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The temporal dynamics of complex networks such as the Internet are characterized by

a power scaling between the temporal mean and dispersion of signals at each network

node. Here we tested the hypothesis that the temporal dynamics of the brain networks

are characterized by a similar power law. This realization could be useful to assess

the effects of randomness and external modulators on the brain network dynamics.

Simulated data using a well-stablished random diffusion model allowed us to predict

that the temporal dispersion of the amplitude of low frequency fluctuations (ALFF) and

that of the local functional connectivity density (lFCD) scale with their temporal means.

We tested this hypothesis in open-access resting-state functional magnetic resonance

imaging datasets from 66 healthy subjects. A robust power law emerged from the

temporal dynamics of ALFF and lFCDmetrics, which was insensitive to themethods used

for the computation of the metrics. The scaling exponents (ALFF: 0.8 ± 0.1; lFCD: 1.1

± 0.1; mean ± SD) decreased with age and varied significantly across brain regions;

multimodal cortical areas exhibited lower scaling exponents, consistent with a stronger

influence of external inputs, than limbic and subcortical regions, which exhibited higher

scaling exponents, consistent with a stronger influence of internal randomness. Findings

are consistent with the notion that external inputs govern neuronal communication in the

brain and that their relative influence differs between brain regions. Further studies will

assess the potential of this metric as biomarker to characterize neuropathology.

Keywords: FCDM, ALFF, lFCD, functional connectivity (FC), graph theory analysis, brain networks, Taylor’s law,

numerical simulations

INTRODUCTION

During resting-state functional magnetic resonance imaging (rfMRI) (Biswal et al., 1995) the
human brain sequentially engages in a series of diverse free-streaming subject-driven mental states
supported by different brain networks (Mason et al., 2007; Doucet et al., 2012; Shirer et al., 2012; Liu
and Duyn, 2013; Yang et al., 2014). These complex and time-varying functional operations require
a dynamic brain network topology to support the context-dependent coordination of neuronal
populations (Allen et al., 2014; Zalesky et al., 2014) and its characterization and measurement
could facilitate development of clinical biomarkers in neurology and psychiatry (Hutchison et al.,
2013). Thus, the temporal dynamics of the human brain connectome (Chang and Glover, 2010;
Sakoğlu et al., 2010) provides a new metric of brain function to assess healthy and disease
conditions (Calhoun et al., 2014). However, our lack of understanding of the principles governing
network dynamics may preclude the interpretation of the observed dynamics, which increases
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the within-subjects variability of the functional connectivity
metrics (Tomasi et al., 2016a,b). A better understanding of how
the collective behavior of neuronal communities contributes to
the observable dynamics is crucial for the interpretation of the
dynamics of functional connectivity.

Previous studies have shown that temporal mean 〈Si〉, and
dispersion, σi, of the activity at a given node are related through
a power law across network nodes (Argollo de Menezes and
Barabasi, 2004)

σi = a〈Si〉
b, (1)

where the scaling exponent, b, is a property of the network.
Based on theoretical grounds and independent from the topology
of the network, b equals either ½ or 1, which reflect a
competition between the system’s internal collective dynamics
and temporal changes in the external environment (Argollo de
Menezes and Barabasi, 2004). Specifically, in the absence of
external modulation, b = ½, but when external driving forces
become dominant, b = 1. For instance, whereas the network
of internet routers is characterized by b = ½, the network of
highways and the World Wide Web are characterized by b = 1.
However, empirical evidence from ecology, where (1) describes
the spatiotemporal variability of natural populations, supports
the existence of intermediate b-values (Taylor, 1961) suggesting
that meaningful temporal dynamic require ½ < b < 1.

Inasmuch as brain networks have scale-free (Barabasi and
Albert, 1999; Eguíluz et al., 2005) and small-world (Watts and
Strogatz, 1998) properties exhibited by complex networks we
hypothesized that the mean and σ of FC properties such as
ALFF, the amplitude of the low frequency fluctuations (Yang
et al., 2007) or lFCD, the local degree of connectivity (Tomasi
and Volkow, 2010) would reveal the characteristic power scaling
properties exhibited by other complex networks. Specifically, we
hypothesized that the mean and σ would be related by the power
law (1) and that different brain networks would exhibit different
scaling exponents reflecting differential balance between internal
randomness (random firing) and external inputs (non-random
firing). We selected functional connectivity (ALFF and lFCD)
metrics rather than raw signals because the mean and dispersion
values of the BOLD-fMRI signals are not expected to be in
agreement with Equation (1).

