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We hypothesized that basic helix–loop–helix (bHLH) MIST1 (BHLHA15) is a “scaling factor” that universally
establishes secretory morphology in cells that perform regulated secretion. Here, we show that targeted deletion of
MIST1 caused dismantling of the secretory apparatus of diverse exocrine cells. Parietal cells (PCs), whose function is
to pump acid into the stomach, normally lack MIST1 and do not perform regulated secretion. Forced expression of
MIST1 in PCs caused them to expand their apical cytoplasm, rearrange mitochondrial/lysosome trafficking, and
generate large secretory granules.Mist1 induced a cohort of genes regulated byMIST1 inmultiple organs but did not
affect PC function. MIST1 bound CATATG/CAGCTG E boxes in the first intron of genes that regulate autopha-
gosome/lysosomal degradation, mitochondrial trafficking, and amino acid metabolism. Similar alterations in cell
architecture and gene expression were also caused by ectopically inducing MIST1 in vivo in hepatocytes. Thus,
MIST1 is a scaling factor necessary and sufficient by itself to induce and maintain secretory cell architecture. Our
results indicate that, whereas mature cell types in each organ may have unique developmental origins, cells per-
forming similar physiological functions throughout the body share similar transcription factor-mediated architec-
tural “blueprints.”
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Multicellularity evolved as organisms acquired the capac-
ity to differentiate the function of one cell from the func-
tions of other cells. Such cellular differentiation depends
on cell-specific transcription factors that regulate expres-
sion of distinct cohorts of genes to establish cellular iden-
tity (Degnan et al. 2009). In the body of a mammal, there
are hundreds of specific cell lineages distributed through-
out dozens of different organs. Each of the hundreds of cell
types in an adult organism has its own unique, develop-
mentally regulated sequence of cell fate-determining tran-
scription factors that direct the cell lineage’s path to its
mature identity. The sequence of transcription factors
governing such cell fate/identity choices for each cell
type is rapidly being determined. For example, the tran-
scription factor sequence that instructs the progeny of

an embryonic stem cell to eventually become an insu-
lin-secreting β cell in the pancreas has been largely eluci-
dated (D’Amour et al. 2006), and the sequence of cell fate-
deciding transcription factors necessary to direct the dif-
ferentiation of the principal cell lineages formost other or-
gans is similarly being uncovered (Hu et al. 2010; Ieda
et al. 2010; Spence et al. 2011; Takayama et al. 2012; Mor-
ris et al. 2014).

Although there are hundreds of cell types and cell-spe-
cific transcription factor sequences governing their differ-
entiation, the actual functions of terminally differentiated
cells are far less diverse. To illustrate: Exocrine cells that
secrete digestive enzymes in the salivary glands, pancreas,
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and stomach have unique developmental derivations and
secrete organ-specific digestive enzymes. However, their
secretory apparatus and, indeed, their overall subcellular
organization are similar. Based in part on these observa-
tions, we propose that there are transcription factors
that are expressed as part of the developmental/differenti-
ation program of a cell, but, unlike cell fate-directing tran-
scription factors, these factors govern only how a cell
organizes its subcellular machinery to perform a specific
function (Mills and Taghert 2012). Specifically, such tran-
scription factors would have the function of scaling up the
specific aspects of cellular structure/function that are
needed for a cell to be particularly efficient at a specific
task. For example, cells that secrete proteins in a regulated
fashion all tend to have expansive apical cytoplasms with
basal nuclei and large secretory granules. From an evolu-
tionary standpoint, it would be economical if the same
transcription factor could govern these structural changes
in the diverse cells that perform the secretory function
even if the cells arise via distinct differentiation sequenc-
es in multiple tissues.
The transcription factor basic helix–loop–helix (bHLH)

MIST1 (BHLHA15) is a prototype for such a secretory ar-
chitecture “scaling factor.” It is expressed in cells of
diverse developmental origins whose only commonality
is long-lived, large-scale secretion of protein (Pin et al.
2000, 2001; Zhao et al. 2006; Capoccia et al. 2011; Chi-
kada et al. 2015). MIST1 is developmentally regulated in
that it is expressed during terminal differentiation of
such cells. However, it does not determine cell identity,
instead governing only genes that elaborate secretory
cell architecture and not the cell lineage-specific cargo
that a cell secretes (Mills and Taghert 2012). DIMM, the
MIST1 ortholog in Drosophila, functions in an analogous
way: simply to regulate secretory architecture, not cell
fate (Hamanaka et al. 2010; Park et al. 2011).
MIST1 expression is directly activated by X-box-bind-

ing protein 1 (XBP1), which also serves to elaborate the
abundant, lamellar rough ER network that is necessary
to generate the massive loads of protein cargo to be pack-
aged into the large, MIST1-mediated secretory granules
(Huh et al. 2010). The XBP1→MIST1 cassette is required
in secretory cells of diverse tissues to establish the cargo-
generating, packaging, and secretingmachinery for profes-
sional secretory cells (Metzler et al. 2015). The epithelium
of the body of the stomach is a good model for studying
cell fate-determining transcription factors versus scaling
factors because it is organized into roughly tubular invag-
inations (units) with distinct zones of cell types and a stem
cell that actively generates all of the cell types throughout
life (Mills and Shivdasani 2011; Willet and Mills 2016).
The two key long-lived cell types in the gastric unit are
the acid-pumping parietal cells (PCs) and the digestive en-
zyme-secreting zymogenic chief cells (ZCs). PCs emerge
from stem cells through a brief transition (Karam 1993),
whereas ZCs have a long precursor stage (the mucous
neck cell), during which the precursors migrate toward
the base of the gastric unit (away from the stomach
lumen) (Karam and Leblond 1993; Ramsey et al. 2007).
As they enter the base, they undergo sudden XBP1→

MIST1-mediated transition into secretory factories with
enormous rER networks that produce and package car-
go-like Pepsinogen II (PGII) and, in rodents, gastric intrin-
sic factor (GIF) into densely packed, large secretory
granules (Shao et al. 1998; Huh et al. 2010).
Previous studies have shown that constitutive absence

of MIST1 (in Mist1−/− mice) leads to ZCs with smaller,
less abundant granules with loss of normal basal localiza-
tion of the nucleus (Pin et al. 2001; Johnson et al. 2004;
Ramsey et al. 2007; Direnzo et al. 2012). To date, MIST1
has not been removed from cells that had alreadymatured
in its presence and has not been ectopically expressed in
cells that normally do not express MIST1. Both of these
experiments are critical to support the hypothesis that
MIST1 acts as a scaling factor because it is critical to dem-
onstrate that (1) decrease ofMIST1will scale the secretory
apparatus down again, showing that MIST1 is directly re-
sponsible for maintaining secretory architecture; (2)
MIST1 by itself is sufficient to scale up secretory architec-
ture; and (3) MIST1 expression in cells of different cell lin-
eages will result in the same subcellular phenotype.
Here, we performed those key experiments:We induced

loss of MIST1 from MIST1-expressing secretory cells and
ectopically expressedMIST1 in PCs, which normally lack
MIST1. We show that MIST1 regulates a cohort of tran-
scriptional targets that is tissue-independent and that
MIST1 uses those targets to directly govern elaboration
of secretory cell machinery without affecting cell identity
or fate. Thus, a single transcription factor is necessary and
sufficient for scaling secretory cell architecture in diverse
cell types.

