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Simple Summary: The neutrophil-to-lymphocytes (NLR) reflects the systemic inflammation. Based
on a cohort of 144 patients treated for localized or metastatic well-differentiated pancreatic neuroen-
docrine tumors (pNET), we identified the NLR ≥ 4 to be associated with worse overall survival.
Using MCP-Counter on a publicly available pNET RNA-sequencing dataset, we inferred the tumor
microenvironment composition of 83 primary pNET and 30 liver metastasis. The neutrophils scores
were statistically higher in liver metastasis relative to primary pancreatic tumors (p = 0.005). Gene set
enrichment analysis further revealed activation of complement pathway signature in liver metastasis.
Through combination of the neutrophil and complement pathway genes, we found that pNET can
be classified into two clusters: Neu-Comp1 and Neu-Comp2. Notably, the Neu-Compt1 cluster
was enriched in neutrophils and complement pathway signatures and was associated with liver
metastasis. These data offer new insights into the role of inflammatory factors in the metastatic
progression of the pNET.

Abstract: Well-differentiated pancreatic neuroendocrine tumors (pNET) have an unpredictable
natural history. The identification of both blood and tumor immune features associated with patients’
outcomes remains limited. Herein, we evaluated the best prognostic value of the neutrophils-
to-lymphocyte ratio (NLR) in a cohort of 144 pNETs. The NLR ≥ 4 was associated with worse
overall survival in both univariate analysis (HR = 3.53, CI95% = 1.50–8.31, p = 0.004) and multivariate
analysis (HR = 2.57, CI95% = 1.061–6.216, p = 0.036). The presence of synchronous liver metastasis was
identified as a prognostic factor in multivariate analysis (HR = 3.35, CI95% = 1.411–7.973, p = 0.006).
Interestingly, the absolute tumor-associated neutrophils count was higher in liver metastasis as
compared to their paired primary tumor (p = 0.048). Deconvolution of immune cells from the
transcriptome of 83 primary tumors and 30 liver metastases reveals enrichment for neutrophils in
metastasis relative to primary tumors (p = 0.005), and this was associated with upregulation of the
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complement pathway (NES = 1.84, p < 0.0001). Combining neutrophils signature and complement
pathway genes, unsupervised clustering identified two pNETs subgroups, namely Neu-Comp1 and
Neu-Comp2. Characterized by neutrophils infiltration and activation of the complement pathway,
Neu-Comp1 was highly enriched for metastatic liver samples as compared to Neu-Comp2 (p < 0.0001).
These data suggest the possible link between liver metastasis, complement pathway activation, and
neutrophils infiltration in well-differentiated pNET and open avenues for targeting complement
pathways in these tumors.

Keywords: pancreatic neuroendocrine tumors; neutrophils-to-lymphocyte ratio; tumor microenvi-
ronment; neutrophils; complement; innate immunity; transcriptome

1. Introduction

Pancreatic neuroendocrine tumors (pNET) are the second most frequent tumor arising
in the pancreas after adenocarcinoma, accounting for 1–3% of all pancreatic tumors [1].
Their incidence has been increasing over the last few years [2]. According to the Surveil-
lance, Epidemiology, and End Results (SEER) registry, the incidence has reached 0.8 new
cases per 100,000 persons per year in 2012 as compared to <0.1/100,000 per year in 1973 [2].
pNET is a heterogeneous disease in which the grade is the most important prognostic
factor [3]. The three-trial grading system is based on the evaluation of tumors’ proliferative
potential estimated by the percentage of Ki67 positive cells or mitotic count [4]. Grade
3 carcinomas are known to have the worst outcome with five-year overall survival (OS)
estimated at 13%, while having a five-year OS for grade 1 (G1) and grade 2 (G2) tumors
are 80% and 67%, respectively [5]. However, among well-differentiated grade G1 and G2
tumors, there is a true tumor heterogeneity leading to a distinct natural history. Among
known prognostic factors for pNET, Ki67 expression (which is in part related to tumor
grade) and stage at diagnosis (lymph node involvement, as well as the burden of liver
metastases) are the most frequently used [3,6]. Carcinological surgery is the cornerstone of
therapy for localized disease (although the wait-and-see strategy is an option for small G1
pNET) [3]. However, surgery can also be curative in some patients with liver metastases [7].
Outcomes in localized, well-differentiated G1 and G2 pNET are generally favorable, al-
though the recurrence rate varies between 12–25% in the literature [8,9]. Therefore, the
identification of prognostic biomarkers is an unmet need in this population [10]. Among
the explored biomarkers, systemic inflammation has been recognized as and represents a
hallmark of cancer [11].