METHODS

To interpret the observed power scaling law (1), we study a
simple dynamical model based on random diffusion. Using this
model and functional connectivity information extracted from
rfMRI datasets, we assessed the validity of Equation (1) in the
context of brain functional connectivity. However, since direct
application of Equation (1) to the mean and dispersion values of
the raw fMRI time series is meaningless (the MRI signal mainly
reflects tissue properties such as water density and T1 and T2
relaxation rates, which do not change as a function of time;
the BOLD signal is zero-mean by definition), we simulated the
temporal dynamics of ALFF and lFCD.

Model
Similar to previous studies (Argollo de Menezes and Barabasi,
2004), to model the signal S(t) we simulated the random diffusion
of W walkers (messages) on a network of N nodes described by
its adjacency matrix, Aij. Each walker was placed at a randomly
chosen network node from which it departed randomly along
one of the edges of that node in the next time step. This diffusion
process was independently repeated 1,200 times and we recorded
the number of incoming visits by various walkers at each network
node to compute the time-varying signal at each node, Si(t).
Temporal fluctuations in W were used to simulate externally
induced modulations in Si(t), which for random networks and
scale-free networks results in b = 1 exponent in (1) (Argollo
de Menezes and Barabasi, 2004). Thus we varied the number of
walkers as a function of time as: W(t)=W+ ξ(t), where ξ(t) was
a uniformly distributed random variable in the interval [−1W,
1W], with 1W= k∗103 and k= 0,1,2,..., 9, and W= 104.

Simulations
The FreeSurfer gray matter parcellations (wmparc.2.nii) for
7 randomly selected MRI datasets were used to determine
imaging voxels in the occipital, cingulate and insular networks
(Figure 1A). The occipital network comprised bilateral cuneus,
lateral occipital, lingual, and pericalcarine cortices (number
of nodes/voxels, N = 8,200 ± 600). The cingulate network
comprised bilateral rostral anterior, caudal anterior, isthmus, and
posterior cingulate (N = 3,100 ± 400). The insular network
comprised the bilateral insula (N = 2,300 ± 100). The Pearson
correlation was used to compute correlation matrices reflecting
the functional connectivity between voxels within each network
for each subject. A correlation threshold R = 0.2 (p < 0.05)
was used to compute the corresponding binary adjacency
matrices. We implemented the diffusion model described above
(Argollo de Menezes and Barabasi, 2004). We assumed the
signal is proportional to the rate of incoming messages at
each node as a function of time, which was simulated using
1,200 steps.

To simulate the dynamics in the amplitude of the signal
fluctuations, δi, at each node we segmented the Si(t) data (1,200
time points) into 23 epochs (window length: 100 time points;
window shift: 50 time points) using a popular rectangular sliding
window approach (Chang and Glover, 2010). The temporal
standard deviation of Si(t) during each epoch was used to
estimate δi. Degree, Di, the number of links connected to
a network node (Rubinov and Sporns, 2010), was computed
for each of the 23 epochs of the synthetic Si(t) data using
a correlation threshold, R > 0.5 (p < 10−7). The linear
model log(σX) = log(a) + b log 〈X〉 with 2 freely adjustable
parameters: log(a) and b, was used to fit the power law (1) to
the temporal mean and dispersion values of the dynamic δ and
Dmetrics (X).

Datasets
To test the predictions of the random diffusion model we
analyzed rfMRI datasets drawn from the Human Connectome
Project (HCP; http://www.humanconnectome.org/). No
experimental activity with any involvement of human subjects
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FIGURE 1 | (A) Exemplary single-subject structural data showing occipital (green) cingulate (red) and insular (blue) gray matter networks used to compute the

adjacency matrix from the corresponding rfMRI datasets. The adjacency matrices of these networks and a random diffusion model were used to produce simulated

signal fluctuations, Si , with variable relative external modulation (1W/W) at each network node. The scaling exponent, b, was obtained by linear fitting the temporal

mean and dispersion values of 〈Si〉 in a log-log plot. (B) Average b across network nodes and 7 subjects as a function of 1W/W for the 3 different networks. Scaling

exponent as a function of 1W/W for the 3 different networks for: (C) the amplitude of the signal fluctuations, bδ; and (D) the degree of the functional connectivity, bD
(see Methods).

