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Abstract

For proper biofilm formation, bacteria must have mechanisms in place to sense adhesion to

surfaces. In Escherichia coli, the CpxAR and RcsCDB systems have been reported to

sense surfaces. The CpxAR system is widely considered to be responsible for sensing

attachment, specifically to hydrophobic surfaces. Here, using both single-cell and popula-

tion-level analyses, we confirm RcsCDB activation upon surface contact, but find that the

CpxAR system is not activated, in contrast to what had earlier been reported. Thus, the role

of CpxAR in surface sensing and initiation of biofilm formation should be reconsidered.

Introduction

To ensure that the biofilm formation process is initiated only under proper conditions, bacte-

ria need to sense that they are in contact with a surface. Despite the importance of biofilms,

both in disease and in technical systems, it turns out that even in the model organism Escheri-
chia coli the process of surface sensing is still largely elusive [1–6]. There is evidence that in E.

coli surface contact can be sensed with cell appendages, such as flagella and pili [7–12], but also

via the two-component systems RcsCDB, rapidly activated upon contact to hydrophilic sur-

faces [13], and CpxAR, responding to hydrophobic [14] and possibly hydrophilic surfaces,

although contradictory results have been published regarding hydrophilic surface sensing [13–

15].

The Cpx system consists of an inner membrane-localized histidine kinase, CpxA, and the

response regulator CpxR. Depending on the presence of inducing signals, CpxA can act either

as a kinase or as a phosphatase on CpxR [16]. While the precise molecular mechanism leading

to activation remains to be solved, several inducing cues were found, including extracellular

copper [17], osmolarity [18], pH [19,20], envelope stress [21–26] and, as reported, surface

attachment [14]. The transcription factor CpxR, in its phosphorylated form, regulates expres-

sion of a large number of genes, including biofilm-related genes [27].

With regard to induction by surface attachment, expression of CpxR-controlled genes has

been reported to increase threefold within an hour after bacteria adhered to hydrophobic glass

beads [14]. In addition to CpxA and CpxR, also the outer membrane lipoprotein NlpE was

suggested to be required for sensing hydrophobic surface contact, and these three proteins

were also needed for stable adhesion to hydrophobic surfaces [14]. A later study by Shimizu
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and coworkers [15], using a similar experimental approach, reported surface sensing by

CpxAR in a pathogenic E. coli strain. Because of the huge biofilm-related problems in both

medical and technical areas [28–31], and the currently limited understanding about the initial

sensing of surface contact, we aimed at further investigating the CpxAR system with single-cell

analyses employing fluorescence microscopy and microfluidics.

Here, while we could confirm that RcsCDB is highly responsive to growth on a surface, we

could not confirm the earlier reported response of CpxAR to surface attachment, neither with

novel single-cell analyses, nor with the population-level experiments as originally done and

reported [14]. Our results indicate that RcsCDB, but not CpxAR, is activated upon attachment.

Thus, the role of E. coli’s Cpx system as a surface sensing system, as widely assumed [2,4,5,32–

35], should be reconsidered.

Results

To investigate the single-cell response of E. coli to surface contact, we used microfluidics and

microscopy. Specifically, bacteria were transferred from an exponential phase culture in M9

glucose medium to the microfluidic device, where they were brought in contact with the sur-

face of the cover glass by placing a polyacrylamide gel pad on top of the cells (Fig 1A). To

ensure otherwise constant conditions (apart from the surface contact), the gel pad had been

equilibrated with spent medium, which was also constantly perfused over the polyacrylamide

pad during the whole experiment.

To confirm that immobilization in the microfluidic setup is perceived as surface contact, E.

coli carrying a fluorescent transcriptional reporter, controlled by the RcsAB-regulated rcsA
promoter [13,36], were transferred to the microfluidic device, and the cells were observed by

time-lapse fluorescence microscopy. The cells rapidly became highly fluorescent (Fig 1B).