Various biological parameters reflect systemic inflammation such as elevated blood
neutrophil-to-lymphocytes (NLR) ratio, which fosters tumor proliferation and metastasis
via inhibition of apoptosis, promotion of angiogenesis, and DNA damage [11–13]. Thus, the
tumor-associated neutrophils (TANs) were shown to interact with tumor cells. Depending
on various extracellular stimulations (e.g., IFNg, TGF-B), TAN may present an “immuno-
suppressive switch” from antitumor N1 phenotype to pro-tumoral N2 phenotype [14].
Moreover, TAN activity is dependent on the tumor type and location within the tumor
(intratumoral versus stromal) [15].

The NLR has been already described as a prognostic factor in different types of tu-
mors [16,17]. High NLR was related to patients’ poor overall survival among various
metastatic tumors [11,12]. For example, in colorectal cancer (surgically treated localized dis-
ease, as well as in the metastatic setting), NLR > 5 was associated with a worse outcome [16].
Several studies described NLR as a prognostic factor of relapse and survival in all-grade
resected pNET patients [18–23]. However, different cut-offs have been identified among
the reported cohorts. Notably, beyond its simple calculation, NLR might be a surrogate for
the immune tumor microenvironment (TME), whereas the presence of tumor-associated
immune cells is generally assessed by immunohistochemistry (IHC) [24].
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With the advent of immune checkpoint inhibitors, efforts have been made to perform
the immune classification of various cancers types in different organs [25]. Those efforts
revealed striking associations between somatic mutations and TME composition and
response to immune checkpoint inhibitors [26]. However, to the best of our knowledge, no
comprehensive subtypes immune TME profiling has been reported to date.

In the present work, we analyzed the association between NLR, clinicopathological
tumor features, and patients’ outcomes in a cohort of well-differentiated pNET identifying
higher NLR and TANs as features of liver metastasis. Furthermore, we have inferred the
distribution of immune cells from the transcriptome of 83 primary pNET and 30 liver
metastasis revealing striking associations between neutrophils enrichment, complement
activation, and liver metastasis.

2. Materials and Methods
2.1. Patient Population

We recorded pNET patients’ data from five oncology centers in the area of Alsace,
France. Patients were identified from the tumor board database between 1 January 2008
and 1 January 2019, and variables of interest were extracted from medical files. This study
was approved by the Institutional Ethics Committee (no. 7435) of Strasbourg University
Hospital and conducted in accordance with the principles outlined in the Declaration of
Helsinki. Inclusion criteria were as follows: confirmed diagnosis of well-differentiated G1
and G2 pNET (all stages) reviewed by pathologists from national expert board TENPATH,
adult patients, availability of white blood count analysis before treatment (surgery or
medical treatment). Recorded data included: gender, age, tumor stage, pathology findings
(grade, TNM staging, functional or not), prior medical history including a context of
multiple endocrine neoplasia (MEN1), blood count characteristics, treatment characteristics,
and survival. The definition of OS is the time between the diagnosis until death from any
causes or the last day of follow-up. TNM stage was determined from the American Joint
Committee on Cancer (AJCC) 2017 classification (seventh edition) [27]. The tumor grade
and differentiation were defined according to 2017 WHO classification of pNET [28].