took place at the author’s institutions. The 66 participants (age:
30 ± 3 years; 32 females; Subject IDs: 100408, 103515, 103818,
105115, 105216, 106319, 110411, 118730, 118932, 119833,
120212, 122317, 123117, 125525, 127933, 128632, 129028,
130013, 131924, 133625, 133827, 133928, 134324, 136833,
137128, 138231, 138534, 140824, 142828, 143325, 144226,
149337, 149539, 150423, 151526, 153429, 156637, 158540,
159239, 159340, 160123, 161731, 162329, 163129, 165840,
167743, 172332, 178950, 182739, 191437, 192439, 192540,
194140, 197550, 199150, 199251, 200614, 201111, 210617,
217429, 249947, 250427, 255639, 304020, 307127, 329440) of the
WU-Minn HCP Q1 data release included in this study provided
written informed consent according to procedures approved by
the IRB at Washington University in St. Louis.

Resting-state (eyes open) functional images were acquired
using a gradient-echo-planar (EPI) sequence with multiband
factor 8, TR 720 ms, TE 33.1 ms, flip angle 52◦, 104 × 90 matrix
size, 72 slices, 2 mm isotropic voxels, and 1200 timepoints (Smith
et al., 2013; Uğurbil et al., 2013). Scans were repeated twice
using different phase encoding directions (LR and RL) on each of
two imaging sessions (REST1 and REST2) collected on different
days. The “minimal preprocessing” datasets, which include
gradient distortion correction, rigid-body realignment, field-map
processing, spatial normalization to the stereotactic space of
the Montreal Neurological Institute (MNI), high pass filtering
(1/2,000 Hz frequency cutoff) (Glasser et al., 2013), independent

component analysis-based denoising (Salimi-Khorshidi et al.,
2014), and brain masking were used in this study.

Preprocessing
Framewise displacements, FD, computed for every time point
from head translations and rotations using a radius of r = 50
mm (Power et al., 2012) did not differ between MRI sessions
or phase encoding directions across subjects (p > 0.2, paired t-
test; 〈FD〉 = 0.176 ± 0.05 mm). Scrubbing was not implemented
to preserve the frequency spectra used for the computation of
ALFF. Multilinear regression of head translations and rotations
were used to minimize motion related fluctuations in the MRI
signals (Tomasi andVolkow, 2010). Standard 0.01–0.08Hz band-
pass filtering was used to minimize physiologic noise of high
frequency components.

Dynamic ALFF and lFCD
The average of the power spectrum’s square root in the
0.01–0.08 Hz low frequency bandwidth was used to compute
the ALFF (Yang et al., 2007). Functional connectivity density
mapping was used to compute the lFCD (Tomasi and Volkow,
2010) at three different thresholds R > 0.3, 0.4 and 0.5. A
sliding window approach (Chang and Glover, 2010) with two
different window lengths (72s and 144s) and two different
window shapes (rectangular and Hamming) was used to
compute dynamic ALFF and lFCD maps with 2-mm isotropic
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resolution at two different temporal resolutions (36s and
72s). The window shift was set as half of the window
length.

Region-of-Interest (ROI) Analysis
To test the power law (1) we contrasted scaling factors for
the simulated signal fluctuations (δ) and degree (D) against
those for ALFF and lFCD. Since lFCD has high sensitivity
and specificity for gray matter (Tomasi et al., 2016c), the FC
metrics were averaged within the anatomical graymatter regions-
of-interest for each individual to minimize confounds arising
from the variability of the folding patterns of cortical gray
matter. Specifically, the FreeSurfer gray matter parcellations
(wmparc.2.nii) were used as ROIs to compute the averages of the
temporal mean and dispersion values of ALFF(t) and lFCD(t)
within 34 cortical and 9 subcortical gray matter regions in each
brain hemisphere. A probabilistic atlas for each of the gray matter
parcellations was developed by averaging each of the gray matter
parcellations across subjects independently, and used to display

ROI results (i.e., bALFF or blFCD) in the MNI stereotactic space
(Figures 2A, 3A).

Statistical Methods
The linear model log(σ ) = log(a) + b log 〈X〉 with 2 free
adjustable parameters: log(a) and b, was used to fit the power law
(1) to the temporal mean and dispersion values of the dynamic
ALFF and lFCD metrics (X). Paired t-test was used to assess
within subjects differences in bALFF and blFCD as a function
of session, phase encoding direction, correlation threshold, and
window length and shape. Two samples t-test and Pearson
correlation were used to assess gender and aging effects on bALFF
and blFCD.

RESULTS

Simulations
The power law (1) fitted well (R2 > 0.8) the temporal mean and
standard deviation values of Si(t) across nodes. The b exponents

FIGURE 2 | (A) Average scaling exponent (bALFF) for the temporal dynamics of the amplitude of low frequency fluctuations (ALFF) computed across nodes

independently for each of the individual anatomical ROIs, superimposed on left (L), right (R), dorsal (D), medial (M), ventral (V) anterior (A), and posterior (P) views of the

cerebral surface of the PALS_B12 template. (B) Scatter plots showing the good agreement across 66 subjects (dots) between the power law (1) (red line) and the

dynamics of ALFF which is characterized by its temporal mean, 〈ALFF〉, and dispersion, σALFF. Dashed lines are the upper (bδ = 1; pure randomness) and lower

(bδ = ½; pure external modulation) limits for the scaling exponent. (C) Frequency count histogram reflecting the probability distribution of bALFF across cortical and

subcortical gray matter ROIs. (D) Scatter plot demonstrating the variability of bALFF across 66 young adults.
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FIGURE 3 | (A) Average scaling exponent (blFCD) for the temporal dynamics of the local functional connectivity density (lFCD) computed across nodes independently

for each of the individual anatomical ROIs superimposed on left (L), right (R), dorsal (D), medial (M), ventral (V) anterior (A), and posterior (P) views of the cerebral

surface of the PALS_B12 template. (B) Scatter plots across 66 subjects showing the robustness of the power law (1) that reflects the dynamics of lFCD to changes in

correlation thresholds, sliding window lengths and shapes. (C) Frequency count histogram reflecting the probability distribution of blFCD across cortical and

subcortical gray matter ROIs. (D) Scatter plot demonstrating the moderate differences power law (computed across 86 ROIs) in four typical subjects.

increased monotonically with 1W, which is consistent with
the notion that internal randomness (diffusion) and external
modulation (1W) proportionally alter Si(t) in the network
(Argollo de Menezes and Barabasi, 2004). Thus,1Wcontributed
to the temporal variability of the signal at each network node,
gradually increasing b from ½ to 1 in all three brain networks
(Figure 1B) as it occurs in other complex networks. Thus, if its
magnitude is significant (1W∼½ 〈W〉), the external modulation
can dominate the dynamics of Si(t).

The mean and dispersion values of δi computed across epochs
were also in good agreement with the power law (1). Our
simulations suggest that, bδ ∼ 1, when internal randomness
dominates over the external modulations (Figure 1C). However,
bδ decreased with the amplitude of the external modulation
and was constrained in the interval [0.5, 1]. Similarly, the
mean and dispersion values of Di computed across epochs
were in good agreement with the power law (1). Our
simulations suggest that bD ∼ 1 when the external modulation
dominates over the internal randomness, but bD increases
significantly above 1 when the relative weight of the external
modulation decreases (Figure 1D). The power law failed

to fit the data when internal randomness dominated over
the external modulation (1W/W > ½) suggesting lack of
association between the mean and dispersion values of D in this
regime.

Amplitude of Fluctuations
A linear fit of whole-brain average and dispersion values of ALFF
on a log-log plot computed across nodes demonstrated good
agreement between Equation (1) and the dynamic amplitude
of the signal fluctuations in each of the individual ROI
(bALFF = 0.66 ± 0.16, mean ± standard deviation; 28 < t-
score<294; P < 1E-37; Figure 2A). Consistent findings emerged
from average and dispersion values within anatomical regions,
independently for each of the 86 gray matter ROIs (R2 > 0.8;
Figures 2B,C). The average scaling exponent was not different for
subcortical (cerebellum, thalamus, caudate, putamen, pallidum,
hippocampus, amygdala, accumbens and ventral diencephalon;
bALFF = 0.78 ± 0.04, mean ± standard error) than for cortical
(bALFF = 0.81 ± 0.07) regions (p > 0.4), independent of session,
phase encoding direction (LR vs. RL), sliding window length (72s
vs. 144s) and shape (rectangular vs. Hamming).
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There were no significant differences in bALFF across
subcortical regions. However, bALFF varied significantly across
cortical regions. Specifically, the scaling exponent was higher
for limbic (cingulum, orbitofrontal, parahippocampal and
entorhinal) and visual (lingual, fusiform and pericalcarine)
areas, the temporal and insular cortices and pars orbitalis (bALFF
= 0.89 ± 0.02) than for occipital (cuneus, lateral occipital),
parietal (inferior, superior, precuneus, postcentral), language
(opercularis, triangularis, supramarginal) and prefrontal
(paracentral, precentral, rostral, middle and superior frontal)
areas (bALFF = 0.72 ± 0.03; p < 10−9; Figure 2B). The scaling
exponent had normal distribution (center bALFF = 0.80; width=

0.16) across the 86 gray matter ROIs (R2 = 0.999, Gaussian fit;
Figure 2C).

Significant between-subjects variability in the scaling
exponent emerged from the data when we fitted Equation
(1) to the mean and dispersion values of ALFF across the 43
ROIs, independently for each individual (bALFF = 0.66 ± 0.05;
Figure 2D) and with similar robustness (R2 > 0.96). The scaling
exponent slightly decreased with age (slope = −0.03/decade;
R=−0.234; p = 0.03, one-tailed). However, there were no
significant gender differences (p > 0.77; two-tailed two-sample
t-test) in bALFF.

Local Degree
Similar to ALFF, a linear fit of whole-brain average and
dispersion values of lFCD on a log-log plot computed across
nodes demonstrated good agreement between Equation (1) and
the local degree of brain functional connectivity in each of
the individual ROI (blFCD = 1.05 ± 0.17, mean ± standard
deviation; 43< t-score<179; P< 3E-49; Figure 3A). Average and
dispersion values within anatomical regions showed consistent
findings with those from the whole-brain analysis (R2 >

0.8; Figure 3B). The average scaling exponent was higher for
subcortical (blFCD = 1.23 ± 0.09, mean ± standard error) than
for cortical (blFCD = 1.06 ± 0.10) regions (p < 10−3, two-tailed
two-sample t-test), independent of the correlation threshold used
in the computation of the lFCD (R > 0.3, 0.4, or 0.5), session,
phase encoding direction, window length (72s vs. 144s) and
shape.

For lFCD, the scaling exponent was higher for limbic
(cingulum, orbitofrontal, parahippocampal, and entorhinal),
language (opercularis, orbitalis, triangularis), temporal (inferior,
middle superior), and frontal (paracentral, superior and pole),
insula and fusiform gyrus (blFCD = 1.13± 0.07) than for occipital
(cuneus, lateral occipital, lingual and pericalcarine), parietal
(inferior, superior, precuneus, supramarginal, paracentral,
postcentral), prefrontal (precentral, rostral, middle, and
superior) and temporal (entorhinal temporal pole, transverse)
areas (blFCD = 0.98 ± 0.06; p < 10−6; Figure 3B). Across the
86 gray matter ROIs the scaling exponent had a right-skewed
distribution with peak at blFCD = 1.03 and width = 0.17 (R2

= 0.95, Gaussian fit; Figure 3C). Fitting mean and dispersion
values of lFCD across the 43 gray matter ROIs, independently for
each subject, revealed modest between-subjects variability in the
scaling exponent (blFCD = 1.09 ± 0.06; Figure 3D), and blFCD
did not show significant age or gender differences (p > 0.23).

In visual areas (pericalcarine, lateral occipital, and cuneus) the
standardized scaling factors bz were lower than average and were
significantly lower for lFCD than for ALFF (p < 0.0005, t-test;
Figure 4, left). In prefrontal regions (middle Frontal, superior
frontal, precentral, paracentral, pars opercularis, and caudal
anterior cingulate), the lower than average bz was lower for
ALFF than for lFCD (p < 0.001). In frontal and temporal poles,
entorhinal and lingual cortex showed the higher than average
bz was higher for ALFF than for lFCD (p < 0.0001; Figure 4
right). In anterior (rostral) and posterior (isthmus) cingulate,
fusiform gyrus and subcortical regions (hippocampus, thalamus
and cerebellum) the higher than average bz was higher for lFCD
than for ALFF (p < 0.0006).

Effect of Bandpass Filtering
Given that frequency information may be of interest and that the
ICA-FIX denoising procedure can remove a significant fraction
of the physiological noise of respiratory origin (Salimi-Khorshidi
et al., 2014), we also computed dynamic lFCD measures without
0.01–0.08 Hz bandpass filtering to assess the effect of higher
frequencies on the power scaling law (Equation 1). Without
bandpass filtering the scaling exponent b of the dynamic lFCD
metrics was significantly larger than with bandpass filtering
(p < 0.0001; Figure 5), and the agreement between the data and
Equation (1) was significantly reduced [R2 = 0.82 (without) and
0.96 (with bandpass filtering)].

DISCUSSION

Here we show for the first time that the mean and the dispersion
values of dynamic FC metrics such as ALFF or lFCD are
linked by a power law (1). This characteristic of complex
networks such as rivers and highways networks, the Internet
and the World Wide Web (Argollo de Menezes and Barabasi,
2004), and many biological systems (Taylor, 1961), reflects the
competition between the system’s internal collective dynamics
and changes in the external environment. This strongly suggests
that the dynamics of the FCmetrics embeds important functional
information, a possibility previously highlighted (Hutchison
et al., 2013; Calhoun et al., 2014; Rashid et al., 2014; Hutchison
and Morton, 2015), which could help in the development of
biomarkers of brain function.

Our simulations were based on a random diffusion model
previously proposed by Argollo de Menezes and Barabasi to
explain the power scaling between the mean and the dispersion
of the signals observed in natural and technological networks
(Argollo de Menezes and Barabasi, 2004). Whereas the approach
by Argollo de Menezes and Barabasi was based on random and
scale-free networks (Barabasi and Albert, 1999; Barabási, 2009),
the present approach was based on real FC networks directly
extracted from in vivo resting fMRI data. The scaling exponents
for the brain in the present work are consistent with those
obtained previously in random and scale-free networks (Argollo
de Menezes and Barabasi, 2004).

Here we extended the random diffusion model in order
simulate the amplitude of spontaneous signal fluctuation and
the degree of connectivity. Our simulations suggest that under
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FIGURE 4 | Brain regions showing statistically significant differences in standardized scaling exponents, bz, for ALFF and lFCD at p < 0.001. ACC,

anterior cingulate cortex.

FIGURE 5 | Scatter plot demonstrating the effect of bandpass filtering

on the power scaling (Equation 1) of lFCD across ROIs. The fitted slope,

b, the scaling factor in Equation (1), is significantly steeper without bandpass

filtering (standard errors in parenthesis) suggesting increased level of

randomness (see Figure 1D).

pure randomness (i.e., without external driving forces, 1W = 0)
the mean and the dispersion values of the amplitude of signal
fluctuations and degree are associated by power laws with scaling
exponents bδ = 1 and bD > 1, respectively. However, under the
influence of dynamic external modulations (1W/W ∼ 1), bδ <

1 and bD = 1 characterize the dynamic behavior of the signal
fluctuations and degree. The analysis of variability of resting-
state fMRI datasets from the HCP database shows a range of
scaling exponents for ALFF (0.5 < bALFF < 1) and for lFCD
(1 < blFCD), which is consistent with the presence of dynamic
external modulations of brain activity (0.5 < bδ < 1) and the
corresponding degree (1 < bD). Overall, our findings are also

consistent with the existence of dynamic modulations of brain
activity that may reflect orchestrated dynamic neural processing
(Yu et al., 2012; Allen et al., 2014; Gonzalez-Castillo et al.,
2015).

This is the first study to document differences in scaling
exponents between brain regions. Multimodal association areas
(opercularis, triangularis, rostral, middle and superior frontal,
precentral and paracentral, inferior and superior parietal and
precuneus), somatosensory (supramarginal, postcentral) and
visual (cuneus, lateral occipital) unimodal association areas
showed low scaling exponent both for ALFF (bALFF ∼ 0.7)
and for lFCD (blFCD ∼ 1). These findings suggest that the
dynamics of the FC metrics was driven by external inputs
(1W/W>½) rather than by internal random processes (1W/W
< 0.5; Figures 1C,D), which is also consistent with the existence
of dynamic modulations of resting brain activity (Yu et al.,
2012; Allen et al., 2014; Gonzalez-Castillo et al., 2015). The
multimodal cortex is highly interconnected with higher-order
association areas involved in cognition and motor planning
(Goldman-Rakic, 1988). Thus dynamic engagement of functional
connectivity hubs in multimodal and unimodal association
cortices may explain the low scaling exponent in these regions.
On the other hand, limbic and subcortical regions exhibited
relatively higher scaling exponents (bALFF ∼ 0.8 and blFCD ∼ 1.2)
suggesting a stronger influence of internal randomness in the
resting dynamics of the FC metrics in these regions.

We identify regional differences in the influence of internal
randomness for different FC metrics. The direct comparison
of standardized measures suggests a weaker influence of
randomness in visual areas for lFCD than for ALFF and in
prefrontal areas for ALFF than for lFCD, and a stronger influence
of randomness in subcortical and limbic regions for lFCD than
for ALFF. ALFF and lFCD reflect different network properties.
Whereas ALFF is proportional to the BOLD signal fluctuations
that reflect neuronal communication (Logothetis et al., 2001),
the synchronous fluctuations of local communities measured
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by lFCD reflects the local degree of connectivity (Tomasi and
Volkow, 2010).

The scaling exponent for ALFF, and to a lesser extent for lFCD,
showed significant variability (1bALFF = 12%; 1blFCD = 9%)
across subjects suggesting that the dynamics of the b has potential
as a biomarker for psychiatry and neurology. To illustrate the
potential of this metric here we show that even in a relatively
small sample (66 subjects) with narrow age range (22–35 years),
bALFF is sensitive to aging effects, consistent with previous studies
in large samples (∼1000 subjects) with wide age range (17–82
years) that documented age-related decreases in FC (Biswal et al.,
2010; Tomasi and Volkow, 2012).

The scaling exponent for lFCD increased significantly above
1 when frequencies other than those in the 0.01–0.08 Hz band
were not removed from the data. At the same time, the agreement
with a power scaling was reduced when Equation (1) was fitted
to the data without bandpass filtering. This likely reflects the
introduction of additional randomness and is consistent with
increased noise level and lack of additional information at higher
frequencies than those in the 0.01–0.08Hz band.

The brain normally operates under certain level of
randomness that is important for multiple operation including
perception and decision-making. The relevance of internal
neuronal noise has been most extensively studied for visual
perception (Brascamp et al., 2006; Kim et al., 2006). Theoretical
studies have also shown that randomness may influence
behavioral responses when there are multiple routes to action
and suggested that noise generated by random firing rates of
neurons can be used to predict a decision (Rolls, 2012). Since
limbic and subcortical regions support automatic, implicit
decision making (Floresco et al., 2008; Mitchell, 2015) the higher
scaling exponents in these regions suggests an important role
of randomness in implicit decision making processes. The
sensitivity to randomness of b could be useful for studying
psychiatric disorders such as autism, which is associated with
increased randomness of endogenous brain oscillations (Lai
et al., 2010).

Study Limitations
Note that b = ½ emerges either from diffusion or from flow
models, independently of the number of steps in the diffusion
model, and from random networks as well as from scale-
free networks. This indicates that b = ½ is not a particular
property of the random diffusion model, but it is shared by
several dynamic processes (Argollo de Menezes and Barabasi,
2004). Our computational resources did not allow demanding
whole brain network simulations at 2-mm isotropic resolution

(∼105 nodes/voxels). Thus, our simulations suggesting that when
internal randomness dominates over the external modulations
(1W/W∼ 0) bδ ∼ 1 and bD > 1, but when external modulations
dominate over internal randomness (1W/W ∼ 1) bδ ∼ 0.5
and bD ∼ 1 are limited to the 3 exemplary networks in this
work. However, it is likely that they apply also to the whole
brain. Instrumental noise likely resulted in overestimations of
intrinsic randomness in subcortical regions for which the 32
channel RF coil used by the HCP has low sensitivity. Since
the theoretical model was developed across network nodes, the
interpretation of the power law across ROIs and subjects could
be considered controversial. Our empirical evidence, however,
suggests that the temporal mean and standard deviation values of
dynamic functional connectivity metrics also adhere to a power
law computed across ROIs or subjects, which are consistent with
the power law computed across nodes (i.e., across nodes of each
individual ROI, blFCD = 1.05± 0.17 mean± standard deviation;
across the 86 gray matter, ROIs blFCD = 1.03 ± 0.17; across 66
subjects, blFCD = 0.98 ± 0.16). This suggests similar effects of
randomness and external modulators on power scaling factors
computed across network nodes, ROIs or subjects.

Dynamic lFCD is restricted to the local functional
connectivity cluster. We did not assess the dynamics of
global functional connectivity density (gFCD) because at high
spatiotemporal resolution gFCD is extremely demanding and
beyond our computational resources. However, this is not a
strong limitation because previous studies have shown that
the lFCD and gFCD metrics are proportional to one another
(Tomasi and Volkow, 2011).
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