When the rcsB gene was deleted, the large increase in fluorescence was no longer observed

upon surface contact (S1A Fig). Thus, the previously reported surface sensing by the Rcs sys-

tem [13] was also observed in our microfluidic setup, showing that the system can be used to

investigate the response of single cells to surface contact.

Towards investigating the surface response of CpxAR, we first tested the functionality of

the respective reporter. Specifically, we tested induction of the two-component system by cop-

per, a known activating signal [17]. Here, we observed a rapid increase in fluorescence in cells

carrying a fluorescent transcriptional reporter under control of the CpxR-regulated yebE pro-

moter [17,27,37] (S1B Fig). To exclude a global effect of copper as the cause of the induction,

we also tested the reporter for the Rcs system and found that it was not induced (S1B Fig).

Thus, the transcriptional reporter for CpxAR is functional.

To test whether the Cpx system responds to surface contact, similarly as the Rcs system, E.

coli carrying the reporter plasmid were immobilized in the microfluidic device and followed in

time-lapse by fluorescence microscopy. Here, we found that the fluorescence intensity

remained unchanged after surface attachment (Fig 1B and 1C). When cells carried a different

CpxR-controlled reporter, namely for the cpxP promoter [17,19,27,37], there was also no

increase in fluorescence (Fig 1B and 1C). As the previous report, where the Cpx system was

suggested to respond to surface contact with a threefold induction after one hour [14], had

used hydrophobic surfaces, we next performed the same experiment with a cover glass that

was rendered hydrophobic. Also here, even though we used the same hydrophobic dimethyldi-

chlorosilane coating as previously [14] used, the fluorescence intensity of attached cells with

the yebE reporter was unaffected (Fig 1B and 1C). As a control, we tested induction of this

reporter by copper in the microfluidic device, where we could clearly observe increased fluo-

rescence (S1C Fig), indicating that our experimental setup is capable of detecting activation of
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CpxR. These results, where we could not find surface-induced activation of the CpxR system,

neither on untreated nor on hydrophobic cover glasses, are inconsistent with the reported role

of CpxAR in surface sensing.

As so far, we used glucose minimal medium and exponentially growing cells, we adjusted

the growth conditions to mimic those applied by Otto and Silhavy [14]: the cells were grown

until OD600 of 2.0 in LB medium before we introduced them into the microfluidic device. We

used a hydrophobic cover glass and the flow of medium over the polyacrylamide pad was

spent LB to mimic the conditions in the earlier performed experiments. Also under these con-

ditions, the fluorescence intensity of the bacteria remained unchanged (Fig 1D). Also, experi-

ments with the E. coli MC4100 background (TR235, kindly provided by T.J. Silhavy) as earlier

used, and transformed with the reporter plasmid, yielded no response (Fig 1D), excluding

strain-to-strain differences as the cause. Employing the transcriptional reporter for the cpxP

Fig 1. The Cpx system is unresponsive to surface contact in both single-cell and population-level experiments. (a)

Overview of the microfluidic setup used for the microscopic observation of fluorescence intensity in single surface-

attached cells. (b) Comparison of GFP expression from the Rcs-regulated rcsA promoter (red; n = 46; 2 independent

experiments), the Cpx-regulated yebE promoter (blue; n = 23; 2 independent experiments) and the Cpx-regulated cpxP
promoter (green; n = 23; 1 experiment) on untreated cover glasses, and the yebE promoter on hydrophobic cover

glasses (black; n = 26; 2 independent experiments) in the microfluidic device with flow of spent M9 glucose medium.

The fluorescence intensity of each cell at the first time point is set to 100%. Error bars show 95% confidence intervals.

(c) Same as b, but excluding the reporter for the Rcs system, and with a different y-axis scaling. (d) Fluorescence

intensity in surface-attached MG1655 + pPyebE-gfp (black; n = 60; 3 independent experiments), TR235 + pPyebE-gfp
(red; n = 40; 2 independent experiments), MG1655 + pPcpxP-gfp (blue; n = 40; 2 independent experiments) and

TR235 + pPcpxP-gfp (green; n = 53; 2 independent experiments), grown in LB medium to an OD600 of 2.0 before

introduction into the microfluidic system, with flow of spent LB medium. The fluorescence intensity of each cell at the

first time point is set to 100%. Error bars show 95% confidence intervals. (e) Overview of the population-level assay. E.

coli TR235 from early stationary phase LB culture were incubated with or without hydrophobic glass beads for 1 h.