2.2. NLR Calculation

The lymphocyte and neutrophil counts were obtained from the white blood cells count
(WBC) performed as close as possible (less than 3 months) to diagnosis or prior to the
surgery for patients undergoing surgery. NLR was calculated by dividing the neutrophils
absolute count by lymphocyte absolute count. The predictive value for OS of NLR was
defined using the receiver operating characteristic (ROC) curve.

2.3. Immunohistochemistry Neutrophils and Lymphocyte Assessment

Three paired tissue samples from primary and liver metastasis were available for
immunohistochemistry staining for the evaluation of tumor-associated neutrophils and
lymphocytes. Neutrophils staining with the CD66b antibody (BioLegend®, cat. no. 305102)
was performed according to the manufacturer’s instructions. For this purpose, two FFPE
tissue sections from primary pNETs and their corresponding liver metastasis were prepared,
washed in pH = 7.4 PBS, and stained with 10µg/mL of diluted CD66b antibody. In addition,
tumor-associated lymphocytes were stained with the CD3 antibody (ThemoFicher®, cat.
no. RM-9107-S, clone SP7) according to the manufacturer’s instructions. The density of
staining was evaluated by counting the stained cells by two independent investigators
(M.P.C. and V.D.) in one field x400, with an average of 10 fields. Acute appendicitis was
used as a positive control for all stains.

2.4. RNA Sequencing Data and Bioinformatic Analysis

Raw data for RNA sequencing (RNA-seq) of 83 primary pNETs and 30 liver metastases
were downloaded from a publicly available dataset (GEO: GSE98894) [29]. Raw reads
were aligned using STAR v2.5.3a with the “–quantMode Transcriptome SAM” argument
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and by providing the GFF file from ENSEMBL v75; the gene expression level was then
calculated using RSEM v1.3.3. To infer the distribution of immune populations, we used
the MCP-Counter v1.2.0. package for R software [30]. The TME deconvolution tool allows
for estimating in an abundance of 10 cell populations including eight immune and stromal
cells’ population (neutrophils, myeloid dendritic cells, monocytic cells, B lineage, NK cells,
cytotoxic lymphocytes, CD8 T cells, T cells), and two stromal cells’ populations (endothelial
cells and fibroblasts), based on their expression score. To identify subgroups, unsupervised
clustering was performed according to the Z-score and visualized as a heatmap with the
‘pheatmap’ package v1.0.12. The number of clusters was chosen empirically following
the obtained dendrograms. The MCP-counter scores for immune cells were compared
between identified clusters. To estimate the tumor-associated neutrophils score, we used
a mean value of the neutrophil score (defined by expression of CXCR1, CXCR2, FCGR3B
genes). The complement pathway was defined by the expression of SERPINC1, C4BPB,
PLG, APOC1, C3, APOA4CP, F2, TFPI2, and ITIH genes.

To assess the differential gene expression between primary pNETs and liver metastasis,
we used the Wald test for differential expression proposed by Love et al. and implemented
in the Bioconductor package DESeq2 version 1.16.1 [31]. Genes with a high Cook’s distance
were filtered out and independent filtering based on the mean of normalized counts was
performed. p-values were adjusted for multiple testing using the Benjamini and Hochberg
method [32]. Gene Set Enrichment Analysis (GSEA) was done using the GSEA software
v4.0.3 with the pre-ranked algorithm on log2 (fold-changes) estimated by DESeq2, using the
human hallmark gene sets from Molecular Signatures Database (MSigD) v7.1 [33,34]. Gene
sets with a False Discovery Rate (FDR) < 0.05 were considered as significantly differentially
expressed.