Results

Continuous Mist1 expression is required to maintain
secretory cell architecture

During cellular differentiation of dedicated exocrine
secretory cells, MIST1 abundance increases, causing a
scaling up of secretory granule number and size as well
as changes in orientation of subcellular compartments
to accommodate the large stores of apical granules. This
role of MIST1 is well established, but we hypothesized re-
cently that, during times of stress, a cell could also scale
its secretory function down simply by decreasing the
abundance (downscaling) of MIST1 (Mills and Taghert
2012), thereby acting as a cellular rheostat for the ener-
gy-intensive cellular process of secretion.
To test the hypothesis that loss of MIST1 from cells ac-

tively expressing abundant MIST1 leads to decreased
secretory architecture, we generated Mist1CreERT2/flox

mice. Treating these mice with tamoxifen causes the ta-
moxifen-responsive Cre recombinase knocked into one
Mist1 allele to delete the other, floxed allele, thereafter
rendering Mist1-expressing cells null for MIST1. We
used this low-dose tamoxifen administration to avoid gas-
tric toxicity and delete Mist1 from 6- to 8-wk-old adult
Mist1CreERT2/flox mice (see the Materials and Methods).
By 2 wk after the initial tamoxifen dose, as expected,
ZCs expressing MIST1 were rare (note the loss of myc-
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tagged MIST1) (Fig. 1A; Supplemental Fig. S1A). In
low-dose tamoxifen-treated stomachs, consistent with
our working hypothesis thatMIST1 functions as a scaling
factor only for secretory cell architecture, loss ofMist1 did
not cause cell death, loss of cell identity, or a change in the
type of cargo within secretory granules. Figure 1, A and B,
shows that the ZCs in the absence of MIST1 still inhabit
their distinct zone at the base of the gastric unit and
express GIF, one of the principal secreted proteins in
murine ZCs.

In contrast, the ZCs deprived of MIST1 showed multi-
ple abnormalities in secretory cell architecture. Mis-
t1CreERT2/Δ ZCs were 26%± 3% smaller on average (P <
0.001), resulting in larger gastric unit lumens in the base
region of the gastric unit (see in particular Fig. 1B, where
a region with markedly smaller cells is depicted), which
has been reported as a phenotype of Mist1−/− exocrine
cells (Bredemeyer et al. 2009; Direnzo et al. 2012). The
most common abnormality shown previously in multiple

cell lineages bymultiple investigators upon loss ofMIST1
is the loss of an expansive apical compartment containing
abundant, large secretory granules (Pin et al. 2001; Ram-
sey et al. 2007; Capoccia et al. 2013). To quantify this cel-
lular architectural feature in our mice, we measured
∼1000 secretory granules in Mist1CreERT2/Δ and control
ZCs using confocal microscopy, which revealed a highly
significant decrease in granule size in ZCs that have lost
MIST1 (Fig. 1C). To determine the extent of loss of the api-
cal compartment (the portion of the cell between the nu-
cleus and the lumen), we quantified nuclear eccentricity
(i.e., how far the nucleus was from the luminal or basal
plasma membrane). In control cells, nuclei were almost
always within the basal quarter of the cell (Fig. 1A–C), in-
dicating an expansive apical compartment for secretory
granules. In contrast, loss of MIST1 caused a statistically
significant relocalization of the nucleus away from the
base, thereby defining a reduced apical cell compartment
(Fig. 1A–C). In most cells deprived of MIST1, the majority

Figure 1. MIST1 is required for mainte-
nance of secretory cell architecture in the
stomach. (A) Epifluorescent images of the
basal ZC-rich portion of gastric units fol-
lowing induced deletion of MIST1 ([green]
antibody vs. myc tag on MIST1) in ZCs 2
wk after the first tamoxifen injection. ZCs
lacking MIST1 exhibit smaller, disorga-
nized GIF granules (red) with nuclear repo-
sitioning from the cell base (pink dashed
outline) to the cell apex (white dashed out-
line). (B) Representative H&E images of the
base of the gastric unit (yellow dashed out-
line), showing ZCs (white dashed outline)
in response to deletion of MIST1. Arrow-
heads indicate nuclei with changed posi-
tions relative to the apical–basal axis. (C )
Quantification of confocal images shows
reduced cell granule size (n = 2 mice; P <
0.001) and nucleus migration 97%± 12%
toward the center of the cell as MIST1 is
lost. P < 0.001. A one-tailed Student’s
t-test was used to determine statistical sig-
nificance. Bars: A, 10 µm; B, 20 µm.
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of secretory granules was mislocalized basal to the nucle-
us instead of apical (e.g., see Fig. 1A).
MIST1 is expressed in a relatively limited cohort of cells

that all have in common long life spans and large-scale
secretion of protein. To confirm that other MIST1-posi-
tive cells required continued expression of MIST1 to
maintain their specialized secretory apparatus, we studied
the effects of induced deletion of Mist1 in two different
salivary glands aswell as the pancreas. All showedmisloc-
alization of the nucleus within 2 wk of loss of MIST1 (Fig.
2A,B), andMIST1-ablated salivary gland cells decreased in
size: submandibular by 32%± 2% (P < 0.001) and parotid
by 17%± 3% (P < 0.001). Pancreatic acinar cells are known
to be smaller in the perpetual absence of MIST1 (Direnzo
et al. 2012) but did not show statistically significant
shrinkage within 2 wk in the mice examined.
Thus, MIST1 is not necessary for cell survival or identi-

ty but must be actively and continuously expressed at
abundant levels to maintain secretory cell architecture
in cells of diverse embryonic origin.

Forced ectopic expression of MIST1 in a nonexocrine
secretory cell does not change cell identity

Next, we wanted to test the hypothesis that MIST1 alone
is sufficient to scale up the specialized secretory apparatus
without altering cell identity. In other words, we wanted
to determine whether MIST1 could establish specialized
secretory cell architecture without inducing expression
of any specific cargo to be secreted by that apparatus.
We selected a cell that does not normally express MIST1
but is a neighbor of the ZCwithin the gastric unit. We rea-
soned that the fact that the two cell types occupy neigh-
boring niches would minimize potential confounding
influences of different extracellular milieus. Acid-produc-
ing PCs useH+-K+-ATPase to pumphydrogen ions into the
lumen but do not have secretory granules or regulated
secretion and, accordingly, do not express MIST1 (Brede-
meyer et al. 2009; Lennerz et al. 2010). Additionally, we
previously developed and characterized a mouse line
that contains a randomly inserted Cre recombinase

Figure 2. MIST1 is required for mainte-
nance of secretory cell architecture in other
organs. (A) Quantification of nuclear posi-
tion in acinar cells from two different sali-
vary glands and the pancreas. Loss of
MIST1 caused the nuclei to move 53%±
4%, 53%± 4%, and 56%± 5% closer to
the center in the submandibular, parotid,
and pancreatic acinar cells, respectively.
(B) Epifluorescent images of acinar cells
from the specified organ highlighting api-
cal–basal organization with respect to the
nucleus (blue) and cell basolateral cell
boundaries (E-cadherin; red) in MIST1+

(green) and MIST1-deleted (“Δ”) cells. Bar,
10 µm.
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transgene under the control of the β subunit of the H+-K+-
ATPase gene (Atp4b) promoter. Cre expression is highly
specific to stomach and, within the stomach, is expressed
only in PCs and their immediate progenitors (Syder et al.
2004; Huh et al. 2012).

