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Abstract

There is a need to better understand and handle the “dark matter” of proteomics – the vast 

diversity of post-translational and chemical modifications that are unaccounted in a typical 

analysis and thus remain unidentified. We present a novel fragment-ion indexing method, and its 

implementation in peptide identification tool MSFragger, that enables an over 100-fold 

improvement in speed over most existing tools. Using some of the largest proteomic datasets to 

date, we demonstrate how MSFragger empowers the open database search concept for 

comprehensive identification of peptides and all their modified forms, uncovering dramatic 

differences in the modification rates across experimental samples and conditions. We further 

illustrate its utility using protein-RNA crosslinked peptide data, and using affinity purification 

experiments where we observe on average a 300% increase in the number of identified spectra for 

enriched proteins. We also discuss the benefits of open searching for improved false discovery rate 

estimation in proteomics.

INTRODUCTION

Peptide identification algorithms have served as a cornerstone of shotgun proteomics for 

several decades 1. The most commonly used computational strategy is based on searching 

acquired tandem mass (MS/MS) spectra against a protein sequence database using database 

search algorithms 2. However, even given significant improvements in the quality of MS/MS 

data acquired on modern mass spectrometers, a very significant fraction of spectra remains 

unexplained.
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We and others have been fascinated by the underlying complexity of the “dark matter” in 

shotgun proteomics 3 – including the vast diversity of post-translational modifications 

(PTMs) as well as novel sequences (e.g. mutations and splice isoforms) – that are 

unaccounted for in traditional database search and thus remain unidentified 4–8. A number of 

computational strategies emerged for the detection of such peptides including multi-step 

database search 9, 10, curated modifications search9, 11, spectral-pair based methods 

screening for modified versions of peptides initially identified in unmodified form 12–15, 

sequence tagging 16–20, and spectral alignment 21, 22 (reviewed in 23). However, the 

proteomics community continues to search for practical computational tools for this task. 

These efforts are exemplified by a recent report 4 exploring the feasibility of “open” (i.e. 

using wide precursor mass tolerance of hundreds of Daltons allowing for identification of 

modified peptides) searches using conventional database search tools.

In our quest to develop a broadly applicable and fast computational strategy for open 

database search we designed a novel fragment ion indexing method that provides orders of 

magnitude improvement in speed over existing tools. We implemented this method in a new 

database search tool MSFragger. MSFragger makes open searches feasible even for very 

large datasets containing millions of MS/MS spectra, helping to reconstruct modification 

profiles and to uncover dramatic differences in the modification rates across different 

experiments. It is capable of performing open searches with variable modifications, making 

it applicable to data from labeling-based quantitative proteomics experiments. We further 

demonstrate MSFragger’s utility in the analysis of protein-RNA crosslinked peptides and 

affinity purification mass spectrometry (AP-MS) data. Finally, open searching uncovers, and 

provides a potential solution to the problem of inaccurate false discovery rate (FDR) 

estimates in traditional narrow window searches due to unaccounted peptide modifications. 

MSFragger is platform independent, not limited to data from a particular MS instrument, 

and can be easily incorporated into most existing data analysis pipelines.

RESULTS

Novel fragment ion index enables ultrafast database search

MSFragger begins by performing an in-silico digestion of the protein database (Fig 1a). It 

then removes redundant peptides and orders them by their theoretical mass (including any 

modified peptides generated as a result of variable modifications), creating a peptide index. 

While peptide indexing has been described previously as a way to accelerate database 

search24–26, this step alone has little impact on spectrum similarity calculations, which is the 

most time consuming step. MSFragger addresses this bottleneck by creating a novel 

theoretical fragment index. This key computational advance enables highly efficient and 

simultaneous scoring of an experimental spectrum against all candidate peptides (Online 
Methods; Fig. 1b; Supplementary Fig. 1).

We first evaluated the performance of the MSFragger algorithm on a deep HEK2934 dataset, 

and compared it to that of commonly used search engines Comet 27 and X! Tandem 9. The 

scores and error rates of modified peptides are likely to be different than those of unmodified 

peptides, prompting class-specific FDR estimation28, 29. To account for these differences we 

adopted an extended mass model when computing peptide probabilities, ensuring mass-shift 
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dependent FDR estimation and filtering (Online Methods). Note that in open searches the 

term ‘modifications’ is used interchangeably with ‘mass shifts’ and includes in-source 

fragmentation events, missed cleavages, and isotope errors. Overall, all search engines 

performed similarly when run using similar search parameters (Table 1). In the traditional 

(narrow window) search, MSFragger and Comet respectively identified 9795 and 9757 

protein groups (1% protein FDR), and 456548 and 461806 PSMs (1% protein and PSM 

FDR). MSFragger also identified similar numbers as X! Tandem, when accounting for the 

innate variable modifications that X! Tandem specifies by default. In open search, which 

represent the primary motivation for the development of MSFragger, we observed a dramatic 

increase in the number of identified PSMs across all search engines, in line with the earlier 

report using SEQUEST 4. For example, MSFragger identified 609897 PSMs using open 

search, an increase of 33.6% compared to narrow window search, with a minimal loss of 

1.4% in the number of protein identifications. Note that when performing protein inference 

using open search results, we took a conservative approach of using unmodified peptides and 

peptides with specified variable modifications only (Online Methods). When all modified 

peptides were included, the number of protein identifications from open searches exceeded 

that of narrow window searches (e.g. by 4.4% for MSFragger). However, additional work is 

necessary to carefully evaluate the accuracy of the protein inference step when using all 

peptides identified in open search.

Open searches using conventional database search tools are slow, given the vastly expanded 

search space. Comet and X! Tandem took 13.6 and 16.3 hours respectively to analyze a 

single LC-MS/MS run using a quad core workstation. In stark contrast, MSFragger took 

only 5.4 minutes, making it over 150 times faster than these commonly used tools. We have 

also compared MSFragger with tools that employ peptide indexing such as Tide 30 and 

SEQUEST HT (Supplementary Table 1). Tide, which only allows 100Da precursor windows 

and does not take advantage of multiple processor cores, took 176.7 minutes (compared to 

9.8 minutes with MSFragger when subjected to the same constraints). SEQUEST HT 

(Proteome Discoverer 2.1) took over 11 hours on a more powerful octa-core workstation. 

The speed and scalability (Supplementary Fig. 2) of MSFragger allowed open searching of 

the entire HEK293 dataset (24 LC-MS/MS runs) in less than 30 minutes on a single 

powerful workstation compared to days or even weeks required to search these data using 

existing tools on the same machine.

We also sought to compare MSFragger to algorithms specifically designed for 

comprehensive PTM analysis. We chose MODa 19, which has been established as an 

effective tool for blind PTM search. Using comparable settings, both tools produced very 

similar PTM profiles (Supplementary Fig. 3), except MSFragger was notably faster 

(Supplementary Table 1) and identified a larger number of PSMs than MODa at a FDR of 

1%: 622857 (MSFragger, tryptic search) vs. 522812 (MODa, semi-tryptic search) and 

439216 (MODa, tryptic search). The difference between MODa and MSFragger results can 

be explained, in part, by the fact that MODa is required to localize the mass shift to a 

particular amino acid, whereas open searching only identifies the peptide sequence and the 

mass shift (which may be the result of multiple modifications).
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Refinement of the open database search strategy

The development of MSFragger algorithm not only makes open searching practical, but also 

presents an opportunity to further investigate and refine this computational strategy. It is 

often assumed that the number of identified unique peptide sequences would be greatly 

reduced in open search compared to narrow window search due to the vastly expanded 

search space. However, our results using multiple search engines (Table 1) demonstrate that 

this is generally not the case. At the same time, it is true that not all unmodified, tryptic 

peptides found in narrow window search are found in open search. To see if those peptides 

can also be recovered, we implemented a boosting feature within MSFragger that 

preferentially ranks unmodified peptides over modified peptides when performing open 

search (Online Methods). However, such a strategy, while implemented as an option in 

MSFragger, has not been found to significantly improve the results (Supplementary Fig. 4).