Unattached cells in the sample with beads were removed and discarded. Attached cells were detached by vortexing in

the presence of SDS, which causes the bacteria to lyse. For both the detached sessile cells and the planktonic control,

the β-galactosidase activity and total protein content were determined. (f) Comparison of β-galactosidase activity in

planktonic and sessile TR235 (MC4100 λRS88[cpxR-lacZ]). Planktonic: bacteria incubated without beads for 1 h.

Sessile: Bacteria that were incubated with hydrophobic beads for 1 h and that had attached. The activity was

normalized to total protein content as determined from silver-stained polyacrylamide gels. The values are the mean

with 95% confidence intervals (n� 6).

https://doi.org/10.1371/journal.pone.0207181.g001
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gene, we also saw no response in either strain to surface contact (Fig 1D). Thus, on the single-

cell level we could not find any activation of the Cpx system by surface sensing.

To determine whether the negative results are caused by the different experimental setup,

we repeated the original experiments that established CpxAR as a surface sensing system [14],

with the same TR235 E. coli strain. Specifically, we incubated early stationary phase cells in the

presence of hydrophobic glass beads for 1 h, then removed and discarded unattached cells,

detached sessile bacteria by vortexing in buffer containing SDS, permeabilized them with SDS

and chloroform, and carried out β-galactosidase assays, for which bacteria incubated without

beads were used as the planktonic control (Fig 1E). Instead of normalization to optical density

of the bacterial sample (as in the original publication), we normalized the β-galactosidase activ-

ity to total protein content, as determined from a silver-stained polyacrylamide gel. We altered

the procedure, because we found that the removal of attached bacteria from the hydrophobic

glass beads causes cell lysis if carried out as described. The lysis was apparent when detached

cells were spun down, followed by replacement of the supernatant by fresh buffer, as this

would result in an almost complete loss of β-galactosidase activity. This loss of activity indi-

cates that the majority of the enzyme had been released from the cells. Such cell lysis also

affects the quantification of the optical density. Indeed, when performing the experiments as

described originally, even minute variations in sample handling, specifically during the vortex-

ing and washing of the samples, led to highly variable results.

Instead, when exploiting the more robust normalization to protein content, experiments

generated reproducible results. However, consistent with the results that we obtained from the

single cell experiments, we found no difference in the expression of the reporter between

planktonic and sessile cells (Fig 1F). Thus, also with the original experimental approach,

slightly adapted to increase reproducibility, we were unable to observe any surface-specific

response of the CpxAR system.

Discussion

Using both single-cell and population-level assays, we investigated surface sensing in E. coli via

the CpxAR and RcsCDB systems. While we could confirm the strong induction of the Rcs sys-

tem upon surface attachment, we could not identify activation of the Cpx system. The single-

cell approach, involving microfluidics and fluorescence microscopy, showed a constant

expression of the reporter gene following the switch from liquid culture to surface-attached

growth. To exclude experimental difference as cause for this conflicting finding with an earlier

report, we repeated the earlier presented population-level assay, where we also did not find

any evidence for activation of the system.

One explanation for the disagreement between our results and the generally accepted view

of CpxAR as a surface sensing system, could be that the original measurements on the popula-

tion level had been confounded by technical factors, such as the cell lysis that we experienced

upon detachment of cells from the beads. Such lysis is problematic for the measurements of

both β-galactosidase activity and cell density quantification, and it may bias the results if these

two measurements are not equally affected. Lysis of the samples could also lead to imprecision

in the measurements if the number of intact cells would get too low. While we did not test it,

we expect that the later experiments by Shimizu et al. [15] may have suffered from the same

technical issues, as also here E. coli cells were detached from glass beads before determination

of Cpx activity. Their normalization to colony forming units is also expected to be highly sensi-

tive to loss of viability. Although in this later study bacteria were detached with deoxycholate,

which is generally thought to be less harmful to E. coli than SDS, also here cell damage may

have occurred, as deoxycholate has been shown to cause DNA damage [38], decreased growth
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rate and viability [39,40], and leakage of RNA and proteins from the cell [39,41]. Overall, mea-

surement error due to cell lysis could explain the reported activation of the Cpx system in the

Otto and Silhavy paper and potentially also in the study of Shimizu et al., although the latter

remains to be tested.

