001. Perhaps even more important: despite its 
limited cohort size, this study found statistically significant 
reductions in regional Aβ area fractions that align with the 
corresponding CSF and Aβ PET biomarker-based findings.

In any case, the small size of this study is not unusual 
or unexpected, given the scientific context; most anti-Aβ 
monoclonal antibody clinical trials are fairly recent, have 
not benefitted from a sustained, centralized brain donation 
program, and have not yielded sufficient participant brain 
donations to support a study of even this modest size. To 
our knowledge, among all anti-Aβ monoclonal antibody 
clinical trials, there have only been a few postmortem studies 
presented or published to date: one participant previously 
treated with aducanumab from the PRIME Phase 1b study 
was assessed [41]. Another study has been presented at a 
conference [35]: one participant previously treated with 
bapineuzumab from the AAB-001 Phase IIA trial was 
assessed. Interestingly, the presenters found, similarly to 
us, that the striatum of their participant had only a few 
scattered areas of Aβ deposition; this common feature of 
apparent striatal Aβ clearance in both our study and the 
bapineuzumab report may be worth investigating further. 
Finally, more recently, three participants previously treated 
with lecanemab were assessed [13, 28, 53]. Thus, as the 
largest human neuropathology study of passive anti-Aβ 
monoclonal immunotherapy to date, this work is truly 
unique.

A second potential limitation is that the treatment 
regimens of the DIAN-TU-001 participants included in 
this study were heterogeneous. Among the participants in 
the gantenerumab or solanezumab arms, one participant 
met protocol discontinuation criteria, and four others 
withdrew early from the trial, either at their own behest 
or that of their proxy. Thus, several of the participants in 
this study did not receive all their scheduled doses and, 
importantly, they spent little or no time receiving drugs at 
high dose, as dose escalation occurred midway through the 
DIAN-TU-001 trial [46, 57]. Although this circumstance did 
allow analyses of dose-effects for gantenerumab (discussed 
above), it also likely prevented a fair histologic evaluation 
of gantenerumab’s full potential to remove Aβ deposits, and 
to change other neuropathologic features such as tauopathy 
and gliosis.

In addition, these first two limitations (low number of 
participants, heterogeneous dosing) introduced a statistical 
susceptibility to outliers. Within the gantenerumab arm, one 
participant (who received a low total dose of gantenerumab) 
expired with a dense burden of Aβ deposits in the caudate 
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and putamen relative to the others (over 1.5 times the 
interquartile range above the third quartile). Future work 
is needed to understand whether this outlier’s high Aβ 
burden reflects biologic factors (e.g., a DIAD mutation with 
inherently abundant striatal Aβ deposition), having received 
the lowest cumulative gantenerumab dose, and/or technical 
factors that are not prevented by immunohistochemistry 
batch-staining.

In summary, this postmortem study corroborates the 
major findings reported for the DIAN-TU-001 trial: 
gantenerumab treatment in DIAN-TU-001 engaged its target 
[5] and reduced burdens of parenchymal Aβ deposits in a 
dose-dependent fashion, likely to levels lower than those 
measured during the trial’s last Aβ PET measurements. 
However, Aβ deposit clearance remained incomplete, even 
for participants who received the highest cumulative doses 
of gantenerumab, and quantitative immunohistochemical 
assessments of tauopathy, microgliosis, and astrocytosis 
did not find significant differences between the treatment 
arms and controls. Based on these findings, we anticipate 
that higher cumulative doses, more effective antibodies, and 
earlier intervention with anti-Aβ antibodies may be more 
effective in removing or inhibiting the formation of amyloid 
plaques. We also expect that future postmortem studies, 
using more sophisticated molecular techniques, will identify 
changes linking Aβ deposit clearance to slowed cognitive 
decline. Regardless, in view of other recent encouraging 
anti-Aβ antibody clinical trial results and the urgent need 
for further therapeutic improvements, we anticipate that 
combining more effective anti-Aβ therapies with other 
treatments, such as anti-tau antibodies or drugs that target 
other aspects of pathophysiology, will represent promising 
next steps for AD clinical trials.
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