Open searching does not account for modified fragment ions, resulting in reduced sensitivity 

for common modifications when compared to traditional variable modification searching. 

The speed of MSFragger allows us to combine the two approaches to successfully recover 

peptides with specified variable modifications at rates similar to unmodified peptides 

(Supplementary Fig. 5). Furthermore, we attempted to address the weakness of the open 

search strategy for C-terminal modifications (as y-ions are the most abundant and commonly 

observed in CID/HCD fragmentation) by inserting complementary ions6, 31. While we 

observed an increase in the recovery of peptides with modifications near the C-terminus, the 

addition of complementary ions failed to increase the overall number of identifications 

(Online Methods; Supplementary Fig. 6). A more effective strategy is to add 

complementary ions to the theoretical spectrum rather than the experimental spectrum, 

which we plan to pursue in future work via extension of the fragment ion indexing scheme.

The problem of co-isolating multiple co-eluting peptides and the resulting chimera MS/MS 

spectra is well established1, 32 and manifests itself in unique ways in open searches. When a 

co-fragmented peptide is identified with a higher score, an artefactual (not attributed to any 

modification) mass shift is produced that can either be small (within several Daltons) or 

large (hundreds of Daltons) depending on whether the co-fragmented peptide ions are of the 

same or different charge state, respectively. Such cases can be identified using linked MS1 

and MS/MS spectral viewers (Supplementary Fig 7a,c), and further evaluated using tools 

such as BatMass33 (Supplementary Fig 7b,d). While the number of such cases is small, in 

future work chimeric spectra can be dealt with more accurately in open searches via MS1 

feature detection of co-isolated peptides25 within MSFragger or using external tools34.

High prevalence of peptides identified in modified form only

To investigate the peptides (distinct sequences) that were found in narrow window search but 

not open search, we looked at the intersection of search results in the HEK293 dataset (both 

searches were done without variable modifications). We subdivided the peptides based on 

their estimated confidence (Fig. 2a) and examined the group specific FDR. As expected, 

peptides that were accepted at 1% FDR in both searches (101138 in total) were of high 

confidence with an estimated FDR of 0.15%. Peptides found in both searches, but only 

accepted at 1% FDR in one of the two searches were of lower confidence as evidenced by 
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the increased group FDR. Of greatest intrigue, however, were the peptides that were 

confidently identified in one search but not identified at all in the other.

There were 12622 peptides confidently identified in open search but not in narrow window 

search. The relatively low group FDR of these peptides (4.15%) suggests that most of these 

are bona fide examples of peptides that were only detected in modified forms. The 

substantial number of such peptides is problematic for ‘dependent peptide’ approaches for 

PTM identification 14 (including spectral library-based methods12, 15) that rely on co-

identification of the unmodified peptide. A comparison of the modification profile of these 

peptides to one that is generated from all modified peptides shows high similarity (Fig. 2b), 

suggesting that most of these identifications correspond to constitutive or highly abundant 

modifications.

Open searching uncovers FDR problem in traditional narrow window searches

In contrast, the 3773 peptides identified in narrow window search but not in open search had 

a much higher group FDR of 14.68%. We mapped the spectra supporting these 

identifications to their results in open search. Of particular interest were spectra that were 

assigned to unmodified peptides in narrow window search but reassigned, due to an 

improved match, as modified peptides (with different sequence) in open search. These cases 

represent potential instances of false positives in narrow window search that are caused by 

chemical or biological modifications6, 35. In each such instance - a pair of peptides whose 

masses differ by the mass of the modification detected in the open search - we compared the 

total number of supporting PSMs associated with the peptide sequence matched in narrow 

window search to that in open search (Fig. 2c). Under the assumption that peptides that are 

supported by a greater number of PSMs are more likely to be true identifications, there was 

significantly higher support for the peptides identified in open search. Only 17% of the 

spectra were assigned to peptides that had greater support in narrow window search while 

68% have greater support for their open search assignment.

We called peptide identifications that were only found in narrow window search to be 

“suspect” (a potential false positive) if there was greater support for the open search 

assignment for each supporting PSM. Of the 3773 peptides that were only found in narrow 

window search, 1139 were suspect. This is significantly more than the number of decoys 

(554) in the same group, and even more than the total number of decoys in the entire narrow 

window search at 1% FDR (1091 decoys in total). This suggests that false positives in 

narrow window search are not correctly estimated by decoy peptides. It is particularly 

worrisome that some of these suspect peptides have very high scores (Fig. 2d).

Due to high significance of this observation, we sought to verify our findings that the target-

decoy strategy fails to effectively capture false positives that are due to unaccounted 

modifications. We selected high scoring peptide identifications in open search that were 

observed in both its unmodified form and with a mass shift corresponding to a common 

modification (oxidation or carbamylation). As we did not specify any variable modifications, 

the target-decoy assumption is that spectra from these modified peptides would match 

equally (and incorrectly) to both targets and decoys in narrow window search. However, that 

was not the case as the rate of matching to target sequences was roughly 6 times that to 
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decoys for carbamylated peptide spectra, and over 9 times for oxidized peptide spectra (Fig. 

2e). The violation of the target-decoy assumption is likely due to homology between true 

peptide sequences and other peptides in the target space, which we previously noted in the 

context of proteogenomics6, 36. Further supporting this, the modification profile of peptides 

identified in open search and whose spectra produced suspect identifications in narrow 

window search markedly lacked phosphorylation and aminoethylbenzenesulfonylation (Fig. 

2b). These two mass shifts (79.97 and 183.04 Da) are difficult to represent as some sequence 

of amino acid addition and deletion. Overall, our analysis using HEK293 dataset (similar 

trends were observed for other datasets) demonstrates that accounting for all modified 

peptide forms using the open search strategy of MSFragger is important for confident 

peptide identifications and accurate FDR estimation, even when the identification of 

modified peptides is not a primary interest on its own.

Ultrafast open search enables large-scale modification profiling

MSFragger’s ultrafast performance enables comprehensive profiling of chemical and 

biological modifications across large-scale proteomics datasets. To demonstrate this, we 

probed three large proteome-wide studies using open searches and compared their 

modification profiles. In addition to the HEK293 dataset used to benchmark MSFragger, a 

HeLa 37 and a triple-negative breast cancer (TNBC) 38 datasets were used (Online 
Methods; Supplementary Table 2). We performed MS1-based correction of precursor 

masses followed by identification-based mass recalibration to improve the delineation of 

modifications having close masses across disparate experiments and labs (Online Methods; 

Supplementary Fig. 8). The list of 500 most abundance mass shifts (excluding modifications 

specified as variable modifications in the search), is shown in Supplementary Table 3. We 

confirmed that in all datasets FDR estimates for modified peptides were well controlled and 

not inflated relative to unmodified peptides. For example, in HEK293 dataset, peptide-level 

FDR was 0.18%, 0.11%, and 0.11% for peptides with top 500 most abundant mass shifts, 

top 100 mass most abundant shifts, and for unmodified peptides, respectively 

(Supplementary Table 3).

