BIOLOGY
LETTERS

royalsocietypublishing.org/journal/rsbl

t.)

Research

updates

Cite this article: Ohlinger BD, Schiirch R,
Silliman MR, Steele TN, Couvillon MJ. 2022
Dance-communicated distances support nectar
foraging as a supply-driven system. Biol. Lett.
18: 20220155.
https://doi.org/10.1098/rsbl.2022.0155

Received: 31 March 2022
Accepted: 3 August 2022

Subject Areas:
behaviour, ecology

Keywords:
honeybee foraging, waggle dance,
supply-driven, demand-driven

Author for correspondence:
Bradley D. Ohlinger
e-mail: bdo@vt.edu

THE ROYAL SOCIETY

PUBLISHING

Animal behaviour

Dance-communicated distances support
nectar foraging as a supply-driven system

Bradley D. Ohlinger, Roger Schiirch, Mary R. Silliman, Taylor N. Steele and
Margaret J. Couvillon

Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
BDO, 0000-0003-3022-6564; RS, 0000-0001-9075-8912; MJC, 0000-0002-0458-298X

Much like human consumers, honeybees adjust their behaviours based on
resources’ supply and demand. For both, interactions occur in fluctuating con-
ditions. Honeybees weigh the cost of flight against the benefit of nectar and
pollen, which are nutritionally distinct resources that serve different purposes:
bees collect nectar continuously to build large honey stores for overwintering,
but they collect pollen intermittently to build modest stores for brood
production periods. Therefore, nectar foraging can be considered a supply-
driven process, whereas pollen foraging is demand-driven. Here we compared
the foraging distances, communicated by waggle dances and serving as a
proxy for cost, for nectar and pollen in three ecologically distinct landscapes
in Virginia. We found that honeybees foraged for nectar at distances 14%
further than for pollen across all three sites (1 = 6224 dances, p < 0.001). Specific
temporal dynamics reveal that monthly nectar foraging occurs at greater dis-
tances compared with pollen foraging 85% of the time. Our results strongly
suggest that honeybee foraging cost dynamics are consistent with nectar
supply-driven and pollen demand-driven processes.

1. Introduction

In commerce, supply and demand interact to determine the market value of
goods and services. Consequently, supply chains are managed to produce at
rates and prices that profitably meet consumer demand [1]. Supply/demand
ratios modulate the consumer cost dynamics and influence consumer decisions
[1]. Meanwhile, these processes operate in a fluctuating market. Analogously,
the foraging landscape navigated by animals also fluctuates, with dynamic
shifts in both supply and demand then modulating food-collection behaviours.
Unsurprisingly, many of the terms used in consumer economics have been
co-opted to animal foraging ecology [2,3].

Honeybees are highly efficient social foragers that can survey complex land-
scapes, identify attractive resources and allocate their foraging efforts according
to food quality and colony needs by selectively recruiting to the best resources at
any given time [4-9]. Recruitment is accomplished via the waggle dance, where a
successfully returning forager who has found a good source of food performs a
stereotyped behaviour that encodes the distance and direction from the hive to
the forage [3,10]. Workers that follow a dance can then use the information
to find the advertised food [10,11]. Lastly, honeybee foragers, like human
consumers, respond to supply and demand forces as they collect resources [3].

Honeybees” most important food resources are pollen, a source of protein
and lipids that is fed to developing brood, and nectar, a source of carbohydrates
that is turned into honey, which is mostly food for adult bees. Honeybees in
temperate regions must also, during the foraging season (spring-autumn),
create large stockpiles of honey that serve as food for the winter bees that
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engage in energetically costly thermoregulation [12] and are
critical to colony overwintering survival [13,15]. Honeybees
therefore are strongly motivated to collect nectar and will con-
tinuously do so even if the colony already possesses honey
stores [16]. Nectar foraging, therefore, is considered supply-
driven because the amount coming into the colony is only lim-
ited by its availability in the environment [3]. By contrast,
pollen foraging is considered demand-driven, where the
amount of pollen coming into the hive is also strongly modu-
lated by colony needs because pollen is required when brood
is actively being reared [8,9,17,18].

Decoding protocols to analyse honeybee waggle dances
recover the distance and direction to the forage as discrete
components [19-21]. This is useful, as the encoded distance
information can act as a proxy for forage availability [22].
Honeybees are economic foragers [7], and flight is costly
[23,24], so foragers will only recruit nest-mates to resources as
far as necessary [22,25,26]. In other words, increases in commu-
nicated foraging distance indicate decreases in forage [22,25,26].

Although terms like supply and demand have long
been applied to bee foraging ecology [3], the cost dynamics
in supply versus demand-driven systems remain less
explored. Flight distance, as a large cost associated with resource
collection, is analogous to consumer prices [7,22,24] and both
should respond similarly to fluctuating supply/demand ratios.
Supply-driven markets, used by foragers/consumers with con-
tinuous resource demand, and demand-driven markets, used by
foragers/consumers with intermittent resource demand, should
produce distinct consumer/foraging responses. Foragers/con-
sumers are expected to respond more strongly and more
consistently to resource availability changes in supply-driven
processes than in demand-driven processes. Therefore, one
would predict that communicated honeybee foraging distances
should be inversely proportional to nectar availability, as nectar
collection is considered supply-driven (i.e. honeybees always
need nectar). By contrast, honeybee foraging distances should
only be inversely proportional to pollen availability when
pollen demand is high. Additionally, the pollen dancers’ com-
municated distances should be lower than nectar distances.

Here we investigate whether foraging distances, as com-
municated by the waggle dances, support supply-driven
nectar foraging and demand-driven pollen foraging. We ana-
lysed 6224 waggle dance distances, which reflect cost and are
an availability proxy, from bees in three ecologically distinct
landscapes in Virginia to determine overall and monthly
communicated foraging distance for both nectar and pollen.

2. Material and methods

We studied nine predominately Apis mellifera lingustica colonies,
each consisting of a queen and approximately 5000 workers, at
three sites across Virginia, with three hives per site. We housed
colonies in glass-walled observation hives composed of three
American Standard Deep Langstroth frames. The glass provided
an unimpeded view of behaviours, including dances. We main-
tained the hives indoors at the Prices Fork Research Center
(PFRC; 37.21148, —80.48935) in Blacksburg, Virginia, the Tide-
water Agricultural Research and Extension Center (TAREC;
36.66447, —76.73278) in Suffolk, Virginia and the Alson H. Smith
Jr. Agricultural Research Center (WAREC; 39.11349, —78.28449)
in Winchester, Virginia. Foragers were able to enter/exit colonies
through a 5 cm x 30 cm PVC piping from the colony entrance to
the outside. We provided the colonies with supplemental sucrose
solution during times of forage dearth and to maintain consistent

0.8 *

I

0.4

0.2+

communicated foraging distance (km)

T T
nectar pollen

forage type

Figure 1. Nectar foraging distances, as communicated by waggle dances,
were significantly (*) greater than pollen foraging distances across all
three sites (n=6224 dances). White circles are the EMM for nectar and
black circles are the EMM for pollen, with the bars representing the 95%
confidence intervals.

food stores. The landscapes surrounding the three sites provided
unique ecological contexts: TAREC consisted of row croplands,
WAREC of orchard croplands and PFRC of a mix of residential,
agricultural and semi-natural lands.

We video recorded and decoded waggle dances using an
updated protocol developed by Couvillon et al. [19]. Briefly, we
decoded four waggle runs (information-rich, repeated subunits)
per dance to extract run duration, which encodes the distance
[10]. We used frame-by-frame playback for videos recorded on
177 days from 13 April to 31 October 2018 and from 10 April
to 18 October 2019. We noted whether the dancer was carrying
pollen, which is highly visible in the videos. Although presum-
ably some non-pollen dancers might be recruiting for water,
this usually represents less than 5% of the overall foraging
effort [3,25]. In all, we decoded 6224 dances, with 1931 (nectar:
1144, pollen: 787) at PFRC, 2282 (nectar: 1329, pollen: 953) at
TAREC and 2011 at WAREC (nectar: 1273, pollen: 738).

We used the methods reported in Schiirch et al. [21] to con-
vert durations into distances by using bootstrap sampling from
the universal calibration dataset, consisting of run durations to
known distances [21] and has been shown to perform well
across landscapes and contexts [27]. The method also reflects
the uncertainty inherent in the communication [19-21,28]. To
identify temporal trends in communicated foraging distances,
for each dance we simulated the distances 1000 times and then
calculated the median simulated distance. Then we determined
the effect of month and forage type on distance at three sites
by using log-transformed linear mixed models from the Lme4
package [29], with distance as a response variable; month, site,
forage type and the first- and second-order interactions as fixed
effects; and hive as a random effect. We used R 4.1.1 for all ana-
lyses [30] and we obtained the estimated marginal means (EMM)
using the emmeans package [31].

3. Results

Across all the dances (1n=6224), we found a significant
effect of the interactions among month, forage type and site
(LRT =81.05, d.f.=12, p<0.001). We observed a significant
effect of forage type on communicated foraging distance,
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Figure 2. Month and forage type and their interactions affect communicated distance at the three sites: PFRC (), TAREC (b) and WAREC (c). Significant differences
between communicated foraging distance by resource type (nectar = white, pollen = black) is indicated by asterisks (*). White circles are the EMM for nectar and
black circles are the EMM for pollen, with the bars representing the 95% confidence intervals. When a significant difference (*) existed between resources’ foraging
distance, nectar was greater at PFRC, TAREC, and for three of the five months at WAREC. Mean differences (metres) with 95% Cl are reported in the margins.

with nectar foragers recruiting significantly further away,
13.9%, relative to pollen (nectar: EMM=717.2m, 95% CI
[659.4 m, 779.9 m]; pollen: EMM =629.3 m, 95% CI [577.2 m,
685.9 m]; mean difference =87.9 m, 95% CI [58.4 m, 116.1 m],
p <0.001; figure 1). There were some site-specific differences,
with communicated nectar distances reflecting the overall
result at PFRC (mean difference =125.7 m, 95% CI [64.6 m,
181.5m], p<0.001) and TAREC (mean difference=115.8 m,
95% CI(75.3 m, 153.5 m], p < 0.001). At WAREC, the communi-
cated nectar distance was higher, but not significantly so (mean
difference =21.5 m, 95% CI [-33.3 m, 72.2 m], p = 0.422).

In our monthly/site specific investigations, when there
were significant differences between monthly communicated
foraging distance for nectar versus pollen, communicated
nectar distances were higher in 11 of the 13 months, or
84.6% (figure 2). Specifically, nectar was always higher at
PFRC (figure 2a) and TAREC (figure 2b). At WAREC, overall
nectar distances were significantly higher than pollen, as was

seen in May, June and July; pollen distances were higher in
August and October (figure 2c).

4. Discussion

Here we investigated honeybee foraging distance, as commu-
nicated by waggle dances, for nectar versus pollen across two
foraging seasons in three distinct landscapes. We report that
nectar versus pollen foraging distances were higher with our
overall, site-specific, and monthly mean analysis. Our results
suggest that the cost dynamics of nectar foragers are consist-
ent with a supply-driven scenario, while that of pollen
foragers are consistent with a demand-driven scenario.

In their decision to make a waggle dance, foragers weigh
the energetic costs of flight against the energetic/nutritional
content of food to efficiently meet their colony’s nectar and
pollen demands in dynamic environments [7]. Therefore, hon-
eybees adjust their foraging efforts according to the supply of
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resources in their environment [22] and the demand for
resources by their colony [3,8,9,17]. The supply of both nectar
and pollen varies according to biotic and abiotic factors, such
as season [22,32], competition [33], weather [34,35] and time
of day [36].

However, the demand for nectar and pollen differs: honey-
bees keep modest stores of pollen [3,37] and increase pollen
collection intermittently during periods of high brood
production [8,9,17,38], while honeybees collect nectar continu-
ously to meet their metabolic needs and to build large honey
stores to buffer against nectar gaps and provide overwintering
food [3,16]. We demonstrate that nectar foragers, compared
to pollen foragers, displayed overall higher communicated dis-
tances (figure 1), a result that is likely driven by comparatively
low foraging distances for pollen during periods with low
pollen demand (i.e. when brood is not being reared). In other
words, the colony does not need pollen during times of low
demand and, consequently, is less willing to pay the ‘cost” of
a further flight. Lastly, the overall result of higher nectar
foraging distances is further supported by our site-specific
analyses, which revealed significantly higher nectar distances
at PFRC and TAREC and non-significantly higher nectar
distances at the WAREC.

Why might WAREC be different? Incidentally, we observed
a high number of colony and queen deaths at WAREC in 2019
(n=7), even compared to 2018 (1 =2). Although the colonies
were replaced as soon as possible, there was a small, unavoid-
able gap. Therefore, the non-significance at WAREC might be
due to the high pollen demand in replacement colonies, as
they experienced a break and then surge in brood rearing as
new queens and/or colonies are introduced. Importantly,
nectar distances were in fact significantly higher in 2018
(mean difference: 117.9 m, 95% CI [44.1 m, 183.2 m], p = 0.002),
but not in 2019 (mean difference: —28.4 m, 95% CI [-125.7 m,
579 m], p=0.527).

The temporal dynamics in foraging distance provide
additional support for nectar as a supply-driven process:
we observed significant differences in nectar and pollen
distances in 13 of the 21 site/month combinations, with
nectar foraging distances higher in 11 out of the 13 instances
(figure 2). This effect is consistent with Couvillon et al. [25]
and Balfour & Ratnieks [39], who reported that nectar dan-
cers communicated longer foraging distances across 2 years
in a rural and orchard system in England, respectively. Inter-
estingly, some previous studies report either no difference in
foraging distance for pollen and nectar [40] or longer pollen
distances [41]. However, these studies used calibration
models that relate waggle dance circuit duration (waggle
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