We generated Atp4b-Cre;LSL-Mist1myc mice and ana-
lyzed them relative toAtp4b-Cre controls. Ectopic expres-
sion of MIST1 occurred in nearly all PCs, which was
verified through immunofluorescence for myc-tagged ex-
ogenous MIST1 as well as MIST1 itself (Fig. 3A). MIST1
induction in PCs did not block PC lineage-specific mak-
ers; mutant PCs (referred to here as “MIST1-PCs”) main-
tained characteristic markers, such as prominent ezrin
networks (Fig. 3A; Supplemental Fig. S1B; Schubert
2009; Zhu et al. 2010) and H+-K+-ATPase (Supplemental
Fig. S2A). MIST1 expression in PCs likewise did not in-
duce expression of cargo proteins, such as GIF and PGC
(pepsinogen C), normally secreted by ZCs (Supplemental
Figs. S1B, S2B). Furthermore, overexpression of MIST1
did not detectably alter PC function: There was no differ-

ence in expression of the acid-sensitive gene Gastrin in
the stomach (Supplemental Fig. S1C), and, accordingly,
gastric pH was indistinguishable between mutant and
control mice (Supplemental Fig. S1C). MIST1-PCs were
slightly (12% ± 3%) smaller in the areameasured from tis-
sue sections (P < 0.05), but there was no significant differ-
ence in the number of PCs per gastric unit in the mutant
mice (Supplemental Fig. S2C,D).

Ectopic expression of MIST1 is sufficient to completely
remodel PC architecture

We next sought to test the key hypothesis that initiated
our studies: Is a single transcription factor, ectopically ex-
pressed in a mature cell lineage, sufficient by itself to re-
program the cellular architecture of a cell that normally
does not express it? PCs are large, roughly trapezoidal
cells. They have fluid apical plasma membrane surfaces
because, when activated to secrete acid, abundant vesicles
rapidly fuse with each other and, ultimately, the plasma

Figure 3. MIST1 is sufficient to induce changes phe-
nocopying secretory architecture in gastric PCs,
which do not normally express MIST1. (A) Represen-
tative images of PCs (white arrowheads) of the control
(left) and MIST1-expressing Atp4bCre;LSL-Mist1myc

mutant (right). PCs are identified by prominent stain-
ing with the apical membrane marker ezrin (green)
and antibody versus endogenous MIST1 protein
(red) to confirm ectopic expression in mutant cells.
(B) Representative immunofluorescence showing
that, in control PCs, VEGFB granules (red) normally
concentrate at the membrane surface immediately
opposite capillaries (white arrowhead), mitochondria
(green) are distributed diffusely throughout the cyto-
plasm, and nuclei (blue) are centrally located. In
MIST1-PCs, VEGFB concentrates in the expanded cy-
toplasmic region opposite the eccentrically localized
nucleus, with mitochondria forming two crescents:
one just adjacent to the nucleus and the other more
peripheral. VEGFB granules (black arrowhead) fill
the region between the two crescents, which is also
where the abundant apical membrane (labeled by
ezrin but not shown in these images) concentrates.
(C ) Quantification of nuclear position showing that
nuclei in MIST1-PCs (red) move 38%± 1% closer to
the cell border (n = 4; P < 0.001) than control PCs
(blue). Significance was determined using a one-tail
Student’s t-test. (D) Transmission electron microsco-
py (TEM) highlighting the dramatic reorganization of
the interdigitating apical membrane surface (known
as canaliculi [“C”] and labeled with ezrin in A) to
the side of the cell opposite the nucleus in MIST1-
PCs. Note also the accumulation of large secretory
granules harboring scant electron-dense proteina-
ceous material (black arrowhead) adjacent to the can-
aliculi and relocation of the nucleus (“N”) and
mitochondria (“M”). Note that, in control PCs, the re-
gionwhereVEGFB localizes is in fine granules just op-
posite a capillary surface (note the erythrocyte at the
base of the white arrowhead and the fine granules at
the point of the arrowhead). Bars: A, 10 µm; B,
20 µm; D, 2 µm; D, inset, 600 nm.
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membrane (Forte et al. 1977) to expand the surface area for
transmembrane H+-K+-ATPases to pump acid into the lu-
men. Ezrinmarks the dynamic, fluid subapicalmembrane
and interacts with cortical F-actin (Hanzel et al. 1991).
PCs have complex interactions with a rich capillary net-
work that does not have a strict orientation with respect
to the gastric unit lumen and have fluid interactions
with neighboring cells such that the epithelium in the
neck of the gastric unit, where PCs arise, adopts more of
a pseudostratified morphology (Bredemeyer et al. 2009).
The fluid dynamic nature of the PC apical membrane
and the fluid cell–cell and cell–basement-membrane
contacts result in PC nuclei adopting a central position
within the cell (Fig. 3A). The complex apical membrane
network interdigitates inward from the lumen, diving
into the cell cytoplasm in no specific orientation with
respect to other cells or capillaries, thereby forming an
intracellular ring-like structure in most cross-sections
(Fig. 3A).
We showed previously that PCs express VEGFB at their

basolateral surface (Bredemeyer et al. 2009; Capoccia et al.
2009). Here, we show that the VEGFB is largely concen-
tratedwithin small (<300-nm) vesicles near the PCplasma
membrane surface that borders capillary vessels distal
from the apical membrane-associated region (Fig. 3B).
MIST1-PCs (n = 8 mice) have markedly rearranged ar-

chitecture. They adopt a nuclear and secretory granule ar-
rangement that phenocopies that of MIST1-expressing
regulated secretory cells. For example, MIST1-PCs accu-
mulate VEGFB near the apical membrane rather than
near the capillary surface (Fig. 3B). In Figure 3B, staining
for mitochondria, which are excluded from the ezrin+ api-
cal membrane zone, highlights in relief that VEGFB
becomes concentrated in this portion of the cell. Trans-
mission electron microscopy (TEM) confirmed that
MIST1-PCs lose their zone of small granules near capillar-
ies (Fig. 3D, white arrowhead) in favor of collections of
large granules (Fig. 3D, black arrowhead) near the interdig-
itating apical membrane complex (Fig. 3D). In immuno-
gold EM, these apically redistributed granules mark
with anti-VEGFB (Supplemental Fig. S3A,B). Like regulat-
ed secretory cells expressing MIST1, the nucleus in
MIST1-PCs repositions in a polarized fashion away from
the ezrin-staining apicalmembrane region and the VEGFB
granules (Fig. 3C). Thus, MIST1-PCs form abundant ex-
panses of cytoplasm apical to the nucleus, filled with
secretory granules, similar to MIST1+ exocrine secretory
cells such as those of the stomach, salivary glands, and
pancreas.
In TEMmicrographs and immunofluorescence (Fig. 3B,

D), we noticed that, whereas mitochondria in control PCs
were distributed throughout the cytoplasm, the mito-
chondria in MIST1-PCs were organized in two distinct
crescents: one around the nucleus and one underneath
the apical plasma membrane opposite the nucleus. We
also noticed that lysosomes in control PCs in TEM were
roughly circular in cross-section, relatively abundant,
and nearly always in contact with mitochondria (Supple-
mental Fig. S4A), whereas those in MIST1-PCs were
smaller and more irregular (Supplemental Fig. S4B).