We first interrogated several common chemical modifications (Fig. 3a). While the 

localization profiles were largely concordant (Supplementary Fig. 9), their normalized 

abundances (modification rates) across the datasets were quite dissimilar. For example, the 

rate of phosphorylation in the HeLa dataset was over 14 times than that in the TNBC 

dataset. Furthermore, some of these modifications were found on amino acids that are 

generally not considered in traditional workflows, such as tryptophan oxidation.

We observed many highly abundant modifications that lacked annotations in Unimod and 

were unique (or of significantly greater abundance) to a particular dataset (Supplementary 

Table 3). To help decipher these unannotated modifications, we performed site localization 

analyses (Online Methods; Supplementary Table 4). For example, the HeLa dataset 

contained over 23,000 PSMs with a modification mass of 52.913 Da that was often localized 

to aspartic acid or glutamic acid, characteristic of metal ion adducts. This is likely to be iron 

displacing three protons (Unimod annotates ‘Replacement of 2 protons by iron’ modification 
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only). While deducing identities of unannotated modifications was outside the scope of this 

work, it was easy to notice that many occurred on cysteines (Fig. 3b).

For some modifications, we were unable to localize the mass shift on the peptide (Fig. 3c). 

This suggests that there are few fragments that support the modification mass or that the 

detected modification mass is the result of multiple modifications found on the same 

peptide. To investigate such cases, for each modification mass we computed a spectral 

similarity score between peptides containing that modification and their corresponding 

unmodified forms (Online Methods; Fig. 4). Most modifications possessed a similarity 

score between 0.4 and 0.6, including known modifications such as phosphorylation. 

However, we observed a large number of modifications (e.g. 3417 PSMs with mass shift 

301.986 Da in HEK293 dataset, 3068 PSMs with mass shift 284.126 Da in HeLa dataset) 

with similarity scores close to 1, indicating that spectra for peptides with these modifications 

were largely unchanged from that of the unmodified peptide (Supplementary Fig. 10). The 

lack of differences in the spectra, and significant differences in the modification rates across 

the datasets (Supplementary Table 3), suggest sample preparation protocol specific labile 

modifications that are lost during fragmentation.

Utility of MSFragger in various proteomics applications

MSFragger enables a wide range of analyses beyond interrogation of unlabeled proteomes. 

First, we are able to perform open searches using spectra from labeling-based experiments 

(e.g. SILAC or TMT) by specifying the labeled amino acids as a variable modification, thus 

allowing quantitative comparison of the modification states of proteins en masse. To test 

this, we examined a breast cancer dataset consisting of 442 LC-MS/MS runs representing 88 

formalin-fixed paraffin-embedded (FFPE) patient samples that were analyzed together with 

a heavy labeled super-SILAC mix39. Examination of the modification profiles revealed a 

wide range of abundant modifications in these samples, as well as uncovered differences in 

modification abundances between the breast cancer samples and the super-SILAC mix, 

including a 30.011 Da mass shift that likely represents a methylol adduct which is 

characteristic of FFPE proteomes 40 (Fig. 5a).

Next, we applied MSFragger to a large-scale protein interaction study using an affinity 

purification mass spectrometry (AP-MS) experimental workflow that consisted of 2,594 

baits analyzed in technical duplicates41. We reasoned that lowered sample complexity in 

AP-MS experiments provides an opportunity to examine in-depth the modification state of 

enriched proteins, most notably the proteins used as baits. We performed both narrow 

window and open searches on over 64.6 million MS/MS spectra across 5,188 LC-MS/MS 

runs (Online Methods). Open search increased the total number of PSMs by 32%, similar to 

the increases observed for data from whole cell lysates. For the bait proteins, however, the 

number of identified PSMs increased, on average, by almost 300% (Fig. 5b; Supplementary 

Table 5). For some bait proteins the increase in the number of identifications was 

astonishing. For example, the mitochondrial persulfide dioxygenase protein ETHE1 - a key 

member of the sulfur oxidation pathway that is itself involved in reactive oxidation of 

cysteine residues 42 - was identified by 48 and 2474 peptide ions in narrow window and 

open search, respectively (Supplementary Table 6). A significant fraction of this increase 
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was attributed to cysteine modifications. When we subjected the top 100 bait proteins having 

the largest increase in the number of identified peptide ions to functional enrichment 

analysis using DAVID, the top enriched GO: Biological Process category (p-value 0.00007) 

was ‘small molecule metabolic process’ containing 23 proteins from the selected list, 

including ETHE1 (Supplementary Table 7). Proteins within this category are involved in 

catalyzing modification processes and small molecule adducts, which may be linked to 

significantly higher number of modifications observed on these proteins themselves. These 

results suggest that application of MSFragger to affinity purification experiments can 

provide insights into a wide array of modifications, including rare and low abundance ones, 

on highly enriched proteins. Furthermore, open searching may offer better accounting of 

protein abundances using spectral counts in AP-MS experiments and improve the quality of 

recovered interaction networks derived using interaction scoring tools 43, 44.

Finally, we applied MSFragger to a RNA-protein crosslinking study 45. Computational 

analysis for such studies can be challenging due to the need to determine a priori a list of 

potential crosslinked products. As open search allows for the identification of peptides with 

unknown modifications, no such list is required. Using a 1,000 Da precursor mass window, 

we performed open search on a run comprising of human UV-crosslinked RNA-protein 

complexes and a control non-irradiated run. We observed highly visible mass shifts 

associated with peptides crosslinked to mono, di, and tri-nucleotides in the irradiated sample 

that were largely absent from the control sample (Fig. 5c). We compared our results to that 

of the RNPxl computational strategy described in the original study and found that open 

search confidently identified 163 crosslinked species, compared to 189 reported by RNPxl, 

with 134 identifications in common. As expected, the open search strategy failed to identify 

some of the crosslinked species containing very short peptides due to an insufficient number 

of unmodified fragment ions (Fig. 5c inset). On the other hand, MSFragger identified 29 

additional crosslinked species, most of which (all except 4) were from proteins containing 

other crosslinked peptides already identified by RNPxl. Furthermore, MSFragger also 

identified a number of modified peptides from various RNA-binding proteins (including 

some not identified by RNPxl) with mass shifts that approximate the RNA crosslinks 

(Supplementary Table 8). These peptides are likely crosslinked peptides that also contain 

some other chemical modification or adduct and are thus undetectable by the RNPxl 

strategy. Examples include the peptides YGRPPDSHHSR and SYGRPPPDVEGMTSLK 

from the protein SRSF2 (which was not identified by RNPxl despite identifying 5 other 

proteins from the SRSF family). This shows that MSFragger provides a simple but highly 

effective analysis workflow for identification of protein-RNA crosslinked peptides, and 

demonstrates the added insights gained through open searching in any experimental setup.

DISCUSSION

The vast array of chemical and biological modifications brings another dimension to 

proteomics that is not fully explored in most studies, in part due to additional bioinformatics 

challenges associated with comprehensive PTM searches. The advantage of open database 

searching, made practical using MSFragger, lies in its simplicity. In less time than what it 

currently takes to run narrow window searches, we can, in conjunction with existing 

workflows, simultaneously and comprehensively identify both modified and unmodified 
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peptide forms. Given the fast growth of public repositories of MS data 46, MSFragger can be 

used to search for rare (including novel) biological modifications across many biological 

samples and experimental conditions, adding to the list of earlier successful examples of 

such discoveries 47. Open searching could be advantageous for characterization of neo-

antigens and other endogenous peptides 48, 49, many of which are present in modified forms. 