2.5. Statistical Analysis

The receiver operating characteristics (ROC) curve and its area under the curve (AUC)
were used to obtain the best cut-off value for NLR based on the overall survival population.
Survival outcomes were determined by the Kaplan–Meier method and compared by the log-
rank test. Univariate and multivariate analyses were performed using a logistic regression
model. The Akaike Information Criterion was used to keep variables associated with
survival in multivariate analysis. The Cox proportional model was used for OS univariate
and multivariate analyses.

The unpaired Student’s t-test and Chi2 test were performed to identify differences
between groups and associations between NLR and categorical variables. The paired
Student’s t-test was performed to evaluate the statistical difference in paired samples. The
Kruskal–Wallis t-test was performed to compare three and more groups among each other.
The analyses were performed with R Studio Version 1.1.463 and GraphPad Prism version
5.0 a. The results were considered statistically significant if p < 0.05.

3. Results
3.1. Patients’ Characteristics

Overall, 187 patients were identified from the tumor board database. Out of those, 24
and 19 cases were excluded because of missing data and G3 grade, respectively. Hence,
144 well-differentiated G1 and G2 pNET patients’ data were available for analysis. Patients’
demographics and characteristics are displayed in Table 1. Median patient age was 56 years
(range: 20–81 years), with a slight male predominance (57%). Among the total population,
80 patients (55.6%) had the symptomatic disease at diagnosis, with 28 (19.4%) of them
displaying functional tumors. Only 10 (6.9%) patients had known MEN1 syndrome. At
diagnosis, synchronous metastases were present in 42 (29.2%) of patients, and 50 (34.7%)
patients had lymph node involvement. A total of 129 (89.6%) patients underwent surgical
treatment, with R0 and R1 resection in 112 and 17 cases, respectively.
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Table 1. Baseline clinicopathological characterization of the current cohort.

Variable n = 144

Median age, years (range) 56 (20–81)
Gender, male 82 (57%)
BMI, kg/m2 25,7 (16.5–46.3)
Missing data 19
Symptoms at diagnosis, Yes 80 (55.6%)
Functional tumor 28 (19.4%)
MEN1 10 (6.9%)
Size, median in mm, range 25 (5–120)
Missing data 9
Metastasis at diagnosis 42 (29.2%)
Ki67, median % 3 (1–20)
Grade 2
Grade 1

69 (48%)
75 (52%)

Size, T from AJCC 2017
T1 58 (40.3%)
T2 33 (22.9%)
T3 48 (33.3%)
T4 4 (2.8%)
Lymph node status, N1 50 (34.7%)
Missing data 9
Surgery 129 (89.6%)
Surgical margins, R1 17 (11.8%)
Median NLR 2,31 (0.99–14.05)
Median neutrophils count,/mm3 4245 (1370–14470)
Median lymphocytes count,/mm3 1695 (420–4040)

NLR, neutrophil-to-lymphocyte ratio.

The association between NLR and patient’s characteristics is reported in Table S1.

3.2. Survival of Patients According to NLR Ratio

According to the AUC of 0.627, the best NLR cut-off was 4, with a sensitivity of 41%
and a specificity of 86% (Figure 1a). Twenty-seven patients had an NLR ≥ 4. At the last
time of follow-up, 13 patients died in the NLR < 4 subgroup as compared to 9 patients in
the NLR ≥ 4 subgroup. With a median follow-up of 27 months, median OS was 113 months
for patients with NLR ≥ 4 versus not reached (NR) for the subgroup of patients with NLR
< 4 (HR = 2.850, CI 95% = 1.170–6.94, p = 0.02) (Figure 1b). The two-year OS rates were 74%
and 96% in the NLR ≥ 4 and <4 subgroups, respectively.

3.3. Univariate and Multivariate Analysis for Overall Survival

In univariate analysis, the presence of metastasis (p = 0.006), lymph node involvement
(p = 0.01) and NLR ≥ 4 (p = 0.004) were significantly associated with OS. Neither the
continuous Ki67 value (p = 0.41) nor tumor T stage (p = 0.72) were identified as prognostic
factors for OS (Table 2). In multivariate analysis, NLR ≥ 4 (HR = 2.57 CI = 1.061–6.216,
p = 0.0036) and presence of synchronous liver metastasis (HR = 3.354 CI = 1.411–7.973,
p < 0.006) were associated with poor OS (Table 2).
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Table 2. Univariate and multivariate analysis of variables for overall survival.

n = 144 Univariate Multivariate

Variable n HR CI 95% p Value HR CI 95% p Value

Age, >50 years 98 1.88 0.693–5.106 0.22
Sex, male 82 2.46 0.908–6.676 0.08

Ki67, continuous value 144 1.03 0.958–1.111 0.41
Tumor size, T3-T4 52 1.17 0.494–2.783 0.72

Lymph node involvement 50 3.27 1.315–8.117 0.01
Metastasis 42 3.32 1.417–7.766 0.006 3.35 1.1411–7.973 0.006
NLR ≥ 4 27 3.53 1.502–8.313 0.004 2.57 1.061–6.216 0.036

NLR, neutrophil-to-lymphocyte ratio.

3.4. Association between NLR and Other Clinicopathological Features

We then investigated the association between NLR ≥ 4 and other clinicopathological
factors, such as age, gender, body mass index (BMI) <25 or ≥25kg/m2, presence of symp-
toms, Ki67 percentage, tumor size, tumor stage, lymph nodes, and distant metastasis (Table
S1). Only the presence of synchronous metastasis was associated with increased NLR (HR
= 2.32, CI = 0.98–5.51, p = 0.05). Notably, NLR was higher in metastatic as compared to
localized pNET (p = 0.007, Figure 2a). This difference was associated with higher neutrophil
counts and lower lymphocyte counts in metastatic relative to localized pNET subgroups
(p = 0.03 and p = 0.045, respectively) (Figure 2b,c).

3.5. Evaluation of Tumors Associated Neutrophils in Liver Metastasis and Matched
Primary pNETs

Out of our whole data set population, TANs were assessed by IHC in the matched
primary and liver metastasis of three patients, for which material and informed written
consents were available (Figure 2e). Interestingly, the absolute count of TANs was two-fold
higher in the metastatic group (median range 2.5–10 neutrophils per field) compared to
primary (median range 0.5–5.8 neutrophils per field) (p = 0.048) (Figure 2d), although the
absolute level was low. The median value of CD3 lymphocytes per field in primary tumors
was 7.9 and 5.5 in metastatic samples (Table S2)
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p = 0.045, respectively. (d) Dot plots representing the tumor-associated neutrophils counts in paired metastatic and in
primary pNETs. (e) Representation of IHC CD66b staining of tumor-associated neutrophils in a primary pancreatic
neuroendocrine tumor (left) and its corresponding liver metastasis (right), x400.

3.6. Landscape of the Microenvironment Phenotypes in pNET

To assess the tumor microenvironment (TME) composition in a large collection of
113 pNETs and explore the putative association with metastatic versus localized samples,
we inferred the distribution of six immune populations (T cells, CD8 T cells, cytotoxic
lymphocytes, B lineage, monocytic lineage, and neutrophils). Unsupervised hierarchical
clustering using immune cell scores revealed three heterogeneous clusters: cluster 1 (n = 7;
6.2%), the “neutrophils-enriched”, with high enrichment for neutrophils (p < 0.0001); cluster
2 (n = 44; 38.9%), the “immune-desert”, with low immune cell infiltration; and cluster
3 (n = 62; 54.9%), the “immune-rich” cluster, with high T cells (p = 0.001) and cytotoxic
lymphocytes (p < 0.0001) as compared to the other clusters (Figures 3a and S1). Notably,
the neutrophils-enriched cluster was tightly associated with metastatic samples (n = 5/7;
71.4%) relative to the remaining C2 (n = 12/44; 27.3%) and C3 (n = 13/62; 21%) clusters
(p = 0.02).
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Figure 3. MCP-counter analysis of 113 pancreatic neuroendocrine tumors and distribution of immune cell scores in
metastatic and primary tumors. (a) Heatmap showing unsupervised hierarchical clustering of immune cells in three clusters.
(b) Box plot of neutrophils and CD8 lymphocytes score in liver metastasis versus primary pNET tumors.

3.7. Association between Neutrophils Infiltration, Complement Pathway Activation, and
Metastatic Tumor Status

To further analyze if any specific molecular features are defining metastatic versus
primary pNETs particularly regarding an immunosuppressive myeloid environment possi-
bly linked with higher blood NLR, we compared the distribution of immune cells’ scores
between primary and metastatic samples. Only the neutrophil score was higher in liver
metastasis versus primary pNET samples (p = 0.005, Figure 3b). Conversely, no statistically
significant difference was observed for CD8 lymphocytes (p = 0.36, Figure 3b). We further
investigated differentially expressed genes between primary and metastatic tumors; overall,
1041 genes were overexpressed (FC ≥ 2; p < 0.05), and 341 genes were downregulated
(FC ≤ −2; p < 0.05). Gene set enrichment analysis using the Hallmark set identified 25
gene sets with significant enrichment in metastatic relative to primary pNETs (FDR < 0.05)
and only two gene sets downregulated (FDR < 0.05). Most upregulated gene sets included
E2F targets, xenobiotic metabolism, fatty acid metabolism, G2M checkpoints, and hypoxia
along with complement pathway (FDR < 0.05, p < 0.0001) (Figure 4).



Cancers 2021, 13, 2771 9 of 15Cancers 2021, 13, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 4. (a) Volcano plot of differential gene expression in liver metastasis versus primary pNET tumors. Each point 
represents a gene. Red represents upregulated genes, while blue is the downregulated one. (b) Bar plot representing dif-
ferentially up- (orange) and down- (blue) regulated Hallmark pathways according to Gene Set Enrichment Analysis 
(GSEA analysis). NES: Normalized Enrichment Score. (c) Enrichment for complement pathway gene set in metastatic liver 
metastasis versus primary pNET tumors. 

3.8. Subtypes Classification of pNETs Using Neutrophils and Complement Pathway Signature 
Given the potential link between neutrophils and the complement pathway, we per-

formed hierarchical clustering combining gene signatures of neutrophils and the top 10 
expressed genes from the complement GSEA Hallmark gene sets. Unsupervised cluster-
ing identified two clusters. The first one (Neu-Comp1) (n = 19; 16.8%) was enriched for 
neutrophils and complement pathway as compared to the second one (Neu-Comp2) (n = 
94; 83.2%). In addition, the Neu-Comp1 cluster was highly enriched for metastatic sam-
ples (n = 15; 78.9%) as compared to the Neu-Comp2 cluster (n = 19; 20.2%) (p < 0.0001, 
Figure 5). 

Figure 4. (a) Volcano plot of differential gene expression in liver metastasis versus primary pNET tumors. Each point
represents a gene. Red represents upregulated genes, while blue is the downregulated one. (b) Bar plot representing
differentially up- (orange) and down- (blue) regulated Hallmark pathways according to Gene Set Enrichment Analysis
(GSEA analysis). NES: Normalized Enrichment Score. (c) Enrichment for complement pathway gene set in metastatic liver
metastasis versus primary pNET tumors.

3.8. Subtypes Classification of pNETs Using Neutrophils and Complement Pathway Signature

Given the potential link between neutrophils and the complement pathway, we per-
formed hierarchical clustering combining gene signatures of neutrophils and the top 10
expressed genes from the complement GSEA Hallmark gene sets. Unsupervised clustering
identified two clusters. The first one (Neu-Comp1) (n = 19; 16.8%) was enriched for neu-
trophils and complement pathway as compared to the second one (Neu-Comp2) (n = 94;
83.2%). In addition, the Neu-Comp1 cluster was highly enriched for metastatic samples
(n = 15; 78.9%) as compared to the Neu-Comp2 cluster (n = 19; 20.2%) (p < 0.0001, Figure 5).
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4. Discussion

In this study, we identified NLR ≥4 as an independent biomarker for overall survival
in well-differentiated pancreatic neuroendocrine tumors and found that it was associated
with metastatic disease. We supposed that tumor-associated neutrophils could reflect the
difference between primary and metastatic tumors. Moreover, our study investigating the
immune TME in pNETs using transcriptome deconvolution, to our knowledge, the first
of its kind, identifying TAN enrichment in liver metastasis relative to primary pNET. In
addition, we unraveled an association between complement pathway activation and TAN
enrichment that suggests the importance of the innate immune system in driving pNET
metastasis.

Prognostic factors such as liver metastasis, tumor size, lymph node involvement, WHO
grade classification, Ki67, or presence of symptoms have been previously described as
prognostic biomarkers of recurrence-free survival [28,35–37]. In addition, scoring systems
predicting integrating several clinicopathological parameters have been proposed by Genç
et al. [6]. Recently, a high-risk, well-differentiated pNETs score was defined when two
out of three of the following variables were present: tumor size > 20 mm, lymph node
metastasis, and Ki67 > 5% or mitotic count > 2 [38]. Herein, we believe that NLR ≥ 4 might
be added to those factors. To our knowledge, our study is the first to show elevated NLR
in metastatic patients as compared to those with localized disease. Interestingly, the NLR
≥ 4 allowed us to identify a subgroup with a higher death risk in the first two years after
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diagnosis. To explain such heterogeneity, future investigations are needed to define the
genetic and epigenetic molecular underpinnings of these tumors.

Few previous studies explored the role of NLR in well-differentiated pancreatic neu-
roendocrine tumors in European patients [6,39]. Other published series involved mainly
resected patients in the Asian population [18–22,40,41]. Recently, a pooled analyses from
RADIANT-3 and RADIANT-4 identified NLR < 2.58 to be associated with longer PFS in
all subgroups, including pancreatic neuroendocrine tumors (n = 396, HR = 0.53 CI 95%
0.39–0.70) [42]. All patients enrolled in these trials had metastatic disease, and the major-
ity of them have been already exposed to systemic treatments, including chemotherapy,
which could have affected NLR. As NLR is an accessible biomarker of tumor-associated
inflammation, we hypothesized that high NLR might be a surrogate marker of tumor
microenvironment composition. To date, the correlation between circulating neutrophils
and tumor-infiltrating neutrophils is inconsistent among solid tumors. For instance, TANs
in pancreatic cancers were shown to be increased in patients with high NLR, although the
correlation was not statistically significant [43]. At the functional level, neutrophils are
involved in the anti-tumor activity (N1), as well as in the promotion of tumorigenesis (N2);
thus, under the pressure of various cytokines they might participate in either angiogenesis
and/or metastasis development [13,44,45].

To the best of our knowledge, the difference in TME composition between primary and
metastatic pNET is poorly understood. Herein, by using the transcriptome deconvolution
for the TME description, we have shown that neutrophils expression scores were higher in
liver metastasis relative to primary pNETs, consistent with our IHC staining for available
matched primary and liver metastasis. These data are keeping with results showing that
higher infiltration of intratumoral neutrophils in localized well-differentiated pNETs has
been associated with poor outcomes [46]. Thus, TANs might have an N2 pro-tumoral
phenotype driving tumor aggressiveness. Further studies are needed to analyze the
distribution and features of these cells using single-cell transcriptome sequencing.

To date, the role of immune cells in pNET has been investigated in several studies
using IHC [24,47–51]. A higher level of tumor-infiltrating macrophages (TAMs) was shown
to be associated with higher NLR. Both parameters have been statistically correlated with
poor recurrence-free survival [22]. In another study, a high level of peritumoral TAMs was
associated with lower disease-free survival [50].

Another interesting topic that is important to discuss in our study is the association
between neutrophils infiltration with complement activation. Complement is a key factor
in tissue inflammation, allowing cancer progression through the release of complement
component 5a (C5a). Neutrophil stimulation by cytokines have been shown to activate
the alternative complement pathway and release of C5 fragments, which further foster
neutrophil proinflammatory responses [52,53]. This mechanism, possibly important for
effective immune response, may play a key role in pNETs and highlight potential ther-
apeutic targets to invigorate efficient immune response. Recently, Yang et al. reported
compelling results about the potential involvement of the complement C1q activation in
liver metastasis of patients with pancreatic adenocarcinomas [54]. Moreover, they showed
that C1q is mainly expressed at tumor stroma rather in tumor cells and is involved in
complement cascade. Mechanistic experiments further demonstrated that C1q would
promote invasion and metastasis. These data are reminiscent with our observations in
pNET, suggesting a role of complement pathway activation in hepatic metastasis along
with high neutrophils infiltration.

Our study has several weaknesses. Firstly, the analysis of NLR was done retrospec-
tively. The size of our cohort may present another limitation due to the rarity of the disease.
However, to our knowledge, our study is one of the largest cohorts in the European popu-
lation encompassing a large number of cases [20]. Secondly, the elevation of neutrophils or
the decrease of lymphocytes may be the consequence of various physiological situations,
like infection, or a result of systemic treatments like steroids [55]. Another significant limita-
tion is the size of our setting for TAN evaluation. We only could perform IHC for a handful
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of paired samples. This limitation is mainly due to the rarity of the pathology, available
tumor material, and retrospective nature of the study. Finally, another limitation is the lack
of clinical annotation associated with the retrieved RNA-seq data that we analyzed.

Nonetheless, our study has several strengths. Firstly, it is a multicentric cohort on a
period of more than 10 years with centralized cases reviewed by expert pathologists. Sec-
ondly, we have managed to establish that NLR ≥ 4, a value found in other solid tumors, is a
prognostic tool for overall survival that is accessible for other clinicians and useful in prac-
tice. Thirdly, RNA-sequencing mining allowed us to deeply investigate the involvement
of innate immunity in pNET. Our data suggest that the difference between localized and
metastatic diseases may be related to the tumor microenvironment reflected by variance
in NLR. Neutrophils infiltration in liver metastasis in our training and validation dataset
strongly suggests that neutrophils may be involved in the development of metastasis,
as it has been already reported for colorectal or breast cancer [56–58]. Finally, through
the combination of complement pathways with neutrophils signature, we described two
pNETs clusters separating metastatic from localized tumors. Altogether, we suggest that
activation of the complement pathway may attract neutrophils, promoting not only the
inflammation induced by cancer cells, but also their metastatic potential.

5. Conclusions

In summary, our work highlights the importance of tumor-related systemic inflamma-
tion biomarkers NLR and TNA as prognostic markers of metastasis in pNETs. Furthermore,
this finding indicates the importance of complement activation along with neutrophils
infiltration in metastatic pNETS, suggesting that targeting a complement pathway might
open avenues for focusing on metastatic pNETs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13112771/s1, Figure S1: Bar plots of immune cells score in the three immune clusters:
neutrophils-enriched (red), immune-desert (yellow), immune-rich (green). (a) T cells. (b) CD8. (c)
Cytotoxic lymphocytes. (d) B lineage. (e) Monocytic lineage. (f) Neutrophils. Table S1: Association
between neutrophil-to-lymphocyte ratio and clinical characteristics Table S2: Number of tumor-
associated lymphocytes CD3 and neutrophils (CD66b) on three paired hepatic metastasis and primary
well-differentiated pancreatic neuroendocrine tumor.
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