To further analyze the dramatic reorganization of PC ar-
chitecture induced by MIST1, we undertook a three-di-
mensional (3D) nanotomography analysis using focused
ion beam-scanning EM (FIB-SEM) (Fig. 4; Supplemental
Movies S1A, S2A). FIB-SEM imaging of control PCs
showed how the mitochondria were evenly distributed
throughout the cytoplasm in an intricate mazy network
(Supplemental Fig. S4C; Supplemental Movie S1C). Lyso-
somes were abundant, roughly spherical, and seemingly
randomly distributed throughout the cytoplasm but al-
most always in direct apposition tomitochondria (Supple-
mental Fig. S4A,C; SupplementalMovie S1D). Control PC
nuclei were almost always positioned within the central
portion of the cell with respect to cell–cell contacts,
cell–basement membrane contacts, and the gastric unit
lumen; they were ovoid with smooth contours (Supple-
mental Movie S1B). Abundant capillaries wrapped around
each PC such that cells had unclear polarity with respect
to capillaries and lumens. MIST1-PCs, on the other hand,
had a more polarized orientation, with nuclei eccentrical-
ly positioned, often apposing capillaries (Supplemental
Movie S2B). They had mitochondria organized in cres-
cents opposite the nucleus (Supplemental Fig. S4C; Sup-
plemental Movie S2C). Their lysosomes were sparser,
more irregular, and often not directly apposed to mito-
chondria (Supplemental Fig. S4C; Supplemental Movie
S2D). MIST1-PC nuclei were oblong with irregular con-
tours (Supplemental Movie S2B).
The 3D analyses also confirmed the secretory granule

phenotype inMIST1-PCs.Many of the lysosomes were lo-
cated in between the perinuclear and apical plasmamem-
brane rings of mitochondria, but, most prominently, there
were abundant granules with the same morphology seen
on TEM and immunogold in this region between the mi-
tochondrial bands (Fig. 4B; Supplemental Movie S2E).
Such apical granules in control PCs were rare and smaller
than those seen in MIST1-PCs (Fig. 4A; Supplemental
Movie S1E). We measured secretory granule size in all
three dimensions to discover that their volume was sub-
stantially increased in MIST1-PCs (Fig. 4C).
In our examination of Atp4b-Cre; LSL-Mist1myc mice,

we noticed that occasional PCs did not show detectable
MIST1-myc. We compared PCs expressing the Mist1-
myc transgene (MIST1-PCs) with these rare cells that
did not in the same sections. MIST1 expression correlat-
ed highly significantly with the eccentric nuclear posi-
tion, indicating that the architectural rearrangements
of PCs in Atp4b-Cre; LSL-Mist1myc mice are directly
correlated with MIST1 expression (data not shown). In
other experiments, we ablated nearly all PCs by three
consecutive daily injections of toxic amounts of tamox-
ifen (5 mg per 20 g of body weight) (Huh et al. 2012). We
studied the newly re-emerging MIST1-PCs at day 7 fol-
lowing the first tamoxifen injection. These newly
formed PCs were much more frequently MIST1-myc-
negative. Those lacking MIST1 had wild-type nuclear
positioning, and those that had already showed immuno-
fluorescent-detectable MIST1 had the morphology typi-
cal of MIST1-PCs (Supplemental Fig. S5A,B). Thus, all
of the data are consistent with MIST1 expression being
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directly correlated with the architectural changes in a
cell-autonomous mechanism.

Finally, we aged a cohort of mice (9–12 mo old) to test
the long-term effects of forced MIST1 expression in PCs.
MIST1-PCs maintained their exocrine cell-like architec-
ture (Supplemental Fig. S5C). Thus, Mist1 is sufficient
to alter the cellular architecture of PCs continuously
throughout the lives of individual PCs and the mice in
which they are found.

In Figure 5, we summarize the most dramatic changes
in cell shape that are seen in both a loss-of-MIST1 and
gain-of-MIST1 setting by tracing over TEM images of a
cell representative of each genotype.

Ectopic expression of MIST1 in other cell types
phenocopies changes induced in PCs

To determine whether forced expression of MIST1 suf-
ficed to induce similar architectural rearrangements in
other cell types, we first overexpressedMist1 in organoids
derived from the gastric corpus. To do this, we used anti-
biotic resistance to select clones from LSL-MIST1myc;
ROSA26mTmG “gastroids” that had been transfected
with a plasmid encoding antibiotic resistance genes and

tamoxifen-inducible Cre recombinase. Low-dose 4-OH ta-
moxifen treatment (higher doses are toxic) (Burclaff et al.
2016) induced expression of MIST1 chimerically through-
out the culture (Supplemental Fig. S6A), allowing us to
directly compare cells expressing Mist1 with control
neighboring cells in the samewell. Organoids were grown
in an extracellular matrix without much tensile strength
(Matrigel) in the absence of basal connective tissue.
Thus, there were few constraints on cells along the api-
cal–basal vector. Nevertheless, within the limitations of
the system, MIST1 did cause marked changes in cell ar-
chitecture: MIST1 nuclei were more irregular, and cyto-
plasms were more expansive, while control cells formed
an ordered, homogeneous, columnar–cuboidal monolayer
(Supplemental Fig. S6A, cf. white and black arrowheads).
We speculate that the apical contraction induced by
MIST1 caused cells simply to flatten and expand laterally,
as they faced little countervailing cellular or connective
tissue basolateral force in the soft Matrigel. As expected,
MIST1 expression did not govern cell differentiation
(MIST1+ cells showed no change in cell lineage markers)
(data not shown).

We next sought to induceMist1 by expression of a plas-
mid encoding Cre in vivo. We injected AAV8-TBG-iCre

Figure 4. MIST1 is sufficient to induce large apical
granules. (A,B, panel i) A 3D rendering reconstructed
from∼2000 individual EM slices taken fromSEM images
from a FIB-SEM experiment depicting a portion of the
neck zone of a gastric unit with wild-type (A) and Atp4b-
Cre;LSL-MIST1myc (B) PCs (purple), capillaries (red), and ves-
icles (white). The two intersecting lines (panel i)
represent the placement of the orthogonal slice of the fea-
tured cell visualized in the XY (panel ii) and XZ (panel iii)
coordinate planes. (C ) Quantification of granule volume
(i.e., using all three dimensions) showing that the Atp4b-
Cre;LSL-MIST1myc PCs are 5.2-fold ± 0.44-fold larger.
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intraperitoneally into adult LSL-Mist1mycmice (n = 5mice
total) and controls (n = 3) in two independent experiments.
In one of threemice in the first experiment and two of two
in the second, Cre recombinase transduction caused abun-
dant ectopic Mist1 transcript and protein expression
within 2wk (Supplemental Fig. S6B).Note that adult hepa-
tocytes normally express no detectable endogenous
MIST1 protein and negligible mRNA. As expected,
MIST1 did not affect hepatocyte differentiation, as all he-
patocytesmaintained differentiatedmarkers such as albu-
min and apoE by immunofluorescence and hadunchanged
expression of α-fetoprotein and Hnf4α mRNA transcript
levels by quantitative PCR (qPCR) (data not shown). Tis-
sues from the three mice across two experiments with
>90% ectopic MIST1 expression (Supplemental Fig. S6B)
were used to determine the effects ofMIST1 in subsequent
analyses. MIST1+ (Supplemental Fig. S6B, black outline)
cells were easily distinguishable from control hepatocytes
(Supplemental Fig. S6B, blue outline) by their dense eosin-
ophilic central cytoplasm and peripheral vesicles (Supple-
mental Fig. S6B). MIST1+ cells were more complex in
shape and asymmetric (statistically significant decrease
in “circularity”metric of cells in ImageJ analysis, P-value
< 0.001). Examining the GFP induced by Cre recombinase
action on the ROSA26LSL-mTmG allele allowed us to ana-
lyze differences in membrane organization in control
mice versus MIST1+ mice (Supplemental Fig. S6D).
MIST1+ hepatocytes accumulated large peripheral vesi-
cles (Supplemental Fig. S6C, yellow arrows), whereas con-
trols had smaller more central vesicles (Supplemental Fig.
S6C, red arrow).
Hepatocytes are large cells with complex multidimen-

sional orientation: Their apical bile ductular and basolat-
eral capillary sinusoidal aspects are difficult to orient in
two-dimensional sections. Nevertheless, even in standard

5-µm tissue sections, it was evident that MIST1 altered
hepatocyte nuclear position (Supplemental Fig. S6C).
Control hepatocytes almost always had central nuclei,
with only 4%having a nucleuswithin the peripheral third
of the cell, whereas over a quarter of MIST1 hepatocytes
had such eccentric nuclei (77 out of 272 cells). The analy-
sis was performed blinded to the actual level of ectopic ex-
pression of MIST1 in each cell (Supplemental Fig. S6B),
but, even without correcting for that possible confounder,
MIST1-induced marginalization of the nucleus was high-
ly statistically significant (Supplemental Fig. S6D).

