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A B S T R A C T   

The Earth’s ecosystems face severe environmental stress from unsustainable socioeconomic development linked 
to population growth, urbanization, and industrialization. Governments worldwide are interested in sustain-
ability measures to address these issues. Remote sensing allows for the measurement, integration, and presen-
tation of useful information for effective decision-making at various temporal and spatial scales. Scientists and 
decision-makers have endorsed extensive use of remote sensing to bridge gaps among disciplines and achieve 
sustainable development. This paper presents an extensive review of remote sensing technology used to support 
sustainable development efforts, with a focus on natural resource management and assessment of natural haz-
ards. We further explore how remote sensing can be used in a cross-cutting, interdisciplinary manner to support 
decision-making aimed at addressing sustainable development challenges. Remote sensing technology has 
improved significantly in terms of sensor resolution, data acquisition time, and accessibility over the past several 
years. This technology has also been widely applied to address key issues and challenges in sustainability. 
Furthermore, an evaluation of the suitability and limitations of various satellite-derived indices proposed in the 
literature for assessing sustainable development goals showed that these older indices still perform reasonably 
well. Nevertheless, with advancements in sensor radiometry and resolution, they were less exploited and new 
indices are less explored.   

1. Introduction 

The success of sustainable development in any region depends upon 
what is known regarding resource management and hazards in the area 
(Tabor and Hutchinson, 1994). Although several approaches and tech-
niques are available to monitor natural resources and hazards, remote 
sensing (RS) technology has been particularly popular since the 1970s 
because of its low acquisition costs and high utility for data collection, 

interpretation, and management. Over the past few decades, RS tools 
and techniques have been deployed for several purposes at various time 
scales (Jensen, 1996). RS provides both archived and near-real-time 
information on Earth systems (Jensen, 1996; Jensen and Cowen, 
1999). RS is applied to obtain spatial information in various fields in 
Earth system science. The ability of RS to monitor Earth systems at 
various spatial and temporal scales makes it suitable for addressing 
global environmental, ecological, and socioeconomic challenges. RS can 
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provide a synoptic view of spatial information at local, regional, and 
global scales, thus facilitating swift decision-making and action (Jensen 
and Cowen, 1999). As information can be obtained directly through RS, 
it is the main surveying technology employed for collecting data in 
inaccessible and remote locations. 

Several benchmark studies have been carried out on the role of RS in 
sustainable development, covering a variety of sub-topics within the 
fields of environmental assessment, natural hazards, and socioeconomic 
development, among others (Avtar et al., 2013; Dudhani et al., 2006; 
Holloway and Mengersen, 2018). For instance, Franklin (2001) used RS 
to aid for sustainable forest management. Huete et al. (1997) developed 
a global vegetation index that could be used to monitor the dynamic 
behavior of plant growth. Wilson et al. (2003), among other researchers, 
evaluated the influence of zoning on vegetation indices and temperature 
in urban ecosystems using RS, and Dudhani et al. (2006) mapped water 
resources in a plain, as well as in a hilly and mountainous region, using 
RS as the primary data source. Van Westen (2000) reviewed the utility of 
RS for natural disaster management and concluded that although no 
satellite was specifically designed for use in disaster mitigation, most 
orbital satellites provided useful information that contributed to disaster 
prevention, preparedness, and relief efforts. 

RS has been increasingly applied over the last three decades to assess 
sustainable development efforts. Advancements in RS technology and 
the availability of large volumes of data have led to vast improvements 
in data analysis, especially when combined with geographic information 
system (GIS) and machine learning (ML) algorithms. ML techniques, 
such as convolutional neural networks, random forests, and support 
vector machines, have been used to analyze RS data for environmental 
assessments and monitoring of socioeconomic developments since the 
early 1990s (Lary et al., 2016; Singh et al., 2017; Merghadi et al., 2020). 
These algorithms are likely to play a crucial role for maximizing the 
benefits of geospatial data. Due to the paucity of images with fine spatial 
and temporal resolution, these methods were not always efficient and 
accurate when used to monitor sustainable development efforts. How-
ever, the development of new platforms and interfaces, such as graphics 
processing units, open data sources (e.g., USGS Earth Explorer, Coper-
nicus Data Hub, Bhuvan, Open Topography), and cloud platforms (e.g., 
Google Earth Engine) over the past decade has greatly improved the 
mapping and monitoring of sustainable development activities. Another 
reason for the upsurge in the use of RS to assess sustainable development 
over the past decade is the increase in global collaborations among 
members of the RS community, which has been facilitated in part by 
discussions on various social media forums such as Facebook, LinkedIn, 
Quora, Stack Exchange, and GitHub. An increase in the availability of 
numerous sophisticated analytical tools and open-source RS software (e. 
g., SAGA, QGIS, SNAP, SeaDAS, LAS) has also contributed to the 
increased use of RS to capture data for monitoring natural resources and 
the environment. 

Today, RS, which can be considered as a scientific tool, is applied in 
almost every field of Earth and environmental science. Considering the 
importance of sustainable development in the 21st century, this review 
aims to assess how advancements in RS technology have affected three 
important areas of sustainability. First, we review how RS is used to 
monitor, develop, and manage natural resources. Second, we summarize 
how RS is applied for environmental assessments and hazard moni-
toring. Third, we assess the utility of RS for improving transportation 
planning, population estimations, and quality of life. In this review, we 
attempted to provide an overview of the concept of sustainable devel-
opment and the roles RS and GIS play in achieving sustainability in the 
face of intensifying human activities and climate change. 

2. Focus and structure of the review 

This study focused to review the literature related to the use of RS for 
sustainable development applications. Table 1 summarizes the major 
developments in remote sensing technology in the sustainable 

development field over the last two decades. It considers the published 
review paper in various journals of remote sensing. A rapid evaluation 
was done of published review papers to reveal quantitative information 
about the categories that are formulated in this section. 

We explored the published articles indexed in the Scopus, Web of 
Science, and Google Scholar for mainly three broader themes viz. Nat-
ural resources management and development, environmental assess-
ment and hazard monitoring, and socio-economic development. These 
three categories were further subdivided into ten specific segments and 
the keywords search was conducted (Appendix Table A-1) for the 
following entities i.e. Biodiversity, Water Resources, Mineral Resources, 
Environmental Assessment, Flood Hazard Forecasting and Assessment, 
Landslide mitigation and management, High-mountain hazard man-
agement, Transportation, Population and the Quality of Life. Fig. 1 il-
lustrates the flowchart of the study with concepts and applications of RS 
in sustainability science. 

After the identification of related articles, the abstracts were scanned 
to screen-out the irrelevant items. A special emphasis was laid on the 
case studies related to the development of remote sensing-based spectral 
indices and their applications in different disciplines. To keep the scope 
of assessment wide with more granularity, the search was supplemented 
by additional papers about the environment, water, biodiversity, land-
slide, flood, and related subjects. Full papers were reviewed carefully by 
the authors with a key focus around the applied nature of remote sensing 
on sustainability for a conclusive database of the papers. The assess-
ments of each article, as well as the classification method of the selected 
papers, were discussed among the authors and other academic collab-
orators to reach a consensus. Then the major findings of each paper were 
noted, together with their research scale, methodology deployed, the 
illustration of sensor development, and limitations. It helped in the 
extraction of the main application of remote sensing in natural resource 
management and allied sectors. The issues of category-overlapping were 
encountered among the identified papers. As a single paper in many 
instances was found connected to more than one category. For instance, 
one paper could address both groundwater and population variables; 
and a paper on flood hazards has overlapped with high-mountain hazard 
management. In these circumstances, the papers were clustered and 
analyzed with the indexes suggested by the authors in addressing the ten 
classified issues as per the literature survey. 

Fig. 2 shows the trend of review articles published in various 
research categories from January 1, 2001, to May 15, 2020. It reveals 
the increasing trend in the number of published review articles. The 
total number of published review articles in two decades from 2000 to 
2010 and 2011–2020 is 319 and 752, respectively. The trend of pub-
lished review articles has increased two folds. The number of published 
articles in the population category is increasing significantly. 

The surveyed literature in the three broad segments of sustainability 
science was then classified into ten sub-categories (Fig. 3). Section 3 

Table 1 
Review articles with proportion to the total published papers in different 
research categories.  

Research Categories All Published 
Papers 

Review 
Articles 

Percentage of 
review papers 

Population 9189 360 3.9 
Environmental Assessment 6092 226 3.7 
Biodiversity 3430 177 5.2 
Quality of Life 1015 81 8.0 
Groundwater 3669 79 2.2 
Transportation 3063 52 1.7 
Landslide mitigation and 

management 
2881 46 1.6 

Mineral Resources 1970 44 2.2 
Flood Hazard Forecasting 

and Assessment 
1984 38 1.9 

Source: Authors Scopus Database search between January 1, 2001, to May 15, 
2020 

R. Avtar et al.                                                                                                                                                                                                                                   



Remote Sensing Applications: Society and Environment 20 (2020) 100402

3

discusses the natural resource management and development segment 
engage with the biodiversity challenges (both direct and indirect ap-
proaches) and exploration of key mineral and water resources. Section 4 
deals with the environmental assessment and hazard monitoring 
segment deal with a comprehensive evaluation of environmental impact 
by flood h, landslide, and environmental assessment in general. And 
section 5 focuses on the socio-economic development segment covers 
the factors like transport or mobility, population estimation and allo-
cation; and the quality of life. 

3. Natural resource management and development 

RS is applied in diverse ways for natural resource management and 
development. The applications of RS technology for natural resource 
management and development, especially in the context of sustainable 
development, are briefly presented in the following sub-sections. 