The previous finding that deletion of the cpxR, cpxA and nlpE genes abolished the response

of the Cpx system to surface attachment [14], might instead be explained by the greatly

reduced attachment of these mutants to hydrophobic surfaces. If the cells are weakly attached,

as is the case in the mentioned deletion mutants [14], the lysis problems occurring at the

detachment step may be alleviated, thereby removing the confounding effect. Alternatively,

the mutants might have different sensitivities to stresses caused by experimental conditions,

such as SDS exposure or vortexing, than the wild-type.

An alternative explanation for the different observations could be that one of the many

other, non-surface-related factors induced the Cpx system in the previous studies. One possi-

bility would be that the results had been affected by the presence of copper, which has a very

strong effect on the Cpx system, even at low concentrations. In fact, Cpx induction by copper

(S1B Fig) strongly resembles the dynamics found in the original surface sensing experiments

[14]. Interestingly, the synthesis of the hydrophobic coating material, dimethyldichlorosilane,

requires large quantities of copper [42] and possibly trace amounts might have been present in

the experiments by Otto and Silhavy.

The original study, in which CpxAR had been established as a surface sensing system, is fre-

quently cited to link the Cpx system and NlpE to adhesion and initiation of biofilm formation

(e.g. [35,43–47]). As shown in this work, the connection between the Cpx system and surface

sensing should be reconsidered, to avoid incorrect interpretations of experimental findings.

Materials and methods

Bacterial strains and growth conditions

The MG1655 strain carrying transcriptional fluorescent reporters for the yebE gene (pPyebE-

gfp) and rcsA gene (pPrcsA-gfp) were obtained from the E. coli promoter collection [48]. The

TR235 strain (MC4100 λRS88[cpxR-lacZ], [21]), which has a transcriptional reporter for the

cpxR gene, was kindly provided by T.J. Silhavy. For microscopy experiments, the TR235 strain

was transformed with the pPyebE-gfp plasmid. The pPcpxP-gfp reporter plasmid was con-

structed by amplifying the cpxP promoter region from MG1655 genomic DNA with primers

TTTGGATCCCCTTTAATAGGGAAGTCAGC and TTTTCTCGAGGCTTAATGAACTGACTGCCA,

restriction with BamHI and XhoI and ligation into vector pUA139 [48]. The MG1655ΔrcsB
strain was constructed by P1 phage transduction from the corresponding deletion strain in the

Keio collection [49]. After removal of the kanamycin resistance gene, the ΔrcsB strain was

transformed with the pPrcsA-gfp plasmid.

Bacteria were grown at 37˚C in an orbital shaker (300 rpm), in either M9 minimal medium

supplemented with 0.4% glucose or LB medium. The medium was supplemented with 25 μg/

ml kanamycin for the plasmid-carrying strains. Preparation of spent medium was done by

spinning down bacterial cultures at 1000 g at 4˚C and subsequent filtering of the supernatant

through a 0.22 μm pore-size bottle-top filter made of PES. Spent medium was always taken

from cultures at the same OD600 as the culture used for the experiment.

Copper induction of Cpx and Rcs reporters

E. coli MG1655 with reporters for the Cpx (pPyebE-gfp) and Rcs (pPrcsA-gfp) systems were

grown to mid exponential phase (OD 0.5–0.6) in M9 glucose medium without copper. The

cultures were diluted 125–150-fold in fresh M9 glucose medium with or without 7 μM CuCl2,
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obtaining the same cell counts for all cultures, and measured at regular intervals by flow

cytometry (BD Accuri C6 flow cytometer, BD Biosciences; medium flow rate, FSC-H-thresh-

old 8000, SSC-H threshold 500). The fluorescence intensities in the GFP channel (FL-1) were

normalized to the size of each cell, measured as the width. Each data point is the median of at

least 36,000 cells.