A core group of MIST1 targets is regulated across
multiple cell types, including in PCs ectopically
expressing MIST1

Our results so far indicated that MIST1 alone is sufficient
to govern core features of secretory cells even in an ectopic
setting (i.e., without adding cofactors), indicating that it
can act as amaster regulator of secretory cell architecture.
We next sought to examineMIST1-regulated gene expres-
sion in multiple tissue settings to identify some of the
genes thatMIST1 uses to induce its characteristic cellular
reorganization. Many transcriptional targets that MIST1
activates directly have been identified in the past, whereas
targets repressed by MIST1 have not been well character-
ized, sowe confined our analysis toMIST1-induced genes.
We performed previous studies that identified a core co-

hort of MIST1-induced transcripts in cells that normally
express MIST1 in the stomach (ZCs) and pancreas (acinar
cells). The most robust of these identified genes were ex-
pressed in wild-type pancreata, lost in Mist1−/− pancreas,
and rescued by induced expression of MIST1 in theMist1-
null background (Direnzo et al. 2012). We and our collab-
orators also recently performed ChIP-seq (chromatin

Figure 5. Summary of MIST1-dependent architec-
ture changes from gain-of-function and loss-of-func-
tion experiments. Cells were traced from TEM
images. Bars, 2 µm.
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immunoprecipitation [ChIP] combined with high-
throughput sequencing) of MIST1 binding in pancreatic
acinar cells (Jiang et al. 2016). We performed Affymetrix
GeneChip microarray analysis of whole stomachs from
MIST1-PC and control mice and identified the list of
genes that were statistically significantly increased in
both MIST1-PCs versus control and in pancreatic acinar
cells. This analysis yielded a list of 36 putativeMIST1-reg-
ulated genes in both gain-of-function and loss-of-function
experiments in different organs (Supplemental Fig. S7A).

To determine whether there were any obvious patterns
to the cohort of genes, we performed DAVID functional
clustering (Huang et al. 2009a,b). Of the 30 genes with
gene ontology annotations for cellular components,
24 (80%) were annotated as “intracellular membrane-
bound organelle,” and 27 (90%) were annotated with “in-
tracellular part” (Supplemental Table S2). Those terms
were highly statistically significant relative to their occur-
rence in the transcriptome as a whole (44% and 56%; P <
001). Only 11 out of 30 (37%) were annotated as “nucle-
us,”which was not statistically different from the expect-
ed occurrence of this term (28%) in the transcriptome as a
whole. The “nucleus” transcripts were all also classified
as “intracellular membrane-bound organelle.” Thus, the
targets potentially governed by MIST1 are largely local-
ized to organelles, as opposed to secreted or cytoskeletal
cellular components, consistent with the phenotype of re-
organization of organelles that we observed.

To further prioritize our list of MIST1 targets, we first
determined theMIST1-dependent expression of each tran-
script in our previously published GeneChip analysis of
laser-captured ZCs (Capoccia et al. 2013). In this experi-
ment, GeneChips were generated from isolated ZCs and
their precursor mucous neck cells inMist1−/− and control
mice. MIST1 is not expressed in neck cells, only during
the transition from neck cells to ZCs (Ramsey et al.
2007). Highly MIST1-dependent genes would thus be ex-
pressed at higher levels in wild-type ZCs relative to both
wild-type neck cells and Mist1−/− ZCs. The overlapping
genes are listed in Figure 6A. Two of the genes were ex-
pressed higher in wild-type versus Mist1−/− ZCs but still
had high expression in mucous neck cells (lighter-green
bar in Fig. 6A).

We next reasoned that MIST1 targets that govern the
secretory apparatus independent of cell lineage would
likely overlap in expression with MIST1 in multiple tis-
sues. We used archived unbiased microarray data to deter-
mine the tissues with the top 10 highest levels of
expression of MIST1 and each target (see the Materials
and Methods). All transcripts for which three or more of
the top 10 tissues of the highest expression overlapped
withMIST1 are shown also in Figure 6A.Next, we filtered
for genomic sequences within the first intron of each tar-
get gene for E boxes conserved across multiple vertebrate
species (Fig. 6A). We also analyzed raw ChIP-seq analysis
of MIST1 occupancy in wild-type pancreatic acinar cells
from our collaborator (Jiang et al. 2016). We determined
which of theMIST1 targets had significantMIST1 binding
within 4 kb of the transcription start site (TSS). Twenty-
three of our starting list of genes met at least one of these

additional filters. Finally, we performed Affymetrix Gen-
eChip analysis on MIST1+ hepatocytes and control cells
and determined which of the targets had statistically sig-
nificant increased expression. Figure 6A ranks the puta-
tive MIST1 targets in decreasing order of fulfilling the
filtering criteria. Two genes in the list, Rab26 and
Copz2, have been shown previously to be direct targets
ofMist1 (Tian et al. 2010;Direnzo et al. 2012; Jin andMills
2014). Thus, we identified multiple core transcriptional
targets ofMIST1 thatmeet the following criteria: (1) Their
expression is regulated by MIST1 in multiple organs, (2)
their genes’ regulatory elements are occupied by MIST1,
(3) their expression is increased in in vivo gain-of-
MIST1-function experiments, (4) their expression is de-
creased in in vivo loss-of-MIST1 experiments, (5) they
are coexpressed in tissues where MIST1 is highly ex-
pressed, and (6) they are known to have function and local-
ization consistentwith roles as cellular effectors to induce
and maintain cellular secretory architecture.

We and others have shown that bothMIST1 and itsDro-
sophila ortholog, DIMMED, prefer binding to palindromic
CATATG or CAGCTG E boxes, usually located within
the first kilobase of the first intron of target genes (Park
et al. 2008; Garside et al. 2010; Tian et al. 2010; Direnzo
et al. 2012; Hadzic et al. 2015). Using the ChIP-seq analy-
sis of MIST1 binding to acinar cell genomic DNA, we an-
alyzed the location of the significant peaks in our list of
putative target genes. Fifteen of our 23 putative genes
had at least one significant MIST1 ChIP-seq peak within
4500 base pairs (bp) of the TSS using our filtering criteria.
Overall, there were 36 such peaks, the vast majority of
which (32 out of 36) was downstream from the TSS,
most of these being within the first intron (and, occasion-
ally, if the first exon and intron were <4500 bp, within the
second intron) (Fig. 6B). A motif screen usingMEME suite
(Bailey and Elkan 1994) of an unbiased search of recurring
DNA patterns (peak sequences analyzed ranged from 200
to 711 bp within the 36 peaks) identified a recurring
“CCANNTG” core element, where the NN are most
commonly GC or, slightly less commonly, TA (Supple-
mental Fig. S7B).