Monitoring the rates of common chemical modifications, and changes in modification rates 

across datasets and sample preparation protocols, is important for reproducibility in 

quantitative proteomics experiments, especially when relying on quantification of selected 

peptides as proxies for estimating abundance of their corresponding protein 50. 

Comprehensive modification searches must be performed as part of any proteogenomics 

study, where confident identification of novel peptides (especially peptides containing 

polymorphisms) requires ruling out the possibility that their supporting spectra are due to 

common chemical or post-translational modifications of known peptides 36. Furthermore, 

considering a wide range of peptide modifications may be necessary for obtaining accurate 

FDR estimations using the target-decoy strategy even in narrow window searches that are 

only concerned with the identification of unmodified, tryptic peptides due to high scoring 

false positives from spectra of modified peptides. Thus, we believe that the open search 

strategy, made practical by MSFragger, has the potential to become a valuable option even 

for routine analysis of shotgun proteomics data.

ONLINE METHODS

Mass spectrometry datasets and file conversion

We used six publicly available datasets for evaluating MSFragger (see Supplementary Table 

2 for the list of files and the number of MS/MS spectra in each file). All data were acquired 

using Thermo Scientific Q Exactive mass spectrometer (except data from the RNA-protein 

cross-linking study which used a Thermo Scientific LTQ-Orbitrap mass spectrometer, with 

MS/MS spectra acquired in the Orbitrap analyzer). Thermo .raw files were converted to 

either mzXML or mzML formats using the msconvert.exe tool from ProteoWizard (3.0.7398 

64-bit version). Conversion was performed using vendor provided centroiding and default 

parameters.

MSFragger algorithm

(1) MSFragger spectra input and pre-processing—MSFragger accesses mzXML 

and mzML files using MSFTBX, the Data Access Library provided as part of the BatMass 

project 33 and Mascot Generic File (MGF) files using an internal parser. These data input 

paths allow MS/MS spectra stored in any of the three file formats (mzXML/mzML/MGF) to 

be analyzed by MSFragger. Spectra pre-processing begins with linear scaling of peak 

intensities so that the most intense peak within each spectrum is set to 100,000. Resultant 

scaled intensities are rounded and stored as integers for fast arithmetic operations. The top N 

peaks from each spectrum are retained and are then filtered based on the minimum intensity 

ratio and the m/z range specified in the search parameters file. In this study, the top 100 

peaks with a minimum intensity ratio of 0.01 (relative to the base peak) were used with no 

m/z range filter.
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(2) In-silico protein digestion and peptide indexing in MSFragger—MSFragger 

allows for fully enzymatic, semi-enzymatic, and non-enzymatic digestion to be specified as 

search parameters. It also allows for limits on missed cleavages, peptide lengths and masses 

to be specified. For a given protein database and a fixed set of digestion parameters, a 

peptide index is generated to form a necessary reference for the fragment index. Peptide 

indexing takes just a few minutes on a typical computer. Furthermore, MSFragger caches the 

peptide indices it generates on disk and attempts to find and use a compatible peptide index 

on subsequent invocations. As the first step of in-silico digestion, all proteins are 

concatenated into one long amino acid sequence with proteins separated by delimiter 

characters. MSFragger then partitions this long amino acid sequence into chunks for parallel 

in-silico digestion into peptide sequences based on the specified digestion parameters. 

Efficient memory allocation methods and compact representations of peptides (as offsets in 

the concatenated amino acid sequence and length) allow for fast in-silico digestion. The 

digested peptide sequences are then sorted using a parallel least significant digit radix sort 

and redundant peptides are flagged by comparing adjacent peptide sequences in the sorted 

list of peptides.

Modified versions of the digested peptide sequences are then generated based on the user-

specified variable modifications. Combinatorial bitmasks that specify the positions of 

modified residues are pre-computed so that the set of variably modified residues can be 

specified as a single integer. These sequence numbers are then combinatorially combined 

across all variable modifications to generate a single integer that represents the variable 

modification state of a peptide sequence. A 12-byte entry containing the offset, length, 

modification sequence number, and the modified mass is generated for each such modified 

peptide. These modified peptides are then sorted in parallel by their modified mass forming 

the MSFragger peptide index.

(3) Fragment index generation—The fragment index used in MSFragger consists of all 

theoretical b and y-ions up to a specified charge state from each peptide in the peptide index. 

For efficient fragment index searching, the fragment bin width used for the fragment index 

must be proportional to the desired fragment tolerance specified in the search and to the 

expected number of candidate peptides encountered per experimental spectrum. Hence, 

MSFragger dynamically computes an appropriate bin width, in Daltons, that allows for 

efficient fragment index searching based on the user specified precursor mass tolerance and 

the fragment mass tolerance. Each peptide entry in the peptide index, consisting of both 

unmodified and variably modified peptides, can be referenced by a single 32-bit integer 

identification number (ID), imposing a current limit of approximately 2 billion peptide 

entries. Within each peptide entry, the theoretical fragments are generated and binned based 

on their masses using the determined bin width. The theoretical fragments are stored within 

the fragment index as an 8-byte entry that references the parent peptide ID, the mass offset 

within the bin, the charge state, and the fragment ion identity (e.g. b-5 or y-2). Fragments 

within each bin are stored in order of their parent IDs (and hence the parent precursor mass) 

as the fragment index is generated in the order of the peptide index. The memory 

consumption of the fragment index is modest. For a tryptic digestion (with 1 missed 

cleavage) of the human UniprotKB database (with reversed decoys) used in the study, the 
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fragment index is only 1.6GB. Adding methionine oxidation and N-terminal acetylation of 

proteins as variable modifications boosted the index size to 2.9GB. Examples of fragment 

index sizes (which includes the above common variable modifications) for larger search 

spaces include HLA peptides (non-enzymatic digest of 9-11 amino acids; 22.6GB), semi-

tryptic peptides (55.8GB) and variably phosphorylated peptides (86.5GB). MSFragger 

identifies the amount of memory available to it via the Java Virtual Machine and 

automatically partitions the fragment index generation and search into multiple iterations 

based on projected memory required for the fragment index, storing intermediate results on 

disk before merging and outputting the results in the final pass. This enables MSFragger to 

perform searches on computers that do not have sufficient memory to store the full fragment 

index, although at reduced speeds. In addition to the fragment index, MSFragger requires 

additional memory for storing the peptide index, spectra data, results, and intermediate data 

structures during search that is roughly 1GB in most use cases.

(4) Fragment index searching—In database search, the similarity scores are computed 

between each experimental spectrum and the theoretical spectra of all candidate peptides 

within a precursor mass range. These scores are heavily dependent on the number of shared 

fragment ions between the experimental spectrum and theoretical spectra. The major 

computational advance presented by MSFragger lies in its ability to rapidly identify these 

shared fragment ions and thus compute spectrum-spectra scores with near optimal efficiency. 

MSFragger first identifies the number of candidate peptides using the precursor mass 

window and the computed peptide index. It then allocates a scoring table for each candidate 

peptide where the number and summed intensities of matched b and y-ions can be stored. It 

then performs spectrum to spectra scoring using the fragment index in the following manner. 