Copper induction of the yebE reporter was also tested in the microfluidic device. Bacteria

were exponentially grown in M9 glucose medium without copper, transferred to the polyacryl-

amide pad setup and after 75 min copper-containing (7 μM CuCl2) M9 glucose medium was

perfused.

Preparation of hydrophobic surfaces

Cover glasses (Menzel-Gläser #1.5) were cleaned by a procedure adapted from [50]: cover

glasses were sonicated alternatingly in absolute ethanol and 2% Hellmanex III in ultrapure

water; twice in each solvent, 30 minutes each, after which residual water was removed from

the container by 10-minute sonication in acetone, followed by rinsing of the container with

acetone twice. To apply the hydrophobic coating, the cover glasses were then incubated for 10

minutes with a 10% v/v solution of dimethyldichlorosilane in hexane, followed by extensive

rinsing with absolute ethanol, in which the cover glasses were kept for no more than two

weeks. The water contact angle (>85˚) stayed constant during the two weeks, indicating the

stability of the coating. The silanization of 0.5 mm diameter glass beads (Sigma-Aldrich

G8772) was carried out in the same way, except for skipping the sonication steps, as the beads

had been acid-washed by the manufacturer.

Microfluidics

The microfluidic setup shown in Fig 1A was used. All components were prewarmed to 37˚C.

A 24 x 24 mm cover glass, either untreated (i.e. only rinsed with ethanol and ultrapure water)

or hydrophobic (see above) as described in the main text, with a thin piece of PDMS around

the edges to prevent leakage was placed in a custom-made metal holder. In the center of the

cover glass, 5 μl of bacterial culture was pipetted and immediately covered by a 1.5 mm thick

10% polyacrylamide gel pad. This pad had been extensively washed after preparation and incu-

bated for at least one hour in spent medium. The microfluidic setup was completed by a piece

of PDMS containing a 2 x 10 mm channel that was placed on top of the pad. Using a plexiglass

frame and bolts, the setup was tightened to the metal holder. Tubings (Cole-Parmer Microbore

PTFE Tubing, EW-06417-11) were connected to the channel and spent medium was perfused

at a flow rate of 24 μl/min throughout the experiment, for which a Harvard Apparatus syringe

pump 11 Elite (#70–4505) was employed. Both the specimen and microscope were tempera-

ture-controlled to 37˚C (Life Imaging Services, The Cube and The Box).

Fluorescence microscopy

For image acquisition, a Nikon Eclipse Ti-E inverted microscope was used, with Nikon CFI

Plan Apo Lambda DM 100X Oil objective, CoolLED pE-2 or Lumencor Aura illumination sys-

tem (470 or 485 nm LED, respectively, for excitation of GFP) and Andor iXon 897 EM-CCD

camera. The following filters were employed: excitation filter bandpass 470/40 nm, dichroic

mirror 495 nm and emission filter 525/50 nm (AHF Analysentechnik F46-470). Focus was

maintained by Nikon’s PFS3 system. Acquisition was started within 10 min (generally ~7 min)

after the bacteria had been introduced in the microfluidic system and every 10 min phase con-

trast images and GFP signal (200 ms exposure time) were acquired at multiple positions. The

microscope was controlled by NIS Elements v4.51 software.
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Image analysis

Image segmentation was semi-automated and handled by the ImageJ [51] plugin MicrobeJ

[52], or in-house software, followed by manual inspection and correction. The detected cells

were further analyzed in Matlab (R2014a, MathWorks Inc.), where the identified ROIs were

applied to background-corrected GFP images. The background correction was done by first

subtracting the signal intensity of an image without any bacteria, followed by division of each

pixel by a correction factor to correct for uneven illumination. The correction factors were

determined by smoothing the intensities on a position without cells with a 3x3 point moving

average and then dividing the intensity of each pixel by the mean of all pixels.

Population-level assay

The assay to study CpxR activity on the population level in bead-attached cells was carried out

essentially as described [14]. To plastic tubes containing 3 g of freshly prepared hydrophobic

beads (prepared as described above in ‘Preparation of hydrophobic surfaces’), 1 ml of OD600

2.0 culture of TR235 in LB was added and incubated at 37˚C. After 1 h, unattached cells were

aspirated using a syringe with needle and discarded. Attached cells were then detached by

addition of 1 ml Z-buffer containing 0.04% SDS, vortexing for 30 s and aspirating with a

syringe with needle. Cells were lysed by addition of three drops of chloroform and vortexing

for 15 s. As planktonic controls, bacteria incubated in tubes without beads were used. These

control cells were spun down, resuspended in Z-buffer with 0.04% SDS and three drops of

chloroform, and vortexed for 15 s. From all samples, 50 μl was set aside for determination of

total protein content, and the remainder was used for the β-galactosidase assay.

β-galactosidase assay

The assay was carried out essentially as originally described by Miller [53]. All samples were

incubated at 28˚C and the reaction was started by addition of 200 μl 4 mg/ml ONPG (Sigma-

Aldrich #N1127). Reactions that had turned yellow upon visual inspection were stopped by

mixing with 500 μl 1 M Na2CO3. The samples were spun down and the absorption at 420 nm

of the supernatant was measured. The β-galactosidase activity was calculated as (1000 • A420) /

(TP • t), where ‘TP’ is the total protein concentration in relative units and ‘t’ is the duration of

the reaction in minutes.

Determination of total protein content

The protein content in the β-galactosidase samples was determined from the band intensities

on a silver-stained 10% SDS-PAGE gel. The gel was stained according to the procedure pro-

vided with the kit (Pierce Silver Stain Kit, #24612). The stained gel was imaged with a Fujifilm

LAS-3000. In ImageJ [51], the background signal was determined and the intensities of the

bands in the upper half of each gel lane were integrated, because there the bands were better

resolved and with less overlap than at the bottom half. To establish the linearity of our mea-

surements, the integrated, background-corrected band intensities were determined for a dilu-

tion range of a total protein sample of known OD600 (S1D Fig). Using control samples that

were present on multiple gels and the determined relation between OD600 and total protein,

the normalized total protein content was calculated for each sample.

Supporting information

S1 Fig. Control experiments. (a) Comparison of GFP expression from the Rcs-regulated rcsA
promoter in wild type (black; n = 46; 2 independent experiments) and ΔrcsB cells (red; n = 40;
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2 independent experiments) on untreated cover glasses, in the microfluidic device with flow of

spent M9 glucose medium. The fluorescence intensity of each cell at the first time point is set

to 100%. Error bars show 95% confidence intervals. (b) Effect of copper chloride on the report-

ers for the Cpx (pPyebE-gfp) and Rcs (pPrcsA-gfp) systems. Exponential phase M9 glucose cul-

tures were diluted in fresh M9 glucose medium with or without 7 μM CuCl2 and measured at

regular intervals by flow cytometry. The fluorescence intensities were normalized to the size of

each cell and shown here as the median of at least 36,000 cells. (c) Induction of the CpxR-con-

trolled yebE reporter in the polyacrylamide pad setup by addition of copper. Cells were grown

in absence of copper and after 1 h 15 min in the microfluidic device, medium containing 7 μM

CuCl2 was perfused. Note that the induction ratio is comparable to the flow cytometry experi-

ment, but that the dynamics are different. Likely, the slower response is related to a delayed

and gradually increasing exposure to copper due to diffusion through the polyacrylamide gel.

(d) Linearity of the total protein content determinations. The background-corrected integrated

band intensities of a number of dilutions of a total protein sample are shown as determined

from a silver-stained polyacrylamide gel.

(TIF)
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