All of the analyses were thus consistent with our cohort
of genes being enriched forMIST1 targets because the pre-
viously identified preferred E boxes for MIST1 (CAGCTG
andCATATG) were highly enriched in both our list of tar-
gets and where MIST1 bound in available ChIP-seq data
(Supplemental Fig. S7B). When examining all of the puta-
tive targets for conserved E boxes, we noticed an unusual
feature of the target genes bound by MIST1 that has not
been described previously. One of the mirror image palin-
dromic E boxes, CAATTG, was nonrandomly excluded
from the MIST1-binding peak regions in our MIST1-
bound putative targets (P < 0.05) (Fig. 6B). To determine
whether this nonrandom occurrence of CAATTG within
MIST1-binding regions held true in a large data set, we ex-
amined the 250 significantly inducedMIST1 targets in the
acinar cell data set (see theMaterials andMethods). With-
in theMIST1-bound stretches of DNA in those genes (214
genes had significantMIST1-bound peaks), therewere 259
CAGCTG E boxes but only three CAATTG sequences
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(Fig. 6C). Compared with surrounding DNA not bound by
MIST1, CAGCTG sites were 4.5-fold enriched within the
MIST1-bound region, whereas CAATTG sites were 2.6-
fold less commonly found within MIST1-bound peaks
(Fig. 6C). This nonrandom distributionwas highly statisti-
cally significant (P < 0.0001).

Validation of new MIST1 targets

We next performed qPCR for our putative MIST1-regulat-
ed genes on whole Atp4b-Cre;LSL-Mist1myc versus con-
trol Atp4b-Cre stomachs (n = 4–9 mice per genotype)
(Fig. 7A). Twenty-one out of 23 genes showed, on average,
increased expression inMIST1-PCmice (n = 4–9mice); 10
of these changes were statistically significant (it should be

kept in mind that, for a number of reasons, this assay is
highly skewed toward false negatives [see the Discussion]
such that geneswhose expressionwas not statistically sig-
nificantly different may still be MIST1-regulated in PCs).
We further validated our gene targets inMIST1+ hepato-

cytes. In yet another cellular context, forced expression of
MIST1 alone was sufficient to up-regulate expression of
19 out of 23 of the putative architecture-regulating target
genes. Expression of five genes (5330417C22Rik, Tmed6,
Large2, Cep76, and Ufm1) was significantly induced by
extopic MIST1 in a reproducible fashion in both stomach
and liver qPCR (Fig. 7A).
We were able to acquire antibodies against two of

the MIST1 targets significantly up-regulated in two dif-
ferent gain-of-function and multiple loss-of-func-
tion experiments: the minimally characterized gene

Figure 6. MIST1 regulates a cassette of
genes based on gain-of-function and loss-
of-function experiments in diverse tissues.
(A) Genes significantly increased in both
(1) pancreatic acinar cell loss-of-function
and rescue microarray data sets and (2)
MIST1-PC versus control stomachs were
determined. That gene list was further fil-
tered according to the criteria at the right
(dependence on MIST1 in gastric chief
cells, evolutionarily conserved MIST1 E-
box site within promoter or early intronic
region, possession of a MIST1-bound
ChIP-seq site in pancreatic acinar cells,
shared tissue expression pattern with
MIST1, and up-regulated in ectopic
MIST1-expressing hepatocytes by Affy-
metrix GeneChip). The 23 genes meeting
at least one of those criteria are depicted
in decreasing order of potential MIST1 de-
pendence. Note that probes for Large2
were not present on the Affymetrix Gene-
Chip microarrays used for the ZC experi-
ment. (B) All E boxes of either MIST1
canonical CATATG/CAGCTG or nonca-
nonical CAATTG type that occur within
ChIP-seq peaks of the 23 genes inA are plot-
ted as a function of absolute value distance
in base pairs from the ChIP-seq peak. Note
the frequency of CATATG/CAGCTG sites
near the peak, the rareness of CAATTG
motifs within 1 kb, and the complete exclu-
sion within 500 base pairs (bp). CATATG/
CAGCTG sites are 13.5× higher than
CAATTG sites to appear within 1 kb of
the ChIP-seq peak. P < 0.03, by Fisher’s ex-
act test. (C ) The table shows the absolute
counts of each CANNTG motif in 214 of
the pancreatic acinar genes whose expres-
sion was dependent on MIST1 and that
also had MIST1 ChIP-seq peaks within the
promoter–early intron region (the first col-
umn). For the second column, this count

was normalized to account for differing lengths of called ChIP-seq peaks so that frequency per equivalent length of DNAwas calculated.
This figurewas used to determine enrichmentwithin the peak of the given E-boxmotif relative to the frequency of themotif in the 1 kb of
DNA flanking each ChIP-seq peak. The relative enrichment within the peak (normalized per 6-bp stretches of DNA) relative to the fre-
quency in the flanking sequences is shown in the third column.
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5330417C22Rik (human ortholog KIA1324, also known
as estrogen-induced gene 121) (Deng et al. 2010) and the
ER stress-associated gene UFM1 (Lemaire et al. 2011;
Hu et al. 2014). UFM1 was highly specific to ZCs in con-
trol stomachs and absent from ZCs in the Mist1CreERT2/Δ

mice 2 wk after induction of tamoxifen to delete MIST1
(Supplemental Fig. S8A). Furthermore, in Atp4b-Cre;
LSL-Mist1myc mice, a distinct pattern of UFM1 staining
was observed in the vast majority of MIST1-PCs (namely,
those that had the morphological changes induced by
MIST1), whereas control PCs showed only diffuse back-
ground staining (Supplemental Fig. S8B). Quantification
of staining intensity showed increased Ufm1 staining
in MIST1-expressing PCs (Supplemental Fig. S8B).
Antibodies to the minimally characterized protein
5330417C22Riken showed both loss of this protein fol-
lowing ablation of MIST1 in ZCs and induced expression
within MIST1-PCs (Fig. 7B,C). We noted further that in-
tracellular distribution of this protein was different in
MIST1-PCs. In controls, it more or less resembled the
pericapillary surface expression of VEGFB, whereas, in
MIST1-PCs, it redistributed to the cell periphery (Fig. 7C).

Discussion

Here, we showed that a single transcription factor,MIST1,
scales a series of cell architectural features that govern
regulated secretion. Withdrawal of MIST1 in cells that
normally express it leads to loss of secretory architecture.
Ectopic expression in cells that do not normally express
MIST1 is sufficient for complete rearrangement of cell ar-
chitecture.Neither gain nor loss of function alters cell fate
or identity; all of the effects that we saw were confined to
cell architecture.