Consider a fragment ion with mass M within an experimental spectrum with precursor mass 

P. Using the fragment index, the algorithm can identify the theoretical spectra that contain a 

fragment with a matching mass by examining the fragment bins that overlap the interval [M 
− dF, M + dF], where dF is the fragment mass tolerance specified in Daltons or otherwise 

computed from M and the specified tolerance in parts per million (Figure 1c).

For each overlapping fragment bin, a binary search (recall that the fragments within each bin 

are ordered by their parent precursor masses) is used to identify the fragment within the bin 

that corresponds to precursor mass P − dP, where dP is the precursor mass tolerance. The 

bin is then traversed and the theoretical fragments within the bins are compared to determine 

whether they truly lie within the fragment mass tolerance window, and if the theoretical 

fragment charge state is compatible. If a match is identified, the scores of the parent peptide 

(recall that each theoretical fragment contains a reference to its parent) are then incremented 

in the scoring table. This traversal continues until the end of the bin or upon arrival at a 

fragment with parent precursor mass greater than P + dP. The process is then repeated for 

each overlapping fragment bin. At completion, this process using a single experimental 

fragment ion represents the contribution of that fragment ion to all spectrum-spectra scores. 

This process is repeated for each experimental fragment ion (Figure 1d), in essence, 

decomposing many spectrum-spectrum matches into multiple fragment-spectra matches. 

After processing all experimental fragment ions, the scoring table of candidate peptides 

Kong et al. Page 11

Nat Methods. Author manuscript; available in PMC 2017 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contains the number of matching ions (and intensities) and is used to generate a similarity 

score for each candidate peptide.

The efficiency of this process lies in its ability to only examine fragments with a high 

likelihood of contributing to the similarity score. In conventional strategies, performing a 

comparison between an experimental spectrum and a theoretical spectrum can take tens or 

hundreds of operations, even in cases where they share no common fragments. In the 

MSFragger strategy, theoretical spectra that share no common fragments are effectively 

bypassed (apart from reading a score of 0 from the scoring table) as mostly relevant 

fragments are compared. In the case of open window searching, approximately 1.5 

comparisons are performed on average per candidate peptide and over 80% of fragment 

comparisons within the fragment index contribute to a similarity score (Supplementary 

Figure 1). This algorithmic advantage that allows MSFragger to perform so few comparisons 

in similarity calculations is the reason why it performs over 100 times faster than 

conventional search tools.

Fragment index searching in MSFragger is highly optimized. Tradeoffs between the number 

of bins to traverse (cost of binary searching and other overhead) and hit efficiency 

(percentage of fragments that fall within the fragment mass tolerance) is weighted and 

considered in fragment bin width selection (Supplementary Figure 1). The traversal 

algorithm is optimized for modern CPU cache sizes to reduce main memory accesses using 

a simultaneous traversal scheme for all experimental fragment ions. This allows for overall 

improved performance and reduces memory bottlenecks in multi-core systems.

(5) Scoring and results reporting—MSFragger computes a hyperscore similar to that 

of X!:

where Nb is the number of matched b-ions, Ny is the number of matched y-ions, Ib,i are the 

intensities of matched b-ions, and Iy,i are the intensities of matched b-ions. While the 

theoretical fragment index can be adapted to include other fragment ion types, only b and y 

ions are included and used for scoring at this time. Expectation calculation is also performed 

in a similar manner as X! Tandem through linear regression of the survival function to 

estimate the expectation of a given hyperscore 51. The top N results, as specified by the 

search parameters, are reported in a XML file in the pepXML format, which can then be 

processed using the tools from the Trans-Proteomics Pipeline (TPP) 52. For use in other 

computational workflows, converters exist that can convert pepXML results into other 

standard data output formats. Alternatively, a simple tab separated values output of the 

results can be obtained instead of the pepXML.

(6) Boosting unmodified peptides—MSFragger implements an unmodified peptide 

boosting feature. When invoked, PSMs that have an absolute value of the mass shift dM 
(defined as the difference between the theoretical and observed precursor peptide mass) less 
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than the true precursor tolerance threshold specified by the search parameters 

‘precursor_true_tolerance’/‘precursor_true_units’ are placed into a different scoring heap 

that only contains such unmodified peptides. After the calculation of expectations for all 

PSMs in both the regular and unmodified scoring heap, a ranking expectation is generated 

for all PSMs. For entries in the regular scoring heap, containing both modified and 

unmodified PSMs, the ranking expectation is the same as the computed expectation. The 

ranking expectation for entries in the unmodified peptides heap are modified based on the 

specified search parameters (multiplied by the specified expectation boost or an arbitrary 

small value for those that pass the ‘zero_bin_accept_expect’ expectation) and recorded as 

the ranking expectation. All PSMs are then merged and ordered by their ranking 

expectations prior to results reporting. It is important to note that the original expectations 

are reported rather than the ranking expectation.

(7) Complementary ions for the recovery of C-terminal modifications—The 

addition of complementary ions follows the basic spectra pre-processing described 

previously31, 53. The top N observed fragment ions, as specified by the 

‘add_topN_complementary’ ions parameter are selected and are assumed to be either a 

singly charged y-ion for all spectra and a doubly charged y-ions for spectra with an 

identified charge state of 3+ or higher. The m/z of the complementary singly charged b-ion 

is then calculated from the calculated neutral mass of the assumed y-ion and the observed 

precursor mass. A complementary ion with this m/z and intensity equal to the y-ion from 

which it was derived is then inserted into the spectrum. Note that complementary ions are 

generated for both the singly charged and the doubly charged assumption of the observed 

fragment ion so that N complementary ions are inserted for spectra with charge state 2+ and 

2N complementary ions are inserted for spectra with charge state 3+ or higher. These 

modified experimental spectra are then subjected to open database searching. As the original 

experimental fragment ion (from which the complementary ions are generated) is retained in 

the spectrum, it is possible that a single experimental observation can be incorrectly 

interpreted as multiple fragmentation events. Future work involving the addition of 

complementary ions to the theoretical spectrum instead will eliminate this problem and 

improve localization of modifications.

MS1-based precursor mass correction and identification based calibration

Instrument recorded precursor mass values for MS/MS spectra can be inaccurate while 

repeated observations of a precursor in survey (MS1) scans can be highly precise. A 

supplementary tool was developed as part of the MSFragger pipeline that, for each MS/MS 

event, takes the recorded m/z and retention time, examines the corresponding space in MS1 

scans, and extracts the nearest peak feature by tracing the mass in retention time. The m/z is 

then calculated as a weighted average (by intensity) of all peaks in the trace. The precursor 

m/z for each MS/MS event is then updated with this value. For certain MS/MS events in 

which it was not possible to reconstruct the associated peak feature, no changes to the 

recorded m/z are made. Following precursor mass correction, identification-based mass 

recalibration of the MS/MS run is performed. In order to compare modification profiles that 

are resolved at sub-ppm levels across disparate experiments and labs, this calibration step is 

critical as slight deviations can cause broadening of features in the profile and loss of power 
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in recovering modifications. To perform this calibration, unmodified peptide identifications 

with observed mass difference dM less than 20ppm are selected. As instrument bias may 

drift over time and varies across m/z, a two-dimensional calibration grid is constructed using 

a retention time width of 5 minutes and an m/z width of 200 m/z. For each unmodified 

peptide, the corresponding cell in the grid is found. A weighted ppm bias, based on the 

proximity to each point, is added to each of the four points corresponding to that cell. The 

weighted averages on the calibration grid are then used to adjust the precursor m/z for all 

observed MS/MS events in the run. The corrected and calibrated m/z values are then written 

to a calibration file that is incorporated in downstream analysis.

Statistical modeling of MS/MS search results and protein inference

X! Tandem, Comet, and MSFragger output files were uniformly processed by 

PeptideProphet 54 via the Trans-Proteomic Pipeline (TPP v4.8.0), followed by 

ProteinProphet 55 analysis to assemble peptides into proteins/protein groups. The results 

from the narrow window searches were processed using the following settings: 

PeptideProphet was run using ‘P’ (semi-parametric modeling), ‘d’ (report decoy hits), ‘E’ 

(calculation of posterior probabilities using search engine computed expectation values as 

primary peptide identification scores), and ‘A’ (high mass accuracy model), ‘PPM’ (use 

parts per million instead of Daltons in accurate mass binning), and the ProteinProphet was 

run using default settings. For open searches, several custom modifications were made to 

these downstream processing tools. First, PeptideProphet was run without ‘A’ and ‘PPM’ 

options, and using a mass accuracy model extended to cover the entire (−1000Da to 1000Da) 

range (see Extended mass model below). Second, in ProteinProphet, we did not want to 

incorporate modified peptides in the determination of protein groups or the establishment of 

protein identities. Thus, ProteinProphet was adjusted to ignore any modified peptides, while 

being careful to retain peptide identifications that are likely triggered from C13 isotope 

peaks of unmodified peptides.

Extended mass model in PeptideProphet

For open searches, the mass model of PeptideProphet was extended to effectively adjust for 

different likelihoods of obtaining a correct identification among unmodified peptides and 

peptides with different types of modifications (mass shifts). In brief, PeptideProphet models 

the distribution of scores observed in each data set as a mixture of two component 

distributions representing correct and incorrect identification, respectively. The key 

underlying assumption is a multivariate mixture distribution of the database search score 

(here, the expectation values produced by the search tools) and other parameters (most 

notably, the mass shift dM), which leads to the calculation of the probability of correct 

identification for individual peptide assignments by the Bayes rule. The mass shift parameter 

dM (which in the context of narrow window searches is referred to as mass accuracy) is 

computed for each PSM as the difference between the calculated and measured precursor 

peptide masses 56. Unlike narrow window searches, in open searches the range of possible 

dM values is extended, e.g. to cover (−1000 Da to 1000 Da) range. The dM values are 

discretized into bins of 1 Da in size (centered at integer values). The distributions of 

database search scores and dM mass shifts are modeled simultaneously, resulting in the joint 

probability model and computation of posterior peptide probabilities. In doing so, the mass 
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shift dM model is estimated from the data, defining likelihoods of observing a correct vs. 

incorrect identification among all PSMs belonging to a particular dM bin. As the main 

outcome, two PSMs with identical expectation values but having different binned dM values 

(e.g. 0 and 135) would receive very different probability scores, reflecting the fact that the 

estimated fraction of correct identifications in the dM ~ 0 bin (i.e. unmodified peptides) is 

much higher than that among peptides with a dM value around 135 Da (rare modification). 

Note that while the mass model helps to account for the differences in the likelihoods of 

observing unmodified peptides and different modified forms, coarse single Dalton binning 

fails to account for the parts per million (ppm) levels of accuracy present in these data from 

high mass accuracy instruments, and thus the model can further benefit from future 

revisions.

False Discovery Rate estimation

For the benchmarking analysis of the HEK293 dataset, protein groups assembled by 

ProteinProphet were first filtered to remove proteins with protein probability below 0.9. The 

list was then filtered to 1% FDR using the maximum peptide probability as the ranking 

metric (maximum peptide probability was found to be more discriminative score than the 

protein probability in large datasets 57). PSMs, and peptides belonging to this set of filtered 

proteins that also passed a 1% FDR (within their respective class) were counted and their 

FDRs were reported. In all other analyses, protein level FDR was not estimated and filtering 

was performed at the peptide and PSM levels. PSMs were assembled into unique peptide 

sequences and the maximum PSM probability was used as the peptide probability. Peptides 

were then filtered at a 1% peptide FDR and PSMs that passed both a 1% peptide level FDR 

and a 1% PSM level FDR were retained for downstream analysis.

Benchmarking analysis using HEK293 dataset

For extensive benchmarking and comparison between MSFragger and other tools using 

HEK293 dataset, all spectra were searched using MSFragger, X! Tandem (Piledriver 

2015.04.01.1), and Comet (2015.02 rev.1). Analysis was done using all files (24 LC-MS/MS 

runs, ~1.1 million spectra) for identification rate benchmarking, or one representative file for 

timing benchmarks (run b1906, 41820 spectra). The searched sequence database was created 

from the human protein sequences of Ensembl version 78 appended with reversed protein 

sequences as decoys and common contaminants (cRAP proteins sequences from gpmDB 

and contaminants from MaxQuant). All searches were done considering only y- and b- ions 

in scoring, allowing tryptic peptides only, up to 1 missed cleavage, and with cysteine 

carbamidomethylation specified as a fixed modification. Data were searched using either 

100 ppm (narrow windows searches) or 500 Da (open searches) precursor mass tolerances. 

X! Tandem search engine used the following algorithm-specific parameters: select top 50 

peaks for fragment matching, 20 ppm fragment ion mass tolerance, and requiring at least 4 

matched fragment ions for a PSM to be reported. Note that X! Tandem automatically 

considers three additional modifications (conversion to pyroglutamate from glutamine or 

glutamic acid, and N-terminal acetylation). Comet searches were performed using 

recommended settings for high mass accuracy fragment data (precursor mass binning of 

0.02 Da, 0 mass offset). MSFragger searches were performed using described parameters. 

To enable more accurate comparison with X! Tandem results, MSFragger searches (both 
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narrow window and open) were also performed allowing same common modifications as 

those mentioned above for X! Tandem specified as variable modifications. For comparison 

with SEQUEST, the identification numbers (as listed in Table 1), i.e. the numbers of PSMs, 

unique peptide sequences, and proteins, were taken from the original publication 4.

For benchmarking the computational time (as listed in Table 1), MSFragger, Comet, and X! 

Tandem were also run using the single representative file referenced above on a quad core 

Linux workstation (Intel Xeon E3-1230v2). In addition, the data were searched using Tide 

(Crux version 2.1.16838), which only allows a maximum of 100Da mass tolerance and is 

single threaded. The run time for Tide, and for MSFragger run under the same constrains as 

Tide, are shown in Supplementary Table 1. For SEQUEST, the computational time listed in 

Table 1 was obtained by searching the data using the SEQUEST-HT version as implemented 

as part of the Proteome Discoverer v. 2.1 software, operated on a octa-core workstation (2x 

Intel Xeon E5-2609v2). The search parameters for SEQUEST-HT were as above, except the 

mass tolerance in the narrow window search was 5 ppm as in the original publication. All 

computational time benchmarking results can be found in Supplementary Table 1.

Comparison between MSFragger and MODa

MODa (v. 1.51) was run in single-blind mode with a maximum modification size of 500 

Daltons and a fragment tolerance of 0.02 Daltons. Cysteine carbamidomethylation was 

specified as a static modification. High resolution MS/MS search was enabled. Tryptic 

digestion was specified with at most one missed cleavage. Both fully tryptic and semi-tryptic 

searches were performed using MODa. FDR filtering was performed using the 

“anal_moda.jar” tool bundled with the MODa tool to achieve a FDR of 1%. For comparison 

with MSFragger, we filtered the fully tryptic MSFragger open search results at 1% PSM 

FDR (without the 1% protein level filter that was used for the rest of the HEK293 

benchmark comparison).

Large scale profiling of chemical modification

Large scale profiling of chemical modifications was performed using the sequence database 

created from the human sequences of UniprotKB (Download date: 2015-10-09) appended 

with reversed protein sequences as decoys and common contaminants (cRAP proteins 

sequences from gpmDB and contaminants from MaxQuant). A precursor mass tolerance of 

500 Da was used with fragment tolerance of 20 ppm. Isotopic error correction was disabled 

and common variable modifications of methionine oxidation and N-terminal acetylation 

were enabled. Carbamidomethylation was specified as a static modification. PSMs and 

peptides that contain modifications that were specified in our search parameters were not 

considered to have a mass shift for the tabulation of mass shifts. Fully tryptic digestion was 

specified allowing up to 1 missed cleavage. Complementary ions and boosting features were 

disabled and other MSFragger options were left as default.

MSFragger search results from each LC-MS/MS run were subjected to peptide validation as 

described above. Peptide probability was determined by the highest supporting PSM 

probability. Results for each experiment were aggregated and filtered at 1% peptide FDR. 
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PSMs were separately filtered at 1% PSM FDR and only PSMs that passed both the 1% 

PSM FDR and 1% peptide FDR were retained for downstream analysis.

Modeling of observed modification profiles and detection of modification peaks

Normalized density profiles for each experiment were generated for comparison across 

different experiments. Corrected mass differences, with random noise on the order of +/− 5 

uDa added to break ties, were binned using 0.0002 Da bins to form an initial counts 

histogram. These counts were then distributed to adjacent bins using the weights 0.23 (bin to 

left), 0.49 (same bin), 0.23 (bin to right) to smooth the histogram and improve the 

monotonicity of peak shapes. These histograms were then normalized by dividing each bin 

by the total number of spectra (in millions) acquired in the respective experiments. 

Averaging the counts in each bin generated an average profile of the three experiments. 

Mixture modeling of the average profile failed to precisely capture known modifications. 

Examination of the profile revealed peaks of varying broadness and further examination 

revealed the peak shape to be a complex function of the charge state and m/z of the 

underlying PSMs. Instead, a prominence based peak detection method was used that found 

features on the histogram by requiring that the peak prominence was at least 0.3 times that 

of the peak height. As known modifications were observed to have a peak width of 

approximately 0.004 Da (given current instrument accuracies and the correction/calibration 

method applied as described above), these features were ordered by the rise in density 

compared to the 0.003 Da flanking regions. It should be noted that some of the detected 

features (mass bins) could be artifacts of the peak picking algorithm, or may correspond to 

various combinations of multiple modifications.

Mass shift annotation using Unimod

The Unimod repository was downloaded (on 2016-04-22) in XML format and was parsed to 

extract modification names and mass shifts. Mass shifts associated with the addition or 

deletions of the twenty amino acids were appended to this list. Multiples of the mass 

difference between carbon-13 and carbon-12 were added as ‘First isotopic peak’ and 

‘Second isotopic peak’ to account for isotopic peak picking errors. Entries that represent a 

single mass shift in this list were concatenated into a single entry so that a single text 

identifier represented each mass shift. Annotation of the list of mass shifts proceeded in 

decreasing order of abundance. For each mass shift, the mass is queried against the 

described database of annotations with a mass tolerance of 0.002 Da. If a match is found, the 

mass shift is annotated with the entry from the database. If the mass shift cannot be matched 

to a single entry in the database, we attempt to compose multiple (up to 3) previously 

observed (in the order of annotation) mass shifts to account for compound modifications. If 

the mass shift remains unexplained, we add it to our list of annotations as a new un-

annotated mass shift.

Localization of detected mass differences

For each PSM, including unmodified peptides, the observed mass difference is evaluated to 

see if it can be attributable to a modification of a specific site (position in the peptide). For 

each MS/MS run, the list of identified spectra (which includes the spectrum ID, peptide 

sequence, list of variably modified amino acids, and observed mass difference) is obtained 
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from the MSFragger analysis pipeline, and the corresponding MS/MS spectra are extracted 

from the original mass spectrometry data file. The number of matched fragment ions is then 

re-computed using the same hyperscore function as originally done in MSFragger. The 

observed mass difference is iteratively placed on each amino acid, and for each position the 

spectrum similarity is computed to derive the number of matching fragment ions, and then 

the hyperscore. A PSM is called localizable if there is at least one position that generates a 

higher number of matched fragments than the rest. As there may be insufficient fragments to 

support an unambiguous localization in the peptide sequence, all positions that share the 

highest hyperscore are marked as a possible localization site. A PSM is called to be 

localized to the N-terminal if the localized positions form an uninterrupted stretch of amino 

acids from the N-terminal.

The localization results are then aggregated for each identified mass bin, and their 

localization characteristics examined. For each bin, the overall localization rate (the 

percentage of PSMs within that bin that are localizable), the N-terminal localization rate (the 

percentage of PSMs within that bin that are localizable and the localization is N-terminal), 

and the amino acid enrichment are computed. The amino acid enrichment is determined by 

first computing the amino acid composition of all peptides within the mass bin. Then, the 

number of localization sites attributable to each amino acid is summed across all localizable 

PSMs (for a PSM with multiple localization sites, each site gains a weight equal to 1/number 

of localized sites). The total localization count for each amino acid is then normalized to 

form the localization rate. Amino acid enrichment is then determined by the ratio of 

localization rate to composition rate. It should be noted that while this metric is informative 

in many cases, it may be misleading in bins containing few PSMs or bins that are dominated 

by several abundant peptides that skews the counts and normalization factors.

Spectral similarity scores for modifications

For each modified PSM, we identify corresponding PSMs of the same charge state that 

identifies the same peptide but with a mass difference of less than 0.001 Da (indicating an 

unmodified peptide). We compute the average cosine similarity between the spectrum of the 

modified PSM and spectra corresponding to the unmodified peptide (if there are more than 

50 such spectra, 50 are chosen at random). We then normalize for variations within 

unmodified spectra by dividing the average cosine similarity within the set of unmodified 

spectra to obtain a similarity score for the modified PSM. For each modification mass, its 

similarity score is determined by averaging the similarity scores calculated for each 

modified PSM within its mass tolerance.

Analysis of SILAC datasets

The breast cancer SILAC dataset was analyzed using the same search settings as the large-

scale modification profiling described above with the exception that two variable 

modifications were added for the heavy labeled residues: 8.0142 Da at lysine and 10.00827 

Da at arginine. Precursor mass correction/calibration and peptide validation were performed 

on each file and the aggregated files from the experiment were subjected to a 1% peptide and 

PSM FDR filter (each retained PSM passed 1% PSM FDR and matched a peptide that 

passed 1% peptide FDR). Each PSM in the resultant list was then examined for the presence 
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of a heavy labeled residue (as determined by identification with a heavy labeled variable 

modification). Unlabeled PSMs were considered to have originated from the patient samples 

while labeled PSMs were considered to have originated from the super-SILAC mix.

Analysis of AP-MS dataset

Open search parameters for the AP-MS dataset were also similar to the settings used for 

large-scale modification profiling with one exception. As iodoacetamide treatment of 

samples was not used, no static modification was specified for cysteine. Each of the 5,188 

runs was subjected to peptide validation and mass correction individually. FDR filtering was 

performed for each run individually, filtering the data at 1% FDR (at both peptide and PSM 

levels). Narrow window searches were performed using the same parameters with the 

exception of a 20 ppm precursor tolerance window and isotope selection errors of 0/1/2 was 

enabled.

For each LC-MS/MS run, all PSMs that were matched to a UniProt accession associated 

with the bait protein were considered to have originated from the bait protein (including any 

shared peptides). The number of unique sequences was determined by examining the set of 

unique peptides represented by the PSMs. Total counts for a particular bait protein across the 

replicates were determined by summing bait PSMs across the two replicates and 

determining the number of unique peptide sequences. Average fold change between narrow 

window and open searches was determined by linear regression in R.

Analysis of RNA-protein crosslink dataset

Open searching for the crosslinking dataset was performed similar to the large-scale 

modification profiling searches. The precursor mass window was enlarged to +/− 1000 Da to 

accommodate heavier crosslinked fragments. Carbamidomethylation was not specified as a 

fixed modification on cysteine. Comparison of results obtained by RNPxl and MSFragger 

was performed using the peptide sequence and mass difference. Identifications from RNPxl 

were translated into a peptide sequence and a total RNA-peptide mass. An identification 

from MSFragger was considered to be a match if it shared the same peptide sequence and 

had a total mass that differed from the RNPxl-based identification by no more than 0.05 Da.

Code Availability

MSFragger was developed in the cross-platform Java language and can be accessed at 

www.nesvilab.org/software. A protocol for using MSFragger to perform database search can 

be found at http://dx.doi.org/xx.xxxx/protex.yyyy.xxx58.

Data Availability

All raw files are available as described in Supplementary Table 2. Processed data files that 

support the findings of this study are available from the corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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LC Liquid chromatography

MS Mass spectrometry

MS/MS Tandem mass spectrometry
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Figure 1. Database search strategies and the MSFragger algorithm
(a) Conventional database search involves in-silico digestion of a protein database into 

candidate peptides from which theoretical spectra are sequentially generated and compared 

against experimental spectra one at a time. (b) MSFragger digests a protein database and 

generates a non-redundant set of peptides that are arranged in a peptide index. This index is 

then used as a reference to generate a fragment index that allows for rapid retrieval of 

theoretical spectra that contains a fragment of a query mass. This fragment index is then 

used for the efficient and simultaneous scoring of an experimental spectrum against all 

candidate spectra. (c) Mass binning and precursor mass ordering within the fragment index 

allows for rapid retrieval of candidate spectra that matches a given experimental fragment 

ion. Scores of candidate peptides corresponding to retrieved spectra are incremented. (d) 
Processing of all experimental fragment ions results in the identification of all matching 

fragments between experimental spectrum and all candidate theoretical spectra, 

decomposing spectrum to spectra matches to fragment to spectra matches. Matched 

fragments can then be used to compute a similarity score.
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Figure 2. Peptide identifications across traditional narrow window and open searches 
demonstrate false discovery rates underestimation
(a) Peptides passing a 1% FDR filter in both narrow window and open searches are 

compared. Common peptides are of high confidence. Peptides found only in open search are 

also of high confidence suggesting that many peptides are only found in its modified form. 

High FDR was observed for peptides unique to narrow window search. (b) Profile of 

peptides that were only found in modified forms is similar to that of all modified peptides. 

PSMs from peptides that were only found in narrow window search were mapped to their 

higher scoring matches in open search and generated a profile devoid of modifications that 

can be easily represented as some series of amino acid insertions and deletions. These PSMs 

may be false positive events that arise due to unaccounted for modifications in narrow 

window search. (c) PSMs supporting peptides only found in narrow window search are 

commonly matched to peptides with greater counts in open search, giving greater 

confidences to their open assignment. (d) Peptides suspected to be false positives as a result 

of unaccounted for modifications in narrow window search are plotted across peptide 

confidences. Their numbers exceeds the number of decoys and are prevalent in ranges of 

high peptide confidences, suggesting that are not well estimated by the target-decoy strategy 

and cannot be eliminated using any scoring threshold. (e) Confirmation of target-decoy 

violation by examining PSMs with common modifications in narrow window search.
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Figure 3. Analysis of large-scale shotgun proteomics experiments reveals differences in 
modification profiles
Mass difference features are identified with high mass accuracy aligned across multiple 

experiments. Features are characterized by their localization rates and amino acid 

propensities. (a) Common modifications are present across different experiments with vastly 

different modification rates. Modifications are sometimes localized to amino acids that are 

unaccounted for in traditional workflows. (b) Large numbers of abundant features were 

found unique to particular experiments. Localization information assisted in characterizing 

these unknown modifications. (c) Highly abundant mass features were observed in which the 

mass difference could not be effectively localized.
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Figure 4. Open searching detects modified peptides containing labile modifications
Spectral similarity scores for each mass bin were computed to capture the spectral similarity 

between a modified peptide and its unmodified counterpart. Most modifications, such as 

phosphorylation, have average similarities between 0.4 and 0.6. Modifications that are 

localized to peptide C-terminus disrupt the intense y-ion series and have lower similarity 

scores. Few mass bins contain low similarity scores as these modified peptides would 

otherwise be impossible to detect using open searching. Interestingly, there exists a 

population of mass bins that have similarity scores exceeding that of carbon-13 (which 

leaves a largely unaltered spectrum). These modifications may represent labile modifications 

that are lost during peptide fragmentation.
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Figure 5. Application of MSFragger to diverse proteomics experiments
(a) The speed of MSFragger allows for reasonable analysis times even when the SILAC 

labels are specified as variable modifications in conjunction with open searching. In this 

comparison between a panel of breast tissues and a heavy labeled super-SILAC mix, we 

observe differences in their modification profiles with certain modifications unique to the 

super-SILAC mix. (b) Low sample complexities in affinity purification mass spectrometry 

experiments allow lower abundance modified peptides to be more effectively sampled. On 

average, across a dataset consisting of 2594 bait proteins, the number of bait PSMs 

identified in open search was 3.88 times that of narrow window search. (c) Open searching 

of a RNA-protein crosslinking dataset using MSFragger successfully identifies RNA 

crosslinked peptides. 134 of the 189 originally reported crosslinked peptides were recovered. 

Shorter crosslinked peptides are unlikely to have sufficient non-shifted fragment ions for 

detection in open searching and account for the majority of peptides not recovered.
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Table 1
Identification rates and analysis time for HEK293 dataset

Identification numbers are for the entire 24 LC-MS/MS run dataset, filtered at 1% FDR at both protein and 

PSM levels. Search times given for a single LC-MS/MS run consisting of 41820 MS/MS spectra analyzed on a 

quad core workstation.

Search Engine Time (minutes) Proteins PSMs Peptides

Narrow window search

SEQUEST* 9.3 9,513 396,736 110,262

Comet 1.7 9,757 461,806 115,612

X! Tandem** 1.7 10,182 466,701 119,304

MSFragger 0.4 9,795 456,548 115,755

Open search (500 Da)

SEQUEST* 673.0 9,178 510,139 111,205

Comet 815.4 9,545 584,218 123,679

X! Tandem 976.0 9,830 638,052 133,318

MSFragger 5.4 9,656 609,897 126,037

*
For time estimation, SEQUEST searches were performed using Proteome Discoverer 2.1 (SEQUEST HT) on a more powerful 8-core workstation. 

Narrow window searches were done using 100 ppm precursor mass window except for SEQUEST (5 ppm). SEQUEST identification rates were 

taken from 4;

**
X! Tandem searches include several variable modifications that cannot be turned off.
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