3.1. Biodiversity 

Biodiversity and ecosystem services are critical for life on Earth, as 
they facilitate provisioning, supportive, regulatory, and cultural services 
(Millennium Ecosystem Assessment, 2005; Avtar et al., 2017). Thus, it is 
important to monitor and conserve biodiversity for current and future 
generations. Several field-based methods and techniques have been 
developed to support biodiversity conservation. However, they are 
usually limited in terms of scale and effectiveness. For instance, con-
ventional land use and land cover (LULC) maps acquired from field 
surveys have failed to comprehensively classify and monitor biodiver-
sity and ecosystems, especially those in inaccessible and larger 
geographic areas. Given these limitations, the development of effective 
techniques to capture information under non-ideal conditions is neces-
sary. RS techniques are better for observing and monitoring 

environmental changes, as well as providing baseline information over 
extensive areas, and consistently produce precise and accurate data 
(Duro et al., 2007; Xie et al., 2008). 

RS is widely used to explore a range of ecological functions, as well as 
natural and anthropogenic drivers of landscape changes (Gould, 2000; 
Kerr et al., 2001; Kerr and Ostrovsky, 2003; McDermid et al., 2009). For 
instance, RS can be used to identify the biophysical characteristics of 
species habitats, distributions, and locations, in addition to spatial 
variation in species richness. Over the past few years, RS has been 
further enhanced and improved to deal with emerging challenges. RS 
can be directly applied for biodiversity monitoring, such as by using 
airborne and satellite sensors to capture information about species as-
semblages in ecological communities or individual organisms (Table 2). 
RS can also be indirectly applied via the extraction of environmental 
parameters for use as proxies (e.g., indicators of potential habitats for 
different plant/animal species; Duro et al., 2007; Turner et al., 2003) 
(Table 2). Field surveys to determine plant traits are usually limited to 
smaller areas and a small number of species. However, with the 
advancement of RS techniques, time-series information can be collected 
from large areas within a short survey period (Homolova et al., 2013). 

RS can also be used to directly monitor land cover, producing in-
formation that directly supports sustainable development efforts. The 
Landsat Thematic Mapper (TM), Compact Airborne Spectrographic 
Imager, and narrow-bandwidth visible and near-infrared spectroradi-
ometer sensors have been used to directly capture images of vegetation 
cover for several decades (Haboudane and Miller, 2002; Hou et al., 
2013; Menon and Bawa, 1997). Based on these RS data, forest frag-
mentation, land use and cover, and species distributions have been 
mapped and monitored over time (Kerr et al., 2001; Menon and Bawa, 
1997). LULC data are especially useful for detecting the distributions of 
individual species, species assemblages, and species richness over broad 
areas (Kerr and Ostrovsky, 2003). Key indicators of biodiversity that can 
be obtained from Earth observation data include productivity, richness, 
spatial and temporal distribution, disturbance, composition, topog-
raphy, heterogeneity, biomass, and structure (Buermann et al., 2008; 
Cord et al., 2014; Foody and Cutler, 2006; Haboudane and Miller, 2002; 
Hou et al., 2013; Menon and Bawa, 1997; Saatchi et al., 2008; Viña et al., 
2008; Waring et al., 2010; Zald et al., 2014). 

RS can also be used to derive environmental parameters or indices 
indirectly, to in turn map species patterns and diversity (Turner et al., 
2003). Such parameters are thought to be drivers of biodiversity, and 
those that are frequently estimated for determining species richness and 
distribution patterns include (i) primary productivity, (ii) climate vari-
ables, and (iii) habitat structure (Abdalla, 2012). These three types of 
parameters facilitate assessment of the diversity of various species at any 
given location and time (Turner et al., 2003). Parameters can first be 
estimated from data obtained by advanced RS sensors; then, both local 
and global species availability, richness, and diversity can be inferred. 

3.1.1. Primary productivity 
Species primary productivity has been estimated in several studies 

based on multispectral RS data. This is typically done by deriving the 
normalized difference vegetation index or similar vegetation indices and 
determining the quantitative relationship between the derived vegeta-
tion index and plant phenology (Turner et al., 2003). Hazarika et al. 
(2005) applied an integrated approach using leaf area index data 
derived from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) sensor as input for the Sim-CYCLE ecosystem model. They then 
improved estimates of the net primary productivity (NPP) of species in 
tropical and boreal forest biomes. Multi-decadal time-series estimates of 
oceanic and phytoplankton-biomass NPP were calculated by Kahru et al. 
(2015) using spectral reflectance data derived from multiple ocean-color 
satellites. MODIS was used by Nightingale et al. (2007) to estimate the 
gross primary production of forest species in the United States, and the 
estimates agreed well with the results from a simple process-based 
model. The relationship between primary productivity and species 

Fig. 1. Flowchart for selection of review papers in Application RS and GIS in 
sustainable development. 
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richness requires further exploration. However, it is widely accepted 
that primary productivity can be used for assessing species diversity at 
various spatial scales (Worm et al., 2002). 

3.1.2. Climate 
Climate data captured via RS techniques are useful for understanding 

spatial patterns of microclimatic behavior and their relationships with 
biodiversity. Several variables, including temperature, relative humid-
ity, and soil moisture, are determining factors with respect to the sur-
vival and productivity of many species (Turner et al., 2003). In recent 
years, many satellites from which climate parameters can be derived 
have been launched. For example, in 1999 and 2002, the United States 
launched the TERRA and AQUA satellites, respectively. TERRA has five 
onboard sensors designed to monitor the Earth’s environment and 
changes in climate, as follows: (i) the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER), (ii) Clouds and the 
Earth’s Radiant Energy System (CERES), (iii) Multi-angle Imaging 
Spectroradiometer (MISR), (iv) MODIS, and (v) Measurements of 
Pollution in the Troposphere (MOPITT). AQUA has six onboard sensors 
for water studies: (i) the Advanced Microwave Scanning Radiometer for 
the Earth Observing System (AMSR-E), (ii) MODIS, (iii) Advanced Mi-
crowave Sounding Unit (AMSU-A), (iv) Atmospheric Infrared Sounder 
(AIRS), (v) Humidity Sounder for Brazil (HSB), and (vi) CERES. These 

sensors collect information on the Earth’s water cycle, including evap-
oration from oceans, water vapor in the atmosphere, clouds, precipita-
tion, soil moisture, sea ice, land ice, and snow cover on land and ocean. 
Radiating energy fluxes, aerosols, vegetation cover, phytoplankton, and 
water temperature are also measured. These parameters help us to un-
derstand the relationship between climate data and biodiversity. 

3.1.3. Habitat structure 
By understanding species habitat structures, insights into species 

patterns and distributions can be obtained. In this regard, RS technol-
ogies have proven to be indispensable. Goetz et al. (2007) examined the 
heterogeneity of bird habitats in temperate forests in Maryland, USA, 
using light detection and ranging (LiDAR) technology. LiDAR data were 
used to derive the canopy height, topography, and vertical distribution 
of canopy elements, with the latter being an indicator of bird species 
richness in trees. The results of the vertical distribution analysis corre-
lated with those of bird surveys. Hyde et al. (2006) mapped forest 
habitat structure using multiple RS sensors. Data from LiDAR, synthetic 
aperture radar/interferometric synthetic aperture radar (SAR/InSAR), 
Landsat-7, and QuickBird were integrated and compared to estimate 
forest structural parameters such as canopy height and biomass. This 
study revealed that the use of multi-sensor data provided more accurate 
results than LiDAR data alone. 

Fig. 2. Trends of review articles published under nine defined research categories. 
(Source: Authors Scopus Database search between January 1, 2001, to May 15, 2020) 
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3.2. Water resource mapping and monitoring 

Water is essential for human life. Climate change, urbanization, and 
industrialization have severely impacted water resources. Surface water 
is susceptible to pollution; thus, further exploitation of groundwater 
resources is inevitable (Avtar et al., 2013a,b; Minh et al., 2019). In 
addition to being a source of clean drinking water, groundwater also 
sustains rivers, wetlands, and lakes, which are ecologically and agri-
culturally important in both developing and developed countries (Jha 
et al., 2007; Thakur et al., 2017). A number of studies have been per-
formed to detect surface water resources and elucidate their spatio-
temporal distributions based on satellite images (Rokni et al., 2014). 
Several algorithms have been developed to detect water bodies in RS 
images, such as the normalized difference water index (NDWI; McFee-
ters, 1996), modified NDWI (Xu, 2006), and automated water extraction 
index (Feyisa et al., 2014). Changes in the surface area and volume of 
water bodies were estimated using these water indices coupled with 
bathymetric datasets. Furthermore, satellite sensors such as Landsat, 
ASTER, SPOT, and MODIS are routinely used for water quality moni-
toring (e.g., of turbidity, primary productivity, nutrients, harmful algae, 
etc.) and mapping (Mishra et al., 2013). Yunus et al. (2020) recently 
applied RS to quantify the improvement in ambient water quality during 
the COVID-19 lockdown period and reported a 15% decrease in sus-
pended particulate matter in Vembanad Lake (India). Kamerosky et al. 
(2015) monitored the 2011 super algal bloom in the Indian River Lagoon 
(Florida, USA) using MERIS images. Other researchers have detected oil 
spills in water bodies using MODIS images (Pisano et al., 2015) and 
mapped seasonal variation in colored dissolved organic matter in Bar-
ataria Bay (Louisiana, USA) using Landsat images (Joshi and D’Sa, 
2015). 

Although RS is employed directly for monitoring surface water re-
sources, indirect techniques are used for mapping and exploring 
groundwater resources. Geophysical and geological maps can be 
coupled with RS-derived thematic data to quickly provide information 

Fig. 3. Remote sensing applications in the study.  