Thus, we argue that the present study answers a sort of
Koch’s postulates for how a single transcription factor
might govern the subcellular machinery responsible for
secretory cell architecture in cells in tissue. We show (1)
where MIST1 is abundantly expressed in exocrine secre-
tory cells throughout their life, (2) that taking away
MIST1 from those cells rids them of their characteristic
secretory architecture, (3) that introducing it into non-
MIST1-expressing cells that do not have an exocrine cell
organization induces one in the new cells, and (4) that
the target genes that are in common in both the newly

Figure 7. A previously uncharacterized MIST1 tar-
get is decreased in MIST1 loss of function and in-
creased in MIST1 gain of function. (A) A heat map
depicting the relative fold change from control of
the 23 candidate genes in MIST1-expressing cells of
the stomach and the liver determined with qRT–
PCR. (∗) P < 0.05; (∗∗) P < 0.01; (∗∗∗) P < 0.001, signifi-
cance by one-tailed, paired t-test. (B)
5330417C22Riken protein in the ZCs of the stomach
within MIST1+ (dashed blue outline) and induced
MIST1 deletion MIST1Δ (as per Fig. 1, dashed white
outline). ZCs are identified by green GIF granules.
(C ) 5330417C22Riken (red) in ZCs (white dashed out-
line) and PCs (yellow dashed outline). MIST1-PC and
control stomachs were taken at the same camera ex-
posure setting (note the same expression of the pro-
tein within ZCs that are wild type in both animals).
Insets show an enlarged image of a PC, with autocon-
trast applied to expose the PCs without ZCs in the
frame. Note that MIST1-PCs have far more intense
staining than control PCs, which are only slightly
above background. Also, intracellular distribution of
protein is more widespread within MIST1-PC cyto-
plasm. Bars, 10 µm.
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induced cells and the normal MIST1-expressing cells are
overlapping, suggesting that MIST1 is working the same
way in both cases.
In the past, we proposed that MIST1 is a prototype of an

evolutionarily conserved category of transcription factors
that we dubbed scaling factors (Mills and Taghert 2012).
These transcription factors would scale specific subcellu-
lar features so that adult cells could specialize to perform
specific tasks with high efficiency (Mills and Taghert
2012). We predicted several aspects of scaling factor func-
tion: (1) Scaling factors would be up-regulated in terminal
differentiation of cells but would not affect their fate or
function, just the efficiency with which they perform
that function. (2) They would not govern expression of
cell lineage-specific genes (i.e., the types of genes used to
distinguish one cell lineage from another, such as PGC
in ZCs and H+-K+-ATPase in PCs). (3) They would not in-
duce expression de novo of genes but rather scale up genes
that are more or less ubiquitously and constitutively ex-
pressed at lower levels in most cells. Thus, the target
genes of scaling factors would fall under the loose rubric
of “housekeeping genes” that are relatively broadly ex-
pressed. (4) Scaling factors would scale up a subset of these
genes so that the cell would divert a higher proportion of
its resources to ramp up a specific cellular function. In
the case of MIST1, all cells secrete; MIST1 scales up the
cellular apparatus to make a cell a veritable secretory fac-
tory. (5) Because a scaling factor simply increases expres-
sion of genes that are already expressed, it may be
sufficient by itself to rearrange cellular architecture if ex-
pressed ectopically in other differentiated cells.
We further hypothesized that scaling factors may have

been selected with these features because they would af-
ford evolution an easy way to confer entire cellular func-
tional phenotypes in new cellular contexts. This would
be an advantage because most commonly studied tran-
scription factors involved in cell differentiation are regu-
lated within a specific spatiotemporal developmental
context—a sequence of germ layer, then organ, then tis-
sue, and then cell-specific expression (Edlund and Jessell
1999). They also seem to operate restricted to a specific
cellular context, often needing other cofactors specific
to that cell to function. Thus, it is striking thatMIST1-ex-
pressing PCs and hepatocytes showed substantial effects
on cell architecture by expression ofMIST1 alone, indicat-
ing that MIST1 operates largely independently of cellular
context.
Mist1 is conserved in function with the Drosophila

gene DIMM, which also seems both necessary and suffi-
cient to imbue a cell with secretory architecture even in
an ectopic setting (Hamanaka et al. 2010), consistent
with a conserved role for this sort of functionality. As
withMIST1, whenDIMMwas expressed ectopically by it-
self in non-DIMM-expressing cells, it caused wholesale
cellular rearrangement into a secretory architecture
(Hamanaka et al. 2010). In those experiments, when
both DIMM and a secretory cargo-encoding gene were ex-
pressed, the large secretory granules that formed alsowere
densely packed with the cargo protein. In our PC experi-
ments, we observed abundant large secretory granules,

but they were not electron-dense, possibly because
MIST1 regulates only the production, size, and location
of the granules but cannot affect the type or amount of car-
go (e.g., VEGFB) produced, which is regulated by lineage-
specific transcription factors.
We also hypothesized that a scaling factor could imbue

cells with the ability to scale down their function during
times of stress (Mills and Taghert 2012). During hypoxia,
for example, cells might decrease MIST1 to scale back
secretion and conserve resources. Work by us and others
in pancreatic and gastric injury models has revealed, ac-
cordingly, that one of the first molecular features of the
tissue damage response is that Mist1 expression is shut
off (Nozaki et al. 2008; Lennerz et al. 2010; Huh et al.
2012; Capoccia et al. 2013; Karki et al. 2015). The down-
scaling caused by this loss of MIST1 may be critical, as
forced expression of MIST1 during pancreatitis causes
poor adaptation to injury (Karki et al. 2015).
The present study also sheds some new light on how

MIST1 might work to scale secretory architecture.
MIST1 is expressed in multiple long-lived secretory cells
derived from every germ layer along numerous different
lineage specification sequences (Schwab et al. 2000; Pin
et al. 2001; Johnson et al. 2004; Capoccia et al. 2011; Met-
zler et al. 2015). The principal common feature among
those cells is not how they differentiate but what they
do: secrete large amounts of protein over a long life
span. We show here that, across many different tissues,
a similar cohort of genes is induced in MIST1-expressing
tissues throughout the body. As that cohort seems able
to cause numerous dramatic rearrangements in cellular
organization, we might be able to learn some clues about
how MIST1 works by studying these genes. How does a
transcription factor cause such dramatic morphological
changes (which are lost if MIST1 is lost) by increasing ex-
pression of certain genes?
Although functional study of each MIST1 target is be-

yond the scope of the present study, we can draw some
conclusions, speculate, and discuss some puzzling aspects
of the findings. We restricted analysis to the 23 genes that
were identified in Figure 6A, focusing on those that were
increased in qRT–PCR validation. As mentioned in the
Results, unbiased annotation shows that nearly all (a
few have not yet been extensively characterized) aremem-
brane-associated and have functions in cytoplasmic or-
ganelles intracellularly.
Manual annotation (Supplemental Table S2) indicates

that a large cohort of MIST1 targets regulates lysosomal
trafficking and/or autophagic function: 5330417C22Rik,
Copz2, Rab26, Wdyhv1, Ostm1, and Trabd (Lange et al.
2006; Wang et al. 2009; Behrends et al. 2010; Deng et al.
2010; Shtutman et al. 2011; Jin and Mills 2014; Pandru-
vada et al. 2015). We show here, and we and others have
shown previously, that trafficking of lysosomes and mito-
chondria is regulated by MIST1 (Luo et al. 2005; Jin and
Mills 2014). Autophagy control is likely critical in long-
lived secretory cells with high anabolic demands for pro-
ducing protein; old organelles must be recycled efficient-
ly, but there may be specific mechanisms also to
preserve secretory granules from degradation until a
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signal to secrete is received. We characterized the lyso-
some and mitochondrial trafficking properties of RAB26
(Jin and Mills 2014) previously, and others recently have
shown it to help regulate trafficking to autophagy (Binotti
et al. 2015).

Not surprisingly, several MIST1 targets are involved in
vesicle and membrane trafficking from ER to Golgi to
secretory granules: Copz2, Ufm1, Large2, Ostm1, Ttc7b,
Pon3, Tmed6, and Qpctl (Cynis et al. 2008; Lemaire
et al. 2011; Schilling et al. 2011; Shtutman et al. 2011;
Nakatsu et al. 2012; Schweikert et al. 2012; Wang et al.
2012; Weinert et al. 2014). COPZ2, one of the coatomer
protein complex members that has not been extensively
characterized, has been described previously as a MIST1
target (Direnzo et al. 2012). OSTM1 is interesting in that
it seems to be a key adaptor protein involved in trafficking
of lysosomes and secretory granules (e.g., melanosomes)
via interaction with microtubule-associated motors (Wei-
nert et al. 2014).

MIST1 targets are enriched in mitochondria-associated
functions. This cohort comprises genes involved in mito-
chondrial trafficking (Rab26,Ostm1, and Pon3) and those
involved in amino acid metabolism (Aass, Bckdk, Gcdh,
Qtrt1, and Wdyhv1) (Hutson 2006; Cleveland et al.
2008; Wang et al. 2009; Biela et al. 2013; Seminotti et al.
2013; Hatazawa et al. 2014). The three trafficking genes
seem to be involved in interactions between mitochon-
dria and lysosomes as mentioned (Rab26 and Ostm1)
and between mitochondria and the ER (Pon3). The amino
acid-modifying MIST1 targets are all relatively uncharac-
terized “housekeeping” genes involved in amino acid in-
terconversion and catabolism. The fact that >20% of the
core MIST1 target genes fit in this relatively uncommon
gene function indicates that amino acid metabolism is a
key feature of MIST1’s function.

Another aspect of our analysis is the highly nonrandom
distribution of E boxes in MIST1 target genes. The palin-
dromic E-box CAATTGwas conspicuously rare in the ge-
nomic sequences of mice or other aligned vertebrates
within the region of MIST1 binding in the primary geno-
mic DNA sequence of MIST1 target genes. The CAATTG
E-box has not been well characterized as a binding tran-
scription factor, with one study showing much lower af-
finity of USF proteins binding CAATTGs (Allen et al.
2005). Itmay be that evolution selects against cis genomic
elements that would lead to transcription factors with
possibly competing functions binding the same gene.

A recent report identified occasional cells in the isthmal
stem cell zone that showed expression of an LSL reporter
gene following tamoxifen activation of theMist1-CreERT2

allele (Hayakawa et al. 2015). Those investigators did not
observe MIST1 protein in those cells, and we have never
seen MIST1 protein expressed in any cell other than
ZCs and their immediate precursors. Furthermore, we
saw no evidence of stem-like behavior in MIST1-PCs,
and none of the targets are related to an undifferentiated
state or regulation of proliferation. Thus, our current re-
sults are consistent with many previous studies showing
thatMIST1 expression correlateswith terminal differenti-
ation and a mature secretory cell phenotype.

Materials and methods

Mouse studies

All experiments involving animals were performed according to
protocols approved by theWashington University School ofMed-
icine Animal Studies Committee. Tg(Atp4b-Cre);LSL-Mist1myc

mice (referred to here asAtp4b-Cre;LSL-Mist1myc)were generated
by crossing Tg(Atp4b-Cre) mice with LSL-Mist1myc mice as de-
scribed previously (Direnzo et al. 2012). Tg(Atp4b-Cre) mice
(Syderet al. 2004;Huhet al. 2010) area randominsertion transgen-
ic line expressing Cre recombinase constitutively under parietal
cell-specific promoter elements of theAtp4b gene,which encodes
theH+-K+-ATPase acidpumpβ subunit.LSL-Mist1mycmicehavea
C-terminal 6XHis-Myc-tagged ratMist1 inducible by Cre recom-
binase. Lineage tracing ROSA26LSL-mTmG mice (from Jackson
Laboratory) were crossed with LSL-Mist1myc mice to track Cre
recombinase-induced recombination in gastroids and the liver.
Mist1flox/+ mice were produced by generating aMist1 targeting

vector containing loxP sites flanking the entire Mist1-coding
region within exon 2. In addition, a small biotin tag and
MYC tag were added to the N terminus and C terminus, respec-
tively, of the MIST1 ORF. Mist1flox/flox mice were bred to
Bhlha15tm3(cre/ERT2)Skz mice (referred to here as Mist1CreERT2),
which have aMist1 allele replaced by a tamoxifen-activatable Cre
recombinase (Shi et al. 2009). Mist1CreERT2/flox mice resulting
from those crosses were used to inducibly delete all Mist1 from
MIST1-expressing cells. Tamoxifen-treated littermate Mist1flox/flox

mice served as the controls in these experiments. The Mis-
t1CreERT2/flox and Mist1flox/flox mice did not have any phenotype
prior to treatment with tamoxifen (Shi et al. 2009; H-YG Lo,
RU Jin, and JC Mills, unpubl.).
Micewere genotypedwith PCR amplification. Primer sequenc-

es for genotyping are in Supplemental Table S1.
All experimentswereperformedonadultmice aged7–12wkex-

cept for experiments as noted with aged mice that were 9–12 mo
old. Mice were maintained on a mixed background. Tamoxifen
(Sigma-Aldrich) was injected intraperitoneally in mice using
both “high-dose” and “low-dose” protocols that have been exten-
sively vetted previously by our laboratory and others (Huh et al.
2010, 2012; Capoccia et al. 2013; Khurana et al. 2013; Maeda et al.
2016;Saenzetal.2016).Dosesof5mgper20gofmousebodyweight
(“high-dose”) delivered on threeconsecutive days cause thedeathof
>90% of PCs within 4 d of the initial dose followed by recovery to
a full complement of PCs by 3 wk. To study the re-emergence of
PCs with forced expression of MIST1, we analyzed such recovery
mice at a time of rapid recent PC regeneration: 14 d after initial
dose. To induce Mist1 deletion in the Mist1CreERT2/flox mice, mice
were given daily injections of “low-dose” tamoxifen (1 mg per 20 g
of bodyweight) for five consecutive days.
Hepatocyte-specific MIST1 expression was accomplished by

the adminstration of 5.0 × 1011 genome copies of AAV8-TBG-iCre
(Vector Laboratories) in 150 µL of saline by intraperitoneal injec-
tion into 7-wk-old ROSA26LSL-mTmG mice (n = 3) containing the
LSL-Mist1myc transgene and controls (n = 3). Mice were sacrificed
14 d later, and the livers were removed for subsequent analyses.
Fragments of the livers were collected from all anatomic regions
and processed for histology and molecular analysis independent-
ly. The experiment was repeated with two additional LSL-
Mist1myc mice successfully, with equivalent results based on
RT-qPCR, immunohistochemical, and histological analysis.

Immunofluorescence, immunohistochemistry, and microscopy

Stomachs were prepared and stained as described previously
(Ramsey et al. 2007). The fixation and staining of livers were
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similar but with slight modifications. Livers were first diced into
small cubes and subsequently fixed in 4% paraformaldehyde.
Gastroid fixation and staining have been described previously
(Burclaff et al. 2016). For immunohistochemistry, all steps were
identical except that slides were blocked in 10% normal goat se-
rum and 0.2% Triton X-100 in phosphate-buffered saline (PBS),
and an extra quenching step was performed for 10 min in a meth-
anol solution containing 1.5% H2O2 following antigen retrieval.
The following primary antibodies were used: goat anti-human

GIF (1:2000; gift of David Alpers, Washington University), rabbit
anti-Ufm1 (1:100; Sigma-Aldrich), goat anti-VEGFB (1:100; Santa
Cruz Biotechnology), mouse anti-ezrin (1:100; Santa Cruz Bio-
technology), rabbit anti-myc (1:100; Cell Signaling), rabbit anti-
EIG121/5330417C22Rik (1:100; Prosci), mouse anti-MIST1
(1:100), sheep anti-PGII (1:10,000; Abcam), goat anti-GFP (Santa
Cruz Biotechnