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Using the Kriging Correlation 
for unsupervised feature selection 
problems
Cheng‑Han Chua1, Meihui Guo1 & Shih‑Feng Huang2*

This paper proposes a KC Score to measure feature importance in clustering analysis of high-
dimensional data. The KC Score evaluates the contribution of features based on the correlation 
between the original features and the reconstructed features in the low dimensional latent space. A 
KC Score-based feature selection strategy is further developed for clustering analysis. We investigate 
the performance of the proposed strategy by conducting a study of four single-cell RNA sequencing 
(scRNA-seq) datasets. The results show that our strategy effectively selects important features for 
clustering. In particular, in three datasets, our proposed strategy selected less than 5% of the features 
and achieved the same or better clustering performance than when using all of the features.

Feature selection for unsupervised learning is a challenging problem. In this study, we propose a Kriging-Cor-
relation (KC) Score, which integrates the Automatic Fixed Rank Kriging (AutoFRK)1 method with a correlation 
analysis, to measure feature importance in clustering analysis. A KC Score-based feature selection strategy is 
further developed for extracting important features for high dimensional clustering analysis. The feature selection 
procedure includes three main steps: calculating the importance score of each feature, ordering the features by 
their scores, and deciding the number of features to be selected. In addition, the proposed strategy also suggests 
an appropriate kernel to enhance the clustering accuracy and efficiency.

To investigate the performance of the proposed strategy, we study four single-cell RNA sequencing(scRNA-
seq) datasets to extract the critical features for cell type clustering analysis. Cell type identification has many 
applications, including helping to understand how different cells function and interact. A classical and straight-
forward approach is to assign cells their types by micromanipulation, but this method is usually time-consuming 
and risks mislabeling. Recently, a data-driven approach, single-cell interpretation via multi-kernel learning 
(SIMLR)2, proposes to cluster cells based on single-cell RNA sequences and then to accordingly identify the 
cell type for each cluster. This approach not only saves time by not requiring cell-by-cell identification, but it is 
also able to identify some undiscovered cells associated with cancer3. For scRNA-seq data, there are very few 
samples n compared to the number of genes (features) p. A dimension reduction method is often employed to 
circumvent this low n/p ratio when conducting clustering analysis. The SIMLR study accomplished dimension 
reduction through the well-known t-distributed stochastic neighbor embedding (t-SNE)4 method. Since gene 
expression in scRNA-seq data usually contains dropout events (zero measurements), SIMLR adopts a multi-
resolution Gaussian kernel to measure the similarity matrix used in the t-SNE.

After conducting clustering analysis in the latent space obtained by t-SNE with SIMLR, we propose a strategy 
to find important genes in cell clustering. The results show that our strategy effectively selects important features 
for clustering. In particular, in three datasets, less than 5% of features are selected by our proposed strategy, yet 
the classification accuracy and Normalized Mutual Information (NMI) is the same or better than using all fea-
tures. Furthermore, for the four datasets, the KC Score has either comparable or better NMI than the Laplacian 
Score5, which is one of the well-known locality preserving filtering methods for unsupervised feature selection.

Results
Datasets.  In this study, we apply the proposed method to four published scRNA-seq datasets, which record 
gene expression for different kinds of cell species. The numbers of subjects n, genes (or features) p, number of 
classes, and descriptions of the datasets are given in Table  1. From Table  1, one can see the aforementioned low 
n/p ratio in each dataset. The datasets analyzed in this study are available in the Supplementary information sec-
tion on the website https://​www.​nature.​com/​artic​les/​nmeth.​4207.
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Features selection procedure.  Let ZM(X) denote the projection of the original data X (see Eq. (1)) on 
the 2-dimensional latent space by t-SNE with the similarity matrix SM(X) obtained via SIMLR in Eq. (3), where 
the superscript M represents all results generated from SIMLR. Let ŷM(X) be the clustering label vector of the 
cells by applying k-means on ZM(X) . For each gene, we calculate its Laplacian Score by SM(X) and KC Score by 
ZM(X) , details are given in “Methods” section.

Let Vk be the feature collection of the first k highest KC Scores; hence Vk is a submatrix of X with dimension 
n× k . Let SG(Vk) be the similarity matrix estimated by the single Gaussian kernel method based on the Vk , where 
the superscript G represents all results generated from a single Gaussian kernel method. Our goal is to find genes 
that play important roles in clustering by KC Scores. Details (Strategy A) are given below.

[Strategy A]

1.	 For each k = 1, . . . , p , apply t-SNE on Vk with SG(Vk) and denote the associated latent space projection as 
ZG(Vk) . Then apply k-means on ZG(Vk) to obtain the clustering label vector ŷG(Vk).

2.	 For each k = 1, . . . , p , calculate the Pillai’s trace in MANOVA for ŷG(Vk) and ZG(Vk) and denote the result 
as F(Vk) . Let k1 = argmaxk=1,...,p F(Vk).

3.	 To further prune Vk1 , consider k2 = 1+max
{
k < k1 : NMI

(
ŷG(Vk), ŷ

G(Vk1)
)
< 0.95

}
.

4.	 If NMI(ŷG(Vk2), ŷ
M(X)) > 0.7 , then output Vk2 and ŷG(Vk2) ; otherwise, go back to steps 1-3, replacing the 

superscript G by M and output Vk2 and ŷM(Vk2).

Figure 1 presents the flow chart of the above procedure. In step 1, the reasons for using SG are twofold: SG 
requires lower computational costs than SM ; the clustering performances of SG and SM are comparable when the 
number of critical genes ( k2 in step 3) is small. In step 2, we decide the initial features set Vk1 by maximizing the 
Pillai’s trace statistics in MANOVA, which corresponds to the variance ratio of between-group and within-group. 
Since Vk1 still possibly contains some irrelevant or non-significant features, we adopted a pruning step in Strategy 
A. The pruning step is a widely used technique to further refine the selected features in model selection6 and tree-
based methods in machine learning7. It aims to reduce variance and avoid overfitting by deleting some irrelevant 
or non-significant features. Therefore, we pruned the set Vk1 to Vk2 in step 3 of Strategy A such that after drop-
ping unimportant genes in Vk1 , the NMIs between ŷG(Vk1) and ŷG(Vk) are greater than 0.95 for all k ∈ [k2, k1] . 
In step 4, we check the adequacy of Vk2 by comparing the NMI between ŷG(Vk2) and ŷM(X) to decide whether 
to replace superscript G by M in steps 1–3. Similarly, to find the set of critical genes, denoted by V∗

k2
 , in cluster-

ing by Laplacian Scores, we only need to replace the KC Scores by the Laplacian Scores in the above procedure.

Performance of Strategy A.  We mainly use two metrics, NNA2 (under supervised setting) and NMI2 
(under unsupervised setting), to compare the classification and clustering performance based on the latent 
space projections Zl(Vk2) and Zl(V∗

k2
) , where l = G or M. Since a good latent space projection should facilitate 

distance-based classifiers, NNA is used to measure the goodness of the distance measure from the latent space 

Table 1.   Description of four scRNA-seq datasets.

Data name n p Class # Description

mECS 182 8989 3 Embryonic stem cells under different cell cycle stages

Kolod 704 13,473 3 Pluripotent cells under different environment conditions

Pollen 249 6982 11 Eleven cell populations including neural cells and blood cells

Usoskin 622 17,772 4 Neuronal cells with sensory subtypes

Figure 1.   Flow chart of Strategy A.
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projection Zl(Vk2) or Zl(V∗
k2
) . When the NNA(Zl(Vk2)) is greater than the NNA(Zl(V∗

k2
)) , the latent space pro-

jection Zl(Vk2) is more efficient for classification than the latent space projection Zl(V∗
k2
) and vice versa. We use 

NMI to evaluate the consistency between the obtained clustering ŷl(Vk2) or ŷl(V∗
k2
) and the true labels. A higher 

NMI indicates a better clustering result. In addition to using NNA in a supervised setting, we also adopted ran-
dom forest to evaluate the classification performances of different methods. We calculate a random forest classi-
fier’s average classification accuracy, denoted by RFA, under a 5-fold cross-validation framework.

Table 2 reports the number of critical genes k2 after pruning, k2/k1 , the ratio k2/p , and the corresponding 
NNA, RFA, and NMI based on Zl(Vk2) , Zl(V∗

k2
) and ZM(X) for the four datasets. The results in Table  2 show that, 

in most cases, Strategy A only select a small percentage ( k2/p ) of features, but achieve NNA, RFA, and NMI that 
are comparable to or even better than using all features. In view of k2/k1 , Strategy A pruned over 25% features 
in Vk1 for the mECS, Kolod, and Usoskin datasets. In particular, for the Kolod dataset, Strategy A only requires 2 
genes, accounting for 0.01% , to achieve the same performance based on all features. Also, for the Usoskin dataset, 
NNA, RFA, and NMI based on KC and Laplacian scores are higher than the benchmark.

To further evaluate the performance of KC and Laplacian Scores, we compare their NMIs based on the two 
k2 ’s selected respectively by the KC and Laplacian Scores in Table 2, see Fig. 2. The results show that the KC 
Score has either comparable or better NMI for the four datasets than the Laplacian Score for both of the two k2’s.

Comparison of single and multi‑resolution Gaussian kernels.  Figure 3 illustrates the reason why the 
first step of Strategy A adopts the similarity matrix ( SG ) estimated by the single Gaussian kernel method rather 
than the one ( SM ) estimated by multi-resolution Gaussian kernels. Figure 3 presents the curves of NNA in (a)–
(d) and NMI in (e)–(h) versus the feature size (log scale) for the four datasets. Each subfigure plots the curves of 
KC Score with single Gaussian kernel (red), KC Score with SIMLR (yellow), Laplacian Score with single Gauss-
ian kernel (blue), and Laplacian Score with SIMLR (green). For the Kolod, Pollen, and Usoskin datasets, the 
KC Score and Laplacian Score with single Gaussian kernel perform better than the counterparties with SIMLR. 
The KC Score with single Gaussian kernel reaches the highest NNA and NMI much faster than the other three 
methods, especially for the Kolod. The corresponding highest NNA and NMI occur at ko = 2 , where ko denotes 

Table 2.   k2 , k2/k1 , k2/p , NNA, RFA and NMI based on Zl(Vk2) , Zl(V∗
k2
) and ZS(X) for the four data sets.

Data set Latent space projection k2 k2/k1 (%) k2/p (%) NNA RFA NMI

mECS ZS(Vk2 ) 2860 50.49 31.82 0.97 0.96 0.84

(p = 8989)
ZS(V∗

k2
) 5595 69.89 62.24 0.95 0.96 0.85

ZS(X) 0.95 0.95 0.89

Kolod ZG(Vk2 ) 2 8 0.01 1.00 1.00 1.00

(p = 13473)
ZG(V∗

k2
) 10 28.57 0.07 1.00 1.00 1.00

ZS(X) 1.00 1.00 0.99

Pollen ZG(Vk2 ) 225 100 3.22 0.98 0.98 0.94

(p = 6982)
ZG(V∗

k2
) 115 100 1.65 0.98 0.98 0.91

ZS(X) 0.98 0.95 0.95

Usoskin ZG(Vk2 ) 65 41.94 0.37 0.99 0.99 0.96

(p = 17772)
ZG(V∗

k2
) 55 73.33 0.31 0.98 0.98 0.93

ZS(X) 0.94 0.96 0.74

Figure 2.   The NMIs based on the two k2 ’s selected respectively by the KC and Laplacian Scores in Table 2.
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the minimal k at which the NNA or NMI attains the highest peak of each method in Fig. 3. In contrast, the KC 
Score and Laplacian Score with SIMLR perform better than the single Gaussian kernel for the mECS dataset, 
and the highest NNA and NMI of KC Score with SIMLR were reached at ko > 3000 , which are larger than the 
ko values of the other three methods. Hence, KC Score with single Gaussian kernel is recommended when the 
number of the critical genes is small, but KC Score with SIMLR is recommended when the number is large. One 
possible explanation of this phenomenon is that multi-resolution Gaussian kernels are designed for collecting 
a larger set of features than a single Gaussian kernel since different kernels might highlight various critical fea-
tures. Nevertheless, if the number of helpful classification features is small, a single kernel might be good enough 
to identify these genes. This might explain why our numerical experiments reveal that KC score with a single 
Gaussian kernel performs better than the multi-kernel approach if ko is small. Moreover, each subfigure in Fig. 3 
is also marked with the k2 values of the KC Score and the Laplacian Score obtained from Table 2. The NMI and 
NNA at k2 are higher than those at most of the other k values in each dataset, which indicates that the k2 features 
recommended by Strategy A can produce satisfactory clustering performances for the four datasets.

Discussion
This study proposes a KC Score to measure feature importance. The KC Score is designed by measuring the 
correlation between the original and the associated reconstruction genes expression based on the latent space 
obtained from SIMLR and t-SNE. A feature selection strategy is also developed for the KC Score or Laplacian 
Score to select the critical genes. The strategy is applied to four datasets. The results show that, when there are 
few critical genes, the latent space based on KC Score and single Gaussian kernel has the best performance. In 
contrast, the latent space based on SIMLR is recommended when the number of critical genes is relatively large.

In particular, for the Kolod dataset, Strategy A with a KC Score only selects two critical genes to achieve 
perfect clustering, meaning that the corresponding NMI is 1. To gain more insights into how those two selected 
critical genes produce perfect clustering, Fig. 4 shows the scatter plot of the first two (the 9708th and 11221st) 
critical cell gene expressions. In Fig. 4, if both two cell genes’ expressions occur dropout, the cells are classified 
as Class 1 (red points); if only the 9708th cell gene expression is dropped, the cells are classified as Class 2 (green 
points); if neither of the two cell gene expressions dropout, the cells are classified as Class 3 (blue points). As the 
figure shows, the three classes are separated perfectly among the above three dropout patterns. This phenom-
enon shows that dropout patterns can provide helpful and informative signals for scRNA-seq clustering. In the 
literature, other studies also reported similar findings that dropout patterns might be a helpful signal in single-
cell data analysis8–10. Nonetheless, dropout patterns may be less informative when they are very dispersed, as is 
common in other areas such as microbiome data.

Moreover, concerning the NMIs in Table 2 for the Usoskin dataset, the clustering performance improves 
markedly, from 0.74 to over 0.93, by proceeding feature selection. To visualize this finding, Fig. 5 shows the 
projections and clustering results in the three 2-dimensional latent spaces obtained by t-SNE: (a) ZG(V65) , (b) 
ZG(V∗

55) , and (c) ZM(X) . In Fig. 5, the clustering performances of ZG(V65) and ZG(V∗
55) are shown to be compa-

rable. However, compared to ZG(V65) and ZG(V∗
55) , the separability among the four classes in ZM(X) is relatively 

low, especially for the cells in Class 4 (purple points), since they are divided incorrectly into two groups. This 
finding highlights that identifying and using critical features for clustering is more effective than all features.

Figure 3.   The NNA and NMI curves of Strategy A against different numbers(log scale) of genes based on the 
KC Score(single Gaussian kernel; SIMLR) versus Laplacian Score(single Gaussian kernel; SIMLR) for the four 
scRNA-seq datasets, where the circles in each subplot denote the locations of k2.
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In the procedure of Strategy A, we adopted the unsupervised learning method SIMLR to cluster the cells. 
In SIMLR, one must conduct many matrix calculations with size n× n , where n denotes the number of cells. 
Therefore, the computational cost is very expensive with a large n, which leads to a limitation of Strategy A. 
Table 3 presents the running hours spent in steps 1 and 2 of Strategy A when applying different methods to the 
four datasets. All the computations are conducted on servers with 2.40 GHz CPU, NVIDIA-SMI 430.50 GPU, 
and 126 GB RAM. One can see that the running hours of using SIMLR to compute the KC Score and Laplacian 
Score are roughly proportional to n2 . Hence, the running hours of the Kolod ( n = 704 ) and Usoskin ( n = 622 ) 
datasets dramatically increase compared to the other two datasets with smaller n. In addition, the running hours 
of SIMLR are remarkably more extensive than those of the associated single Gaussian kernel. Consequently, 
once the challenge of the heavy computational burden in SIMLR with a large n can be solved in the future, this 
limitation of Strategy A could be released.

Figure 6 presents the MANOVA Pillai’s Trace statistic curves for the four datasets. From the figure, one can 
find that the F  statistic is not a monotonic function of k. In particular, the curves tend to decrease as the number 
of features is large enough in the Kolod, Pollen, and Usoskin datasets. Moreover, it can be seen that the curves 
in Fig. 6 are not smooth around k1 and severely fluctuate for k ≤ k1 in the mECS, Pollen, and Usoskin datasets. 

Figure 4.   Scatter plot of the first two (the 9708th and 11221st) critical cell gene expressions for the Kolod 
dataset.

Figure 5.   Three 2-dimensional latent spaces obtained by t-SNE for the Usoskin dataset: (a) ZG(V65) , (b) 
ZG(V∗

55) , and (c) ZS(X).

Table 3.   The running hours spent in steps 1 and 2 of Strategy A when applying different methods to the four 
datasets.

Dataset n
KC Score (single Gaussian 
Kernel) KC Score (SIMLR)

Laplacian Score (single 
Gaussian Kernel) Laplacian Score (SIMLR)

mECS 182 0.09 5.90 0.09 5.93

Kolod 704 2.76 64.17 2.70 68.09

Pollen 249 0.12 7.21 0.12 7.33

Usoskin 622 3.39 76.02 3.46 77.43
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Suppose we pruned genes via a similar method to step 3 of Strategy A, by replacing the role of NMI with the F  
statistic. In that case, we would need to develop a new test statistic to decide the critical value for selecting k2 . 
Doing so is beyond the scope of this study, and we leave it to our future work.

In addition, we investigate the performance of strategy A in imbalanced data by delving into the most imbal-
anced one, Pollen, among the four datasets. The Pollen dataset consists of 11 classes, and one of the classes only 
contains 3% of cells in the dataset. Figure 7 shows the confusion table of the clustering result of ZG(Vk2) in 
Table 2, where the clusters are rearranged with the highest accuracy. The results in Fig. 7 reveal that the sensitivity 
of the 5th class is indeed affected by its low proportion of cells in the dataset. In general, the classification problem 
of imbalanced data is significantly challenging, even in supervised learning. In this study, since we considered 

Figure 6.   The MANOVA Pillai’s Trace statistic curves of Strategy A against different numbers (log scale) of 
genes based on the KC Score (single Gaussian kernel; SIMLR) versus Laplacian Score (single Gaussian kernel; 
SIMLR) for the four scRNA-seq datasets, where the circles denote the locations of the k1 ’s for each method.

Figure 7.   The confusion table of the clustering result of ZG(Vk2
) , where the clusters are rearranged with the 

highest accuracy.
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an unsupervised learning task, the identification problem of a class with a small percentage of observations is 
even more difficult. Therefore, the low sensitivity for the class containing a low proportion of cells in the dataset 
revealed in Fig. 7 is not surprising. Further studies to improve the sensitivity of this scenario in supervised and 
unsupervised learning are needed in the future.

Note that the performance of Strategy A using KC Score highly relies on the classes being able to be separated 
in the projected latent space, because the KC Score is calculated by reconstruction from projections in the latent 
space. It is therefore necessary to overcome this limitation in order to extend the applicability of the proposed 
method. Also, step 3 of Strategy A is based on filtering out the most non-essential genes iteratively until a stop-
ping criterion is met, so there is still room for further refinement in future studies.

Methods
Feature ranking criteria.  Laplacian Score.  The following notation is used for the data matrix X

where x.k = (x1k , x2k , . . . , xnk)
′ denotes the n observations of the kth feature and xi. = (xi1, xi2, . . . , xip) denotes 

the p features of the ith observation. The Laplacian Score is a well-known unsupervised feature ranking method, 
which uses a similarity matrix5. The Laplacian Score of a given similarity matrix S is defined as

where D = diag(S1) , L = D − S , x̃.k = x.k −
x
T
.kD1

1TD1
1 and 1 = (1, . . . , 1)′ . The smaller the Laplacian Score, the 

more important the feature is. The similarity matrix S of the SIMLR method, denoted by SM(X) , is constructed 
via the following optimization objective function and constraints:

where φl(xi.) is the l-th kernel-induced implicit mapping of ith observation. We can rewrite �φl(xi.)− φl(xj.)�22 
as the representative of the kernel function

where the kernel functions are defined as

with σi =
∑

j∈KNNk(i)
�xi. − xj.�2/k and KNNk(i) being the set of the top k neighbors of the ith observation. In 

practice, the parameters k and σ in Kσ
k (·, ·) are obtained from the combinations of k ∈ {10, 12, 14, . . . , 30} and 

σ ∈ {1.0, 1.25, . . . , 2.0} , which results in 55 different kernels.

Kriging‑Correlation Score (KC Score).  The Kriging-Correlation Score (KC Score) proposed in this study aims 
to improve the efficiency of feature selection. We now introduce the algorithm for the KC score. Let Z ∈ R

n×d 
be the n projections in a d-dimensional latent space of a dimension reduction method. Based on Z, we adopt the 
Automatic Fixed Rank Kriging (AutoFRK)1 to define the KC score. The details are as follows:

Step 1: Use Z as the location inputs to generate the multi-resolution thin-plate spline basis matrix G. For each 
feature in data matrix X , fit the following spatial random effect model

where Giw = fw(zi.) , wk ∼ N(0,Mk) , and ηk ∼ N(0, σ 2
ηkI) . In particular, fw(·) denotes the multi-resolution thin-

plate spline basis function and is defined as

X :=


| x1• |

...

| xn• |


= | |

x•1 x•p

| |
 ∈ Rn×p

(1)

(2)Lk =
x̃
T
.kLx̃.k

x̃
T
.kDx̃.k

(3)

minS,L,w
∑

i,j

D(xi., xj.)Sij + β�S�2F + γ tr(LT (IN − S)L)+ ρ
∑

l

wl logwl

subject to D(xi., xj.) =
∑

l

wl�φl(xi.)− φl(xj.)�22,
∑

l

wl = 1, wl ≥ 0,

LTL = IC ,
∑

j

Sij = 1, and Sij ≥ 0 ∀(i, j)

�φl(xi.)− φl(xj.)�22 = φl(xi.)
Tφl(xi.)+ φl(xj.)

Tφl(xj.)− 2φl(xi.)
Tφl(xj.)

= Kσ
l (xi., xi.)+ Kσ

l (xj., xj.)− 2Kσ
l (xi., xj.),

Kσ
k (xi., xj.) =

1

σ(σi + σj)
√
2π

exp

(
−�xi. − xj.�22
σ 2(σi + σj)

)

x.k = Gwk + ηk

fw(z) =





1; w = 1
zw w = 2, . . . , d + 1

�
−1
w−d−1{φ(z)−�Z̃(Z̃′

Z̃
∗)−1

z̃
′}′vw−d−1 w = d + 2, . . . , n
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where Z̃ :=
(
1 Z

)
, z̃ := (1, z),φ(z) := (φ1(z), . . . ,φn(z))

′,�ik = φk(z i.), and

Step 2: The KC Score is defined as (KC)k = Ĉor(x.k , x̂.k), where x̂k are the fitted values obtained from Step 1.

MANOVA Pillai’s Trace statistic.  Let G be the number of classes and ŷi ∈ {1, . . . ,G} be the clustering 
of observation i. The total of Sum of Cross-Products (SSCP) can be divided into ‘between’ and ‘within’ groups. 
That is,

where z̄ =
∑n

i=1 z i./n and z̄(g) =
∑

{i:ŷi=g} z i./|{i : ŷi = g}| . The Pillai’s Trace statistic is defined as 
F = trace(B(B+W)−1).

Evaluation criteria. 

1.	 NNA
	   We consider a performance metric in a supervised setting, namely the Nearest Neighbor Accuracy (NNA). 

We use 5-fold cross-validation on the transformed matrix Zl(Vj) and its true labels y, where l = G or M. For 
each trial, we use four folders as the training set and the remaining one as the validation set. For each cell in 
the validation set, its class is assigned as the label of the training set object that is smallest Euclidean distance 
from the target cell. The NNAl

j is defined as the average accuracy of the five validation sets.
2.	 NMI
	   Normalized Mutual Information (NMI) is a measure to evaluate the clustering consistency between the 

two clusters U = (U1, . . . ,Un) and V = (V1, . . . ,Vn) . Let P and Q denote the number of labels in U and V, 
respectively. Let npq = |{i = 1, . . . , n : Ui = p, Vi = q}| , np+ =

∑Q
q=1 npq , and n+q =

∑P
p=1 npq . The NMI 

is defined as 

 where 
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