Table 2 
Application of Remote Sensing in Biodiversity using Direct Approach.  

Satellite Indicators Applications 

Vegetation cover 
Landsat, Moderate- 

resolution imaging 
spectro-radiometer 
(MODIS) 

Normalized Difference 
Vegetation Index 
(NDVI); 
Enhanced Vegetation 
Index (EVI); surface 
reflectance; land 
surface temperature 
(LST); Maximum 
Entropy Algorithm 

-to determine the 
healthiness, distribution, 
and richness of forest 
ecosystems (Gould, 2000;  
Krishnaswamy et al., 
2009); 
-to map the spatial 
distribution of plant and 
animal species, model 
species distribution 
(Buermann et al., 2008; 
Cord et al., 2014; Saatchi 
et al., 2008; Viña et al., 
2008); 
-to understand 
characterizing ecosystem 
functions (Pettorelli et al., 
2005); 
-this in comparison with 
categorical land cover 
classification obtained 
from species distribution 
models reveals a better 
model performance (Cord 
et al., 2014). 

Forest cover 
IRS 1D-III, PAN, Shuttle 
Radar Topographic 
Mission (SRTM), digital 
elevation model (DEM), 
Landsat, MODIS 

Net primary 
productivity (NPP), 
Gross primary 
productivity (GPP) 

-to monitor the changes in 
the forest cover over a 
period of time to detect 
activities of deforestation 
caused by natural or 
anthropogenic activities 
(Duro et al., 2007; Menon 
and Bawa, 1997; Nandy 
et al., 2011); 
-to generate maps for 
determining slope-wise 
forest degradation (Nandy 
et al., 2011); 
-to track areas undergoing 
deforestation activities as 
well as the rate and extent 
of deforestation for 
appropriate conservation 
practices (Wiens et al., 
2009). 

Biomass estimation 
MODIS, QSCAT, SRTM, 
TRMM, Landsat 

Above Ground Biomass 
(AGB) 

- to establish linkages 
between variations in 
species richness, habitat 
heterogeneity and/or 
climatic energy (Kerr 
et al., 2001; Saatchi et al., 
2008); it also has helped to 
establish that high species 
richness resides in 
immensely heterogeneous 
habitats (Kerr et al., 
2001); 
-Leaf area density, 
nitrogen/chlorophyll 
content, maximum 
photosynthetic capacity, 
above-ground structure, 
and biomass (Haboudane 
and Miller, 2002; Waring 
et al., 2010). 

Flora and Fauna 
Light Detection and 

Ranging (LiDAR), 
Interferometric 
Synthetic Aperture 
Radar (InSAR), Airborne 

Radar vegetation index 
(RVI) 
The global forest/non- 
forest map (FNF) 

- to predict above-ground 
plant growth and forest 
composition and structure 
(Waring et al., 2010; Zald 
et al., 2014); 

(continued on next page) 
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on probable areas for detailed groundwater exploration. This is espe-
cially useful where drilling is not possible, such as in fully urbanized or 
inaccessible areas. RS can rapidly identify potential groundwater zones 
based on factors that govern groundwater formation, including geology, 
lithology, geomorphology, faults/fractures, drainage patterns, land use, 
and soil type (Schultz and Engman, 2000). The use of RS data for 
exploring the suitability of groundwater resources for various develop-
mental purposes has been well-documented (Abdalla, 2012; Jha et al., 
2007; Lee et al., 2012; Singh et al., 2011). In particular, RS data provide 
a synoptic view and large area coverage, exhibit multi-temporal and 
multi-purpose capabilities, and are highly cost-effective (Avtar et al., 
2017). Nevertheless, although the effectiveness of satellite imagery for 
delineating potential groundwater zones has been demonstrated 
(Chowdhury et al., 2003), the effectiveness of other RS methods, and of 
integrating different methods, still needs to be validated. 

Typically, RS is employed in groundwater exploration to delineate 
geomorphology and map lineaments, surface lithological characteris-
tics, slopes, pediplains, and LULC (Avtar et al., 2010; Ganapuram et al., 
2009; Jha et al., 2007). Recently, these factors were integrated with 
other subsurface factors and thematic layers associated with ground-
water flow and storage in GIS analyses, to identify potential ground-
water zones (Abdalla, 2012; Lee et al., 2012). In many places, RS and 
geophysical data are combined for detailed exploration of groundwater 
resources, with the aim of developing these resources (Arafa-Hamed, 
2013; Khan et al., 2014). Numerical modeling based mainly on RS data 
has been used to identify groundwater recharge and discharge zones 
(Schultz and Engman, 2000). Most groundwater studies employed RS 
data from different optical satellites to explore various 
groundwater-associated factors (Crossman et al., 2012). 

Although groundwater exploration is important, the assessment of 
surface water quality and quantity cannot be overlooked. RS plays a vital 
role in the assessment of water quality parameters such as suspended 
sediments, chlorophyll, and temperature. For example, Ritchie et al. 
(2003) used optical and thermal sensors to monitor these parameters, 
whereas Chang et al. (2015) used RS to monitor surface water quality 
and ecosystem status as they relate to nutrient cycles over a period of 40 
years. RS is widely used to quantitatively assess surface water bodies, 
and RS data are useful for monitoring changes in surface water extent 
due to climate and anthropogenic factors. Huang et al., 2018 reviewed 
the current status of detection and monitoring of surface water bodies 
using optical remote sensing data and noticed that remote sensing data 
along with in-situ observation can help to model spatio-temporal dy-
namics of surface water bodies. However, integrated used of multisource 
data can improve global to regional water monitoring. Pekel et al. 
(2016) used Landsat archive data to quantify changes in global surface 
water over the past 32 years. They reported that permanent water bodies 

disappeared, and new ones appeared from 1984 to 2015. Such infor-
mation may aid water management and policymaking. Zhang et al. 
(2002) studied the hydrological cycle in the Tibetan Plateau by exam-
ining lake areas, levels, and volumes using Landsat data from 1970 to 
2015. Their findings contributed to knowledge on groundwater storage 
and recharge in the area. These studies provide vital information on 
water gains and losses in different continental areas based on RS data 
and could help improve future water management practices. 

3.3. Mineral resource exploration and development 

For many countries, mineral resources are the major contributor to 
state revenue. These mineral resources are concentrated in different 
regions of a country. The exploration of these hidden earth resources for 
national economic development requires the use of modern exploration 
technologies, such as geology, geophysics, drilling, and remote sensing. 
Remote sensing has been particularly effective in detecting surface 
manifestation of mineral deposits beneath the earth. The use of remote 
sensing to interpret geologic features in the early years (during World 
War II) began with the analysis of aerial photographs. Different scientific 
and applied technological progress from digital image processing, 
micro-electronics, computer processors to cryogenic engines cumulated 
towards developing comprehensive capabilities for establishing remote 
sensing satellites into the earth’s orbit. The leading space programs of 
the United States of America (USA), European Union (EU), Russia 
(formerly U.S.S.R during the Cold War), Japan, China, and India have 
worked immensely independently as well as in collaboration towards 
various applications of remote sensing. Several countries have collabo-
rated to bring different satellite platforms in specific orbits with remote 
sensing sensors. These platforms and sensors further provide informa-
tion about Earth’s abundant resources with higher levels of granularity 
and precision (Belward and Skøien, 2015; Sabins, 1999). 

The capability of remote sensing application for mineral exploration 
was started from the passive satellite sensors to active sensors. In the 
past decades, several studies have been done towards (1) The mapping 
of geology and structures (the faults and fractures) that hosts ore de-
posits; (2) Identifying hydrothermally altered rocks based on their 
spectral signatures; (3) Mapping surface distribution of rocks and its 
mineral constituents (Sabins, 1999). Sabins (1999) reviewed use of 
Landsat, SPOT, and AVIRIS data for mineral exploration and various 
spectral characteristics. Due to the higher spectral resolutions of 
Hyperspectral images, it is possible to detect signals from different 
minerals within the electromagnetic wavelengths. Thus it draws the 
attention of geologists and other scientists concerned with mineral 
exploration (Kodikara et al., 2012; Van der Meer et al., 2012; Vicente 
and de Souza Filho, 2011). RS can also be used to map hydrothermal 
alteration (Kodikara et al., 2012; Van der Meer et al., 2012; Vicente and 
de Souza Filho, 2011). For example, Pour et al. (2013) used Landsat-7 
Enhanced Thematic Mapper (ETM) and Hyperion data to identify 
zones of hydrothermal alteration and the associated structural elements, 
which are closely related to gold mineralization in the Sarawak region of 
Malaysia. 

In another study involving Hyperion imagery, Zadeh et al. (2014) 
used sub-pixel mapping techniques to discriminate and map “diagnostic 
alteration minerals” around porphyry copper deposits in Iran. They were 
able to identify minerals such as biotite, muscovite, illite, kaolinite, 
goethite, hematite, jarosite, pyrophyllite, and chlorite, which are asso-
ciated with the presence of porphyry copper deposits. Gabr et al. (2010) 
used multiple ASTER images to locate alteration zones related to gold 
deposits in Abu-Marawat, which is in the southern part of the 
North-Eastern Desert in Egypt. The researchers developed new band 
ratios (4/8, 4/2, and 8/9 in RGB) for mapping alteration minerals that 
will be useful for future gold exploration. Finally, Carrino et al. (2018) 
used airborne hyperspectral and geophysical data to generate an alter-
ation map that effectively characterized mineral assemblies in southern 
Peru. 

Table 2 (continued ) 

Satellite Indicators Applications 

laser scanning, airborne 
CIR, ALOS AVNIR-2 

-to obtain relevant and 
useful information about 
the spatial and temporal 
distribution of animals; 
-to show the relationship 
between fauna and forest 
characteristics, assess the 
habitat of forest-dwelling 
species and wildlife and its 
suitability (Graf et al., 
2009; Martinuzzi et al., 
2009), 
-to delineate forest stands 
based on species 
composition, timber size, 
stem density, canopy 
closure, growing stock, 
and site type among others 
(Hou et al., 2013).  
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4. Environmental assessments and hazard monitoring 

4.1. Environmental assessments 

RS is now being used extensively for monitoring global warming and 
related phenomena, including changes in snow and ice cover, solar ra-
diation, and land inundation/reclamation. The Advanced Very High- 
Resolution Radiometer has been measuring sea surface temperature 
(SST) since the 1970s and recorded an average SST increase of 0.28 ◦C 
from 1984 to 2006 (Yang et al., 2013a). Such data complement 
ground-based measurements in global warming research. Measuring 
changes in snow and ice cover is crucial for assessing/estimating 
sea-level rise and changes in Earth’s albedo. The snow cover extent 
(SCE) in the Northern Hemisphere has been routinely monitored since 
1967 using visible-band and passive microwave-band sensors. The SCE 
in this region decreased by 0.8 million km2 per decade from 1970 to 
2010 (Brown and Robinson, 2011). 

Bolch (2007) used RS and GIS data to track changes in glacier cover 
on the Zailiyskiy and Kungey Alatau mountain ridges of the Northern 
Tien Shan, and was able to delineate glacier cover in the study area by 
merging a Landsat ETM + TM4/TM5 ratio image with 
ASTER/SRTM3-DEM data. When the results were compared to historic 
glacier data, taking into account other relevant parameters such as 
temperature and precipitation recorded over five decades, glacier extent 
was shown to have decreased significantly, by more than 32%, between 
1955 and 1999. Immerzeel et al. (2009) also used RS to monitor snow 
cover in Himalayan river basins and concluded that accelerated glacial 
melting is taking place, because discharge into rivers was higher than 
expected given the precipitation during the simulation period. 

It is important to measure solar radiation to determine whether 
natural deviations therein have contributed to global warming. Mea-
surements of total solar irradiance (TSI) started in 1978 using active- 
cavity electrical-substitution radiometers. TSI was reported to have a 
limited influence on the current global warming (Vignola et al., 2019; 
Yang et al., 2013b). On the other hand, aerosols create a cooling effect 
across the Earth. Using a technique for measuring aerosol optical depth 
based on visible and infrared spectra, aerosol concentrations have been 
shown to change over time. Since the 1980s, aerosol concentrations 
have been decreasing in North America and Europe but increasing in 
Asia (Manktelow et al., 2007). 

Land reclamation is needed to support human activities, infrastruc-
ture and industrial development. However, it has multifarious and long- 
term consequences on the environment. RS has been used to assess the 
impact of land reclamation on land cover and coastal resources. Naka-
gawa and Yasuoka (2001) estimated the concentrations and distribution 
of suspended solids after land reclamation off Isahaya, Japan using 
Landsat-TM, ADEOS/AVNIR, and TERRA/ASTER data. They found that 
suspended-solid concentrations in the water increased significantly after 
the land-reclamation project. Ranade (2007) studied the environmental 
impact of open limestone mining on surrounding land area in India using 
IRS LISS-III data, and reported that the mine provided ancillary activities 
and employment for the local population. Karan et al. 2016 used various 
Landsat based indices to determine whether the rehabilitation of land 
degraded by coal mining in Jharia (India) was successful and reported 
that RS data can be used to effectively monitor rehabilitation by 
providing information on vegetation cover and soil moisture. 

4.2. Flood Hazard Forecasting and Assessment 

Floods are among the most devastating natural hazards, causing 
considerable damage to human life and livelihoods globally every year. 
In mountainous areas, landslides may also accompany floods, resulting 
in significant damage to nearby communities. These hazards are being 
exacerbated by the increased intensity of precipitation, together with 
greater uncertainty around precipitation events in many areas due to 
climate change (Daoud et al., 2016). RS data can be used to effectively 

predict floods, landslides, subsidence, and ground instability, thus 
contributing to risk assessment and mitigation planning (Carrasco et al., 
2003). In flood forecasting, RS is used in conjunction with in-situ ob-
servations and hydrologic models. RS data are mostly used to construct 
digital elevation models that include catchment geometry, hill-slope 
angles, measurements of rainfall intensity and duration, and measure-
ments of soil moisture to quantify and model flood hazards (Yan et al., 
2013). Fig. 4 shows the data required for hydrologic models, and the 
satellite platforms that could potentially provide such data (CEOS 
Disaster Management Support and Wood, 2003). 

Remote sensing satellites record the seasonal land cover changes and 
climatic behavior (Singh et al., 2015). This recorded data is used as an 
input parameter in the hydrodynamic models. The seasonal land records 
of vegetation provide data for the model such as water interception 
potential, soil strength assessment, permeability, and erosion potential. 
The climate behavior data provides further information on the severity 
of flood hazards or the extent of the inundated area. Techniques to 
retrieve this climate information require passive and active sensing, 
which uses thermal and microwave sensors and several instruments that 
include the spectrometer, spectro-radiometer, synthetic aperture radar, 
and gravimeter (Gray et al., 2011). Several remote sensors (InSAR, GPS, 
laser altimetry, and microwave imaging) help both in hazard monitoring 
(like flood and landslide) and post-disaster response (Gili et al., 2000; 
Malet et al., 2002). 

In some areas such as mountainous areas in developing countries 
with a lack of in-situ measurement devices. It is difficult to simulate 
hydrodynamic models due to a lack of data. Nonetheless, data from 
satellite remote sensing in the upstream stretches of rivers can be used 
directly for downstream river discharge forecasting (Hirpa et al., 2013). 
The study of Hirpa et al. (2013) used upstream satellite remote sensing 
data for downstream discharge nowcasting and its future forecasting in 
major rivers in South Asia. This study showed that the well-correlated 
satellite-derived flow signals enabled the detection of the propagation 
of river flow waves. Flash floods are very difficult to forecast due to the 
associated short time of rainfall occurrence and high intensity. However, 
the integration of radar rainfall nowcasting into Numerical Weather 
Prediction (NWP) models and hydrodynamic models can help to extend 
the forecasting lead time for extreme flash floods (Rossa et al., 2010). 
Remote sensing data can be used to monitor inundated areas accurately 
(Munasinghe et al., 2018). It can help in disaster risk management 
during the emergency response to rapidly assess the extent of flood 
damages. Table 3 shows a summary of the studies relevant to flood 
hazard assessment. 

Fig. 4. Hydrodynamics models application.  
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4.3. Landslide mitigation and management 

Landslides are one of the most destructive natural hazards occurring 
worldwide, particularly in the mountainous regions. The damages from 
landslides, whether induced through earthquake or rainfall, can have a 
staggering effect on the peoples’ lives and property. Fan et al., 2020 
reviewed formation and impact of landslide dams worldwide to evaluate 
landslide dam stability criteria and geomorphic indices. Marano et al. 
(2010) reported that about 5% of the fatalities caused during an earth-
quake event are a direct consequence of the coseismic landslides. In a 
recent case, about 80% of the total fatalities from the Hokkaido Eastern 
Iburi earthquake in Japan were caused due to the subsequent landslides 
(Japan Times, 2018). A similar account can also be noticed for 
rainfall-induced debris flows. The United States Geological Survey 
(USGS) reported that, on average, 25–50 people are killed by landslides 
each year in the United States. This number is considerably larger in 
several other parts of the world. For instance, between 2004 and 2010, 

there were more than 30,000 deaths caused by landslides, and the ma-
jority of them are reported in south-western India and eastern Asia 
(Petley, 2012). The estimates of potential landslide risk in any region are 
a function of the topography, climate, tectonic events, and occurrence of 
previous landslides. Such detailed information can be of great value to a 
wide range of decision-makers. Landslide inventory mapping is the 
primary step for landslide investigation, mitigation and management. 
Guzzetti et al. (2012) noted that “Preparing landslide maps is important to 
document the extent of landslide phenomena in a region, to investigate the 
distribution, types, pattern, recurrence and statistics of slope failures, to 
determine landslide susceptibility, hazard, vulnerability and risk, and to 
study the evolution of landscapes dominated by mass-wasting processes”. 
Landslide inventory maps have been made with the help of high reso-
lution aerial and satellite images such as Landsat TM, ETM+, OLI; 
Sentinel-2, and very recently with the help of Planet data (Fig. 5). The 
Google Earth platform and the supported images have also helped 
greatly in the inventory mapping. In forested areas, the LiDAR elevation 
data have proved to be an useful technique to detect and map landslides 

Table 3 
Application of remote sensing in environmental assessment and hazard 
monitoring.  

Satellite types Indicators Applications 

Environmental Assessment 
Landsat ETM Scene 

merged ASTER/ 
SRTM3-DEM; NASA 
Global Inventory 
Monitoring and 
Modeling Systems 
(GIMMS) 

snow cover extent (SCE); 
TM4/TM5 ratio image; 
cloud condensation 
nuclei (CCN); ice nuclei 
(IN); 
AVHRR NDVI dataset 
from GIMMS; 
Accumulated growing 
degree days (AGDD) and 
Accumulated humidity 
(ARHUM) 

-Impact of climate change 
on glaciers, snow cover ( 
Bolch, 2007; D. Brown 
and Robinson, 2011) 
-Impact of climate change 
on cropping patterns, land 
use planning (Nakagawa 
and Yasuoka, 2001;  
Ranade, 2007) 
-Effect of aerosols on the 
environment at regional 
and global levels 
Manktelow et al., 2007) 
-Measurement of solar 
radiation (Vignola et al., 
2019) 
-macro-scale impact of 
climate change (Yang 
et al., 2013a) 

Flooding Hazard Forecasting and Assessment 
InSAR, GPS, visible and 
near-infrared/thermal 
infrared (VNIR/TIR) im-
aging, multi-parameter, 
Synthetic Aperture 
Radar, laser altimetry, 
microwave imaging 

Numerical Weather 
Prediction (NWP) 
models; hydrodynamic 
models; DEMs for 
catchment geometry, 
hill-slope angles, mea-
surements of rainfall in-
tensity and duration, and 
measurements of soil 
moisture 

-Hazard zoning for 
landslides and torrential 
floods (Carrasco et al., 
2003; Gili et al., 2000; 
Malet et al., 2002) 
-Socioeconomic Scenario 
planning and disaster 
management through 
satellite data (CEOS 
Disaster Management 
Support and Wood, 2003; 
Daoud et al., 2016) 
-Seawater monitoring and 
impact on coastal areas 
(Gray et al., 2011; Yan 
et al., 2013) 
-Surface and river water 
discharge forecasting and 
monitoring (Hirpa et al., 
2013; Rossa et al., 2010) 

Landslide Mitigation and Management 
Landsat-1; Synthetic 
Aperture Radar (SAR) 
sensors; Interferometric 
Synthetic Aperture Radar 
(InSAR); Object-Based 
Image Analysis (OBIA) 

Differential and 
Persistent Scatterer SAR 
Interferometry (DInSAR 
and PSI) and Object- 
Based Image Analysis 
(OBIA) 

-Mapping and monitoring 
of landslide (Casagli et al., 
2016; Guzzetti et al., 
2012; Williams et al., 
2017) 
-Earthquake and 
landslides causality 
assessment (Marano et al., 
2010; Petley, 2012; 
Singhroy et al., 2002)  

Fig. 5. Optical and radar remote sensing satellites used in landslide mapping 
and mitigation studies. 
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(Görüm, 2019). 
The management and mitigation of landslide-related disasters can be 

improved with the remote sensing technology. Over the years, many 
governmental, public, and private agencies benefitted by applying 
timely and high-quality information derived from remote sensing ob-
servations, especially in response to emergencies (Casagli et al., 2016). 
Previously, there existed difficulties in estimating the landslide risk for 
various reasons such as non-availability of landslide inventory maps, 
uncertainty in rainfall projections, and problems associated with trans-
forming a model into reality. The optical remote sensing data of earth 
resource monitoring became available with the launch of Landsat-1 
(Earth Resource Technology Satellite) in the year 1972. Since then, 
many satellite sensors with advanced capabilities have been launched, 
and are increasingly used to support, landslide risk management (Fig. 5). 
The chronological developments in the remote sensing satellites and 
their classification based on different bands is very important for land-
slide mapping and the landslide mitigation. The use of remote sensing 
data from a variety of satellites has become possible because of their 
multispectral capabilities, high temporal cycle, high spatial resolution, 
and wide-area coverage (Casagli et al., 2016; Singhroy et al., 2002). 

There are certain challenges related to the use of optical satellites in 
some regions. Although optical satellites are extensively used, the 
frequent cloud cover over equatorial regions and in the tropics pose a 
challenge in quick inventory mapping, as optical satellites cannot 
observe the Earth’s surface when clouds are present. In cases where 
mapping efforts are hampered by widespread cloud cover, satellite- 
borne Synthetic Aperture Radar (SAR) sensors can be used for land-
slide detection (Williams et al., 2017). The most commonly used 
wavelength bands in which SAR operates are L, C, and X that corre-
sponding to ~20, ~5, and ~3 cm, respectively. The SAR polarimetry 
allows us to separate landslides from those of the surrounding forested 
areas based on backscattering properties. Nolesini et al. (2016) suc-
cessfully applied radar images to monitor slopes in mines and highways 
(transport). Additionally, surface deformations can be detected at 
millimeter precision using InSAR techniques (Casagli et al., 2016; Guz-
zetti et al., 2012). RS derived data can be used to support the details of 
landslide inventories mapping. It can further help in disaster risk man-
agement during the emergency response to rapidly assess the extent of 
landslide damages due to ground motion. Table 3 shows a summary of 
the studies relevant to landslide management. 

4.4. Forest fire 

Since the advent of remote sensing, imaging data has become a 
primary data source for forest fire mapping and monitoring in inacces-
sible forest regions Xiao-rui et al., 2005. Because of the requirement of 
high temporal resolution in case of forest fires, the Moderate Resolution 
Imaging Spectroradiometer (MODIS) data are often a primary choice 
owing to their daily repetitive coverage and ability to detect fires in 
remote regions. On the other hand, the risk to forest fire are estimated 
based on meteorological data or from vegetation indices. The satellite 
based evapotranspiration rates are a good estimate of fire risk assess-
ment (Vidal et al., 1994). Satellite sensors such as SPOT, Landsat TM, 
ETM+ and OLI, AVHRR, ERS2, RADARSAT etc. Have been used to map 
the burned areas, change detection, damage and risk assessment. Yuan 
et al. (2017) recently presented the applicability of UAV mounted 
infrared (IR) imaging systems for the automatic detection of fires in 
forested regions. Vegetation indexes including Normalized Difference 
Vegetation Index (NDVI), Green Normalized Difference Vegetation 
Index (GNDVI), Normalized Burn Ratio (NBR) and Normalized Differ-
ence Vegetation Index (NDVIreXn) that implements red edge spectral 
bands showed high competence in mapping post-fire scenarios (Navarro 
et al., 2017). 

Data mining applications such as convolutional neural network, 
fuzzy metaheuristic ensembles, genetic algorithms etc. become popular 
to set optimal combination of forest fire related variables and modeling 

forest fire susceptibilities (Hong et al., 2018). In these models, variables 
of meteorological, topographic and vegetation indexes derived from 
satellite products are incorporated as factors to obtain the necessary 
details of soil moisture conditions and evapo-transpiration conditions. 

5. Socio-economic development 

The remote sensing application has seen an extensive use towards the 
socio-economic development through specific data retrieval. Hereon, 
the socio-economic qualities have been discussed including trans-
portation, population estimation and allocation, and quality of life 
assessment. Remote sensing has a clear place in the future of socio- 
economic development studies because it offers greater insights into 
the manifestations of human activity through high resolution and low- 
cost data. 

5.1. Transportation 

Transportation deals with the flow of people and goods between two 
geographically separated locations. To achieve sustainable growth and 
development in any country, effective transportation systems are very 
important. An efficiently flowing transportation system would not only 
aid in the proficient movement of goods and services but also reduce 
carbon emissions. It can further encourage local, national, and regional 
economic integration and enhance sustainable development (Arampat-
zis et al., 2004). Sustainable transportation is one of the important ac-
tion agenda of the UN’s sustainable development goals (SDG). Various 
remote sensing technologies can be applied to monitor transportation 
infrastructure (Hoppe et al., 2016). These technologies hold more 
promise for the long-term phenomenon by changing the daily practice in 
the various transportation fields. Despite the challenges (e.g. availability 
of data, cost, licensing, image-processing software, user conservatism, 
training, database management, real-time imagery, currency, and 
communication issues) involved in applying remote sensing data in 
transportation, much success has been chucked through the usage of 
these advanced technologies. 

In the use of GIS linked sensor technologies for an intelligent trans-
port system, the use of loop detectors and road tubes, are being 
increasingly operationalized as road sensors (Guerrero-Ibáñez et al., 
2018). The remote sensing from space and air offers the potential for 
wide-area coverage, synoptic views, rapid deployment, and flexible 
maneuverability (McCord et al., 2003). The use of remote sensing in the 
transport sector allows the synoptic observation and analysis of urban 
growth while providing a greater understanding of changes in land use 
and land cover. The use of high spatial resolution imageries such as 
Quickbird and GeoEye makes it possible to have a clearer picture of the 
impact transportation poses to the environment (Hester et al., 2008). 
Various case studies have been presented on the success chucked due to 
the use of remote sensing technologies. For instance, panchromatic 1m 
imagery obtained from sensors carried on the IKONOS satellite was 
utilized in the year 2000 by a transportation company to quantify truck 
traffic on I-25 near Denver, Colorado, with special emphasis on long 
trucks (Anderson and Young, 2001). The long trucks (>60 ft) served as 
an indicator of interstate truck traffic, providing a piece of information 
that is not readily available from other sources. 

The aerial photographs have been used to study traffic congestion on 
freeways and major arterials in the metropolitan area of Phoenix, Ari-
zona for transportation planning and management (Center, 1999). This 
was done through the collection of aerial photographs of peak-period 
traffic congestion from a fixed-wing aircraft for different locations and 
time intervals. This study can be useful to estimate the delay at the 
intersection. On freeways, vehicle densities were determined directly 
from the aerial photographs for well-defined segments. Different classes 
of vehicles (passenger cars, trucks, tractor-trailers, and buses) were 
considered, and passenger-car equivalent factors were applied to 
determine a density measure of passenger cars per lane per mile. The 
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density value generated was then used with the Highway Capacity 
Manual (by the Transport Research Board of the U.S.A) to determine the 
freeway level of service (Council, 2000). This led to the conduction of 
separate studies of the general-purpose lanes and the 
high-occupancy-vehicle lanes. It shows the potential use of aerial 
photography. Vehicle velocities are also among the flow-related pa-
rameters of most interest to transportation planners, engineers, 
enforcement agencies, and policymakers. Ground-based sensors have 
been used to estimate vehicle velocities at locations on a highway during 
a time interval from airborne imagery. The ground cameras and a 
GPS-equipped floating car were used to produce ground-based velocity 
estimates of moving vehicles by determining the number of other flow 
parameters (Angel et al., 2002; Angel and Hickman, 2002). 

Commercially available remote sensing technologies such as SAR 
data acquired from the Italian COSMO-SkyMed satellite have been used 
to monitor the feasibility of transportation networks in the City of 
Staunton. The SAR is known to provide millimeter-level surface 
displacement by measuring small changes in phase angle of the return 
signal (Hoppe et al., 2016) through the usage of InSAR technique. InSAR 
has become a standard tool for remote sensing-based displacement 
measurements (Fletcher et al., 2007). The principle behind the usage of 
the InSAR is the acquisition and processing of phase shift information 
obtained from a series of complex SAR images. In this case, every pixel 
element from each image is processed and the elevation at its centroid is 
established based on signal phase response and the satellite altitude 
information (Rosen et al., 2000). 

The availability and use of the InSAR technology for millimeter-scale 
remote sensing of deformation offers potential new opportunities for 
effective implementation in transportation monitoring and geohazard 
assessment. Besides, the level of accuracy generated through its usage 
increases with the number of frame acquisitions, as random atmospheric 
errors become progressively minimized (Hoppe et al., 2016). Another 
study conducted by Zhou and Wei (2008) explored the use of remote 
sensing in transportation (pavement construction, operations, planning, 
and analysis). The high-resolution satellite imagery (e.g., IKONOS) was 
used to monitor pavement construction and evaluate management in 
some parts of the USA. The use of satellite images has been found useful 
to observe/monitor the road condition, such as loss of oily components, 
pavement condition deterioration, exposing the rocky components of 
the pavement, structural damages like cracking etc. (Zhou and Wei, 
2008). 

Ayalew et al. (2003) identified spatial and spectral requirements for 
successful large-scale road feature extraction, and further examined the 
benefits of using hyper-spectral imaging over traditional methods of 
roadway maintenance and rehabilitation for pavement management 
applications. Spagnolini and Rampa (1999) used the monostatic ground 
penetrating radar (GPR) for pavement profiling, such as layer thickness 
whilst Guo et al. (2007) developed an algorithm for suburban road 
segmentation in high-resolution aerial images. The research has 
demonstrated that information acquired from the interpretation of sat-
ellite imagery can play a significant role in the planning, management, 
and implementation of highway maintenance or rehabilitation (Zhou 
and Wei, 2008). 

Vehicle detection through the use of high-resolution optical imagery 
is of great significance because of its wide applications in transportation 
control, road verification, visual surveillance, traffic safety, etc. (Yu and 
Shi, 2015). They deployed a new methodological approach that involves 
the transformation of a panchromatic image to a “fake” hyperspectral 
form to aid in vehicle detection. Over the past two decades, different 
approaches have been employed for vehicle detection in remote sensing. 
These approaches mainly fall into two categories. First, the 
statistics-based methods which involve algorithms such as PCA. Second, 
the Bayesian model as well as threshold segment methods (Sharma et al., 
2006) and feature-based methods such as histogram of oriented gradi-
ents, local binary patterns, Haar-like features, etc. (Grabner et al., 2008). 
For example, Leitloff et al. (2010) developed a sophisticated model for 

typical traffic situations in urban areas. Table 4 shows summary of the 
studies relevant to applications of remote sensing in transportation. 

5.2. Population estimation and allocation 

An important aspect of sustainable development is the understanding 
of the dynamics of the population within a community and across na-
tional boundaries. This information assists in resource sharing and 
allocation, environmental impact and risk assessment, industrialization, 
and socio-economic development. The population also plays a sub-
stantial role in our ability to measure the extent of human influence on 
the environment. Demographic data is measurable and quantifiable, 
which lends itself to applications in remote sensing. From an economic 
perspective, the population is one of the determinants of demand. An 
increase in the population invariably increases the aggregate demand 
within a country. There are a few ways to go about using remote sensing 
techniques to count the population. Jensen and Cowen (1999) showed 
that high-resolution satellite imagery is capable of identifying housing 

Table 4 
Application of remote sensing in socio-economic development.  

Satellite types Indicators Applications 

Transportation 
IKONOS; InSAR time 
series; SAR 
interferometry; Envisat; 
RADARSAT 

Single and two ellipse 
methods; CORINAIR 
methodology; Doppler 
centroid values; high 
radar cross-section (RCS); 
signal-to-clutter ratio 
(SCR) 

-Traffic flow pattern and 
management, travel time 
estimation (Anderson and 
Young, 2001; Angel et al., 
2002; Fletcher et al., 2007; 
Grabner et al., 2008; 
Hoppe et al., 2016; 
McCord et al., 2003; 
Sharma et al., 2006) 
-Decision support system 
for urban transportation 
policies (Arampatzis et al., 
2004; Ayalew et al., 2003; 
Center, 1999; Council, 
2000; Guo et al., 2007; 
Leitloff et al., 2010; 
Spagnolini and Rampa, 
1999; Zhou and Wei, 
2008) 
-Advanced technologies 
for intelligent transport 
system (Hester et al., 
2008; Rosen et al., 2000; 
Yu and Shi, 2015) 

Population Estimation and Allocation 
IKONOS; Landsat ETM+ Combining satellite 

imageries with census 
data and inclusion of 
textures, temperatures, 
and spectral responses 

-measurement of socio- 
economic patterns like 
population density, infra-
structure, the cover of land 
use land change, etc. 
(Jensen and Cowen, 1999; 
Li and Weng, 2005; Liu 
et al., 2006; Meyer and 
Turner, 1992) 

Quality of Life 
Landsat; Ikonos; AVIRIS Ground Instantaneous 

Field of View (GIFOV) 
-Measuring quality of life 
through parameters like 
poverty and risks to 
natural hazards in the 
habitations (Hall et al., 
2008; Lo and Faber, 1997; 
Rogers et al., 2006) 
-Inferences about life 
expectancy based on 
spatial information 
(Tsimbos et al., 2011) 
-Exploratory analysis of 
land use land cover 
through population 
density (Pozzi and Small, 
2001)  
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structures and differentiating duplex, triplex, and condominium units. 
This development lends itself to the method of image classification 
wherein housing structures are identified though accurate results yet 
can be impeded by tree cover and hence the necessity to differentiate 
housing structures from other classifications such as industrial or com-
mercial structures. 

On the other hand, Liu et al. (2006) compared data obtained from 
IKONOS satellite imagery against population census data. They found 
that high-resolution satellite images do not correlate strongly enough 
with the population data to serve as a proxy for population data. They 
also only found a weak correlation between landscape textures and 
population density. As census data is already being collected through 
surveying methods on the ground, there is less necessity for remote 
sensing applications in population estimation. There is a clear distinc-
tion in the literature between allocation and estimation. Despite the 
prevalence of population census data, this type of information does not 
give significant insight into how these people are spatially arranged. The 
population has been recognized as an indirect driver of land-use change 
though its effect cannot be explicitly stated (Meyer and Turner, 1992). 
Shi et al. (2014) evaluated the role of nighttime light data in the esti-
mation of Gross Domestic Product and electricity consumption in China. 
Sutton et al. (1997) noticed a strong relationship between the nighttime 
light data and population density in the United States. 

An increasing population density has been observed concurrently 
with swelling land-use change and diminishing forest cover (White 
et al., 2012). Most studies refer to the lack of accurately sensed data 
being one of the main obstacles to pinpointing the direct effect of pop-
ulation on land-use change. There are various methods of going about 
population allocation modeling. In the point-based model, scientists 
often implement density functions in their modeling of how the popu-
lation of a city is spatially constructed. It functions on the principle that 
people tend to cluster, and in the model, the population density is 
greatest at the center and tends to disperse as we move farther away 
from the point. Li and Weng (2005) combined Landsat ETM + imagery 
with census data to estimate the population density of Indianapolis, 
Indiana. They found that remote sensing-based models that stratified the 
population according to density levels increased the accuracy of the 
model. They cited the issue that the census data is of a lower resolution 
than the remotely sensed data. They also found that the inclusion of 
textures, temperatures, and spectral responses greatly increased the 
accuracy of estimation. 

The remotely sensed data must be combined with in-situ data to 
ensure accuracy. However, literature seems to agree that, measurements 
of population density using remote sensing have not been carried out 
consistently due to the large degree of variation between communities. 
More technologically developed countries can remotely sense popula-
tion allocations. Japan, for example, has access to positioning data ob-
tained from smartphones. This knowledge was applied when the 2011 
Tohoku Earthquake struck, providing insight as to where the highest 
concentrations of people were in real-time in the midst of the disaster. 
However, the use of this type of remotely sensed data has raised a lot of 
concerns if it is to be used in the field of research because for many 
people it represents a privacy breach. Table 4 shows a summary of the 
studies relevant to applications of remote sensing in population esti-
mation and allocation. 

5.3. Quality of life 

Although it does not have a precise definition, quality of life refers to 
the general well-being within a country or a region. Since many factors 
are believed to exert an impact on it, there are limits to which quality of 
life can be quantified. Still, attempts have been made by several studies 
to measure it to some extent. The Standard of living is not to be used 
interchangeably with quality of life, as the former is a subset of quality of 
life and refers specifically to the level of wealth and income statistics. 
Other aspects of quality of life include the quality and availability of 

water, housing, environmental quality, health care, safety, and energy 
consumption. In some cases, the climatic or atmospheric temperature 
may play an important role in determining the quality of life as they 
exert an effect on the surrounding environment. Remote sensing has 
found some success in wealth and poverty mapping. However, it is 
difficult to derive precise estimates of income distribution. Hall et al. 
(2008) used infant mortality rates as a dummy variable for poverty. 
They endeavored to create a map showing the relationship between 
natural hazards and environmental vulnerability against poverty rates. 
One of the issues that they experienced is that poverty occurs for 
different reasons, so the true causes and definition of poverty must be 
properly identified, and it is likely that they differ from place-to-place. 

Extending the studies on poverty, in recent years, scientists have seen 
the need to shift away from a static poverty mapping model and move 
towards a more dynamic one. Rogers et al. (2006) mapped poverty in 
Uganda under the assumption that poverty is a function determined by 
environmental conditions, agricultural activities, human and animal 
disease, natural resource availability in tandem with household survey 
information. There have been attempts to connect demographic data 
such as life expectancy to the spatial area. A study by Tsimbos et al. 
(2011) measured the spatial characteristics of life expectancy in Greece 
by creating a spatially weighted matrix to compare regional patterns of 
life expectancy. Although there is some evidence that about the spatial 
trend as shown by high levels of contiguity in three clusters: the Pelo-
ponnesian region, the islands of the Dodecanese and Crete. This study 
was not conclusive, yet it highlights one of the main issues of 
socio-economic applications of remote sensing. Still, accurately attrib-
uting a precise number of people to a small spatial designation has been 
observed consistently and needs further investigation. 

In some literature, environmental quality has been used inter-
changeably with the quality of life. This refers to the perception of the 
quality of the natural environment is integrated into the human envi-
ronment such that the human population actively interacts with and 
perceives. Lo and Faber (1997) were able to show that there is a linkage 
between income, population density, and forest amenities measured by 
leaf area. They found that higher levels of greenness were positively 
correlated with income and median home data and negatively corre-
lated with population density. Pozzi and Small (2001) suggested that 
using greenness to determine levels of affluence can lead to ambiguous 
results because greenness can be indicative of either high or low levels of 
affluence. At this point, they agree that the stratification between urban, 
rural, and suburban locals greatly increases the accuracy of results. 

6. Satellite-derived indices in sustainable development 

Over time, a wide variety of spectral indices have been developed 
with the help of remote sensing products to effectively map and monitor 
the resources and hazards (Ban et al., 2017; Wang and Qu, 2007). Uti-
lizing spectral indices and spectral transformation methods are promi-
nently used in agriculture, the response of changing environmental 
conditions, water (flooding), soil moisture and in various other fields of 
sustainable management of resources and hazard monitoring fields (Ban 
et al., 2017; Rouse et al., 1974; Van Westen, 2000; Xiao et al., 2004). 
These spectral transformation methods are very effective for the inter-
pretation and analysis of phenomena and processes related to the dy-
namics of change of the main components of the Earth surface. Table 5 
illustrates the list of the major spectral indices developed over the last 
few decades from various remote sensing products that are applied in 
the field of sustainable development. There were several publications in 
the development of new indices before the year 2000 and most of these 
indices have a high citation (>1000). However, these indices mainly 
focus on vegetation properties as compared to water and soil (Table 5). 
The number of published papers and the development of new indies is 
less after the year 2000 with less citation (<1000). The development of 
new indices of water and soil is also good in proportion to vegetation 
after the year 2000 (Table 5). These indices have been extensively used 
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for various research categories as mentioned in section 3, 4 and 5. The 
popularity of the use of Indices in remote sensing is high mainly because 
it’s simple and easy to use with multiple satellite data and it can provide 
quick information about a phenomenon or object. 

It can be seen from Table 5 that most of the indices applied in sus-
tainable developmental studies were developed a long time ago when 
the sensor radiometric resolution and spatial resolution was lower than 

the present ones. Despite that, these indices performed well such as 
NDVI, EVI, and LAI, etc. Today a large number of satellites orbiting outer 
space today with a narrower range of radiometric resolution. It provides 
an improved spatial resolution and increased availability of SAR data in 
multiple frequencies. However, lesser attempts have been made for 
developing new spectral indices capable of retrieving more accurate 
information from remote sensing products. Therefore, there is a need to 

Table 5 
Major spectral indices developed using remote sensing data for applications in sustainable development.  

Sl 
No. 

Indices Application Author(s) [Reference] Publication 
Year 

Citations 

1. Normalized difference water index (NDWI) Water McFeeters, 1996 (McFeeters, 1996) 1966 3056 
2. Ratio Vegetation Index (RVI) Vegetation Jordan 1969 (Jordan, 1969) 1969 1935 
3. Leaf Area Index (LAI) Vegetation, Forestry Jordan et al., 1969 (Jordan, 1969) 1969 1934 
4. Normalized Difference Vegetation Index (NDVI) Vegetation, Forestry, 

Agriculture 
Rouse et al. 1974 (Rouse et al., 1974) 1974 7179 

5. Difference Vegetation Index (DVI) Vegetation Richardson et al., 1977 (Richardson and 
Wiegand, 1977) 

1977 1628 

6. Perpendicular Vegetation Index (PVI) Vegetation Richardson and Wiegand 1977 (Richardson and 
Wiegand, 1977) 

1977 1613 

7. Tasseled Cap Soil, Water, Vegetation Kauth et al., 1976 (Kauth and Thomas, 1976) 1976 2069 
8. Soil-Adjusted Vegetation Index (SAVI) Soil, Agriculture, Vegetation, 

Forestry 
Huete, 1988 (Huete et al., 1997) 1988 5510 

9. Enhanced Vegetation Index (EVI) Vegetation, Forestry Liu and Huete, 1998 (H. Q. Liu and Huete, 1995) 1988 754 
10. Moisture stress Index (MSI) Vegetation Hunt Jr and Rock 1989 (Hunt Jr and Rock, 1989) 1989 1029 
11. Transformed Soil adjusted vegetation index 

(TSAVI) 
Soil, Vegetation Baret et al., 1989 (Baret et al., 1989) 1989 553 

12. physiological reflectance index (PRI) Vegetation Gamon et al., 1992 (Gamon et al., 1992) 1992 1730 
13. Atmospherically Resistant Vegetation Index 

(ARVI) 
Vegetation, Agriculture, Kaufman and Tanre, 1992 (Kaufman and Tanre, 

1992) 
1992 1134 

14. photochemical reflectance index (PRI) Vegetation in coniferous forest Gamon et al. 1992 (Gamon et al., 1992) {1006} 1992 1006 
15. Global environment monitoring index (GEMI) Vegetation Pinty & Verstraete 1992 (Pinty and Verstraete, 

1992) 
1992 681 

16. Normalized Difference Index (NDI) Vegetation McNairn and Protz 1993 (McNairn and Protz, 
1993) 

1993 152 

17. Modified Soil adjusted vegetation index (MSAVI) Soil, Vegetation Qi et al., 1994 (Qi et al., 1994) 1994 2059 
18. Chlorophyll index (CI) Chlorophyll content Gitelson and Merzlyak 1994 (Gitelson and 

Merzlyak, 1994) 
1994 899 

19. Chlorophyll Absorption Ratio Index (CARI) Agriculture Kim et al. 1994 (M. S. Kim et al., 1994) 1994 228 
20. Normalized Difference Moisture Index (NDSI) Snow Hall et al., 1995 (Hall et al., 1995) 1995 1126 
21. Optimized soil-adjusted vegetation indices 

(OSAVI) 
Soil, Vegetation Rondeaux et al., 1996 (Rondeaux et al., 1996) 1996 1558 

22. Green atmospherically resistant vegetation index 
(GARI) 

Vegetation Gitelson et al., 1996 (Gitelson et al., 1996) 1996 1519 

23. Green-Normalized difference vegetation index 
(GNDVI) 

Vegetation Gitelson et al., 1996 (Gitelson et al., 1996) 1996 1519 

24. Modified Simple Ratio (MSR) Vegetation Chen 1996 (Chen, 1996) 1996 601 
25. Soil and Atmosphere Resistant Vegetation Index 

(SARVI2) 
Vegetation Huete et al. 1997 (Huete et al., 1997) 1997 1514 

26. Modified Chlorophyll Absorption in Reflectance 
Index (MCARI) 

Vegetation Daughtry et al., 2000 (Daughtry et al., 2000) 2000 1702 

27. Specific Leaf Area Vegetation Index (SLAW) Vegetation Lymburner et al., 2000 (Lymburner et al., 2000) 2000 124 
28. Anth reflectance Index (ARI) Anthocyanin spectral features 

of leaves 
Gitelson et al., 2001 (Gitelson et al., 2001) 2001 631 

29. Aerosol free Vegetation Index (AFRI) Vegetation Karnieli et al., 2001 (Karnieli et al., 2001) 2001 184 
30. Global Vegetation Moisture Index (GVMI) Vegetation moisture Ceccato et al., 2002 (Ceccato et al., 2002) 2002 601 
31. Transformed difference vegetation index (TDVI) Vegetation Bannari et al., 2002 (Bannari et al., 2002) 2002 67 
32. shortwave infrared water stress index (SIWSI) Soil moisture Fensholt and Sandholt 2003 (Fensholt and 

Sandholt, 2003) 
2003 388 

33. Normalized Difference Built-up index Built-up area Zha et al., 2003 (Zha et al., 2003) 2003 1219 
34. Wide Dynamic Range Vegetation Index (WDRVI) Vegetation Gitelson, A. (2004) (Gitelson, 2004) 2004 690 
35. Normalized Difference Moisture Index (NDMI) Soil, Water Xiao et al. 2004 (Xiao et al., 2004) 2004 607 
36. Radar Vegetation Index (RVI) Vegetation, Forestry Kim and Zyl 2004 (Y. Kim and Zyl, 2004) 2004 180 
37. Modified normalized difference water index 

(MNDWI) 
Water Xu, 2006 (Xu, 2006) 2006 514 

38. Normalized Multi-band Drought Index (NMDI) Soil and vegetation moisture Wang and Qu 2007 (Wang and Qu, 2007) 2007 230 
39. Enhanced Vegetation Index-2 (EVI2) Vegetation Jiang et al., 2008 (Jiang et al., 2008) 2008 991 
40. Triangular Chlorophyll Index (TCI) Vegetation Haboudane et al., 2008 (Haboudane et al., 2008) 2008 216 
41. Crop Water Stress Index (CWSI) Agriculture Berni et al. 2009 (Berni et al., 2009) 2009 267 
42. Anthocyanin reflectance index (ARI) Vegetation Gitelson et al., 2009 (Gitelson et al., 2009) 2009 113 
43. Canopy chlorophyll content index (CCCI) Vegetation El-Shikha et al., 2009 (El-Shikha et al., 2008) 2009 47 
44. Greeen-Red NDVI (GRNDVI) Vegetation Glenn et al., 2010 (Glenn et al., 2010) 2010 163 
45. Enhanced Built-Up and Bareness Index (EBBI) Built-up and bareland As-syakur et al., 2012 (As-syakur et al., 2012) 2012 166 
46. Automated water extraction index (AWEI) Water Feyisa et al. 2014 (Feyisa et al., 2014) 2014 592 
47. Water Index (WI) Water Fisher et al. 2016 (Fisher et al., 2016) 2016 141  
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explore new indices for continued development in attaining sustainable 
development through remote sensing techniques. The newly developed 
indices can derive better information about an object or area from the 
latest sensors to improve Earth’s monitoring. 

7. Research challenges  

• The biggest challenges associated with the remote sensing itself is the 
availability and distribution of data. Lack of freely available high- 
resolution remote sensing data makes the remote sensing research 
community debilitated despite the fact that advanced remote sensing 
tools have become available for processing and analyzing the data. In 
cases, where the high-resolution data is available commercially, their 
cost is not affordable to many researchers, especially those from 
economically weaker countries.  

• Lack of effective national spatial data infrastructures (SDI) in 
developing countries prevent access to data and information for 
analysis and validation.  

• Due to the inherent shortcomings of remote sensing devices in 
measuring the underground conditions directly, inferential methods 
are sometimes adopted, however, such methods suffer from limited 
accuracy in many cases, especially in groundwater exploration.  

• Mapping of lake bodies in glaciated areas using various indices are 
still difficult because of the similar behavior of reflectance from 
adjoining areas.  

• Since turbidity varies largely between the aquatic systems, generic 
algorithms for water quality mapping introduces error value of more 
than 10% in low to moderately turbid waters. The error in highly 
turbid water is much more.  

• Use of hyperspectral data for mineral mapping has high potential, 
however the availability of hyperspectral sensor data is limited.  

• Mapping of surface mineralogy with remote sensing under forest 
canopy in tropical rainforests region of the world remains difficult.  

• Although there are advanced algorithms for mapping snow cover, 
remote sensing of snow can be extremely difficult due to mixed pixels 
arising from cloud cover.  

• Availability of clouds free satellite data during the event of floods is 
still challenging in tropical region. High-temporal resolution SAR 
remote sensing is the viable solution.  

• Apart from mapping the flood extent and water depths, derivation of 
flood water characteristics such as flow velocity, sediments load, 
warning time and awareness, winds and duration of inundation from 
the integration of satellites imageries and hydraulic model are 
difficult due to their heterogeinities both in space and time (Merz 
et al., 2010).  

• More accurate and open-access precipitation, discharge, boundary 
data and topography at the global level are needed to increase 
dependability of flood hazard modeling.  

• Lack of ground data for validation in data scarce regions often affect 
the reliability of satellite-based rainfall data.  

• Satellites that currently employ rainfall measurements are available 
only at coarser resolution, which limits the rainfall threshold – 
landslide initiation mapping in the ungauged catchments. 

• Separating the landslide initiation and deposition areas are chal-
lenging even with 3 m resolution Planet images (Wang et al., 2019).  

• Estimation of income distribution from remote sensing data still 
remain a challenge in understanding the quality of life.  

• Population estimation using remote sensing data without ground 
measurement remain a difficult task.  

• Sustainable transportation mapping and analysis in developing 
countries is greatly affected by the availability, cost, licensing and 
access to high resolution real-time imageries and image processing 
software. 

• Effective communication between remote sensing experts and deci-
sion makers on the effective use of remote sensing for human welfare 
issues is lacking in most developing countries. 

8. Conclusions 

This paper reviewed how RS technologies have been used to support 
several aspects of sustainable development, including (1) natural 
resource monitoring, development, and management; (2) environ-
mental assessments and hazard monitoring; and (3) socioeconomic 
development. RS has several advantages, including the ability to provide 
global-scale coverage, high-resolution data, and multi spatio-temporal 
coverage with optical, SAR, thermal and LiDAR sensors. It provides 
large volume of data and recent development in ML algorithms can 
handle large volume of geospatial data to extract beneficial information. 
Here, we discussed the use of RS for sustaining the Earth and human life. 
With the development of new and improved satellite and airborne sen-
sors, data with increasingly higher spatial, spectral, and/or temporal 
resolution will become available for researchers, governments private 
agencies, and policymakers, thus facilitating planning and decision- 
making in many areas of sustainable development. Accordingly, the 
United Nations highlighted RS as an indispensable tool for achieving its 
Sustainable Development Goals (SDGs). RS can be used not only to 
develop comprehensive policies promoting sustainable development, 
but also for effective implementation, monitoring, and decision-making. 
However, for RS to be effective and reliable, adequate information has to 
be obtained from other sources. In particular, the development of new 
spectral indices based on improved sensor technology is key for 
achieving sustainable development goals. 

Spatial data from RS and other sources can be integrated using GIS, 
among other spatial-integration tools, to analyze global environmental 
processes and change. During the COVID-19 global crisis, the contri-
bution of remote sensing data has been widely discussed in a wide va-
riety of applications including monitoring water and air pollution, 
management of the threat, monitoring traffic patterns, measuring 
human and economic activities, and socio-economic restriction. Several 
new studies and applications of remote sensing are emerged during the 
pandemic and are becoming significant case studies for sustainability 
applications. 

For developing countries, however, obtaining RS data for research 
and development purposes is difficult; thus, it is not efficient to use RS 
technology to support sustainable development in such countries. As 
counters strive to achieve the SDGs, more data acquisition platforms 
should be created and made available to researchers in developing na-
tions to enable them to actively use RS data to support national, 
regional, and global sustainable development. RS techniques are still not 
widely employed in developing countries, which are more vulnerable to 
natural hazards. There may also be conflicts of interests in terms of se-
curity and privacy between governments and other entities associated 
with RS use. Additional collaborations between policy think tanks, 
decision-making bodies in developing countries, and countries or or-
ganizations with ready access to GIS resources are needed. 
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Appendix 

Table A 1 
Queries run on the Scopus Database for ten broad classifications of the literature survey.  

Sl. 
No. 

Query Details Query String 

1. Biodiversity ((TITLE-ABS-KEY(Biodiversity) AND TITLE-ABS-KEYv(remote sensing)) AND (LIMIT-TO (DOCTYPE,"re”)) ) 
2. Groundwater ((TITLE-ABS-KEY (Groundwater) AND TITLE-ABS-KEY (remote sensing)) AND (LIMIT-TO (DOCTYPE,"re”)) ) 
3. Mineral Resources ((TITLE-ABS-KEY (Mineral Resources) OR TITLE-ABS-KEY (Mineral Exploration) OR TITLE-ABS-KEY (Mineral Resources Exploration) 

AND TITLE-ABS-KEY (remote sensing)) AND (LIMIT-TO (DOCTYPE,"re”)) ) 
4. Environmental Assessment ((TITLE-ABS-KEY (Environmental Assessment) AND TITLE-ABS-KEY (remote sensing)) AND (LIMIT-TO (DOCTYPE,"re”)) ) 
5. Flood Hazard Forecasting and 

Assessment 
((TITLE-ABS-KEY(Flood Hazard Forecasting) OR TITLE-ABS-KEY(Flood Hazard Assessment) OR TITLE-ABS-KEY(Flood Forecasting) 
OR TITLE-ABS-KEY(Flood Assessment) AND TITLE-ABS-KEY (remote sensing)) AND (LIMIT-TO (DOCTYPE,"re”)) ) 

6. Landslide mitigation and 
management 

((TITLE-ABS-KEY (Landslide mitigation and management) OR TITLE-ABS-KEY (Landslide mitigation) OR TITLE-ABS-KEY (Landslide 
management) OR TITLE-ABS-KEY(Landslide) AND TITLE-ABS-KEY (remote sensing)) AND (LIMIT-TO (DOCTYPE,"re”)) ) 

7. Transportation ((TITLE-ABS-KEY (Transportation) AND TITLE-ABS-KEY (remote sensing)) AND (LIMIT-TO (DOCTYPE,"re”)) ) 
8. Population ((TITLE-ABS-KEY(Population) OR TITLE-ABS-KEY (Population Estimation) OR TITLE-ABS-KEY (Population Allocation) AND TITLE- 

ABS-KEY (remote sensing)) AND (LIMIT-TO (DOCTYPE,"re”)) ) 
9. Quality of life ((TITLE-ABS-KEY (Quality of Life) AND TITLE-ABS-KEY (remote sensing)) AND (LIMIT-TO (DOCTYPE,"re”)) ) 

Source: Authors Scopus Database search between January 1, 2001 to May 15, 2020 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rsase.2020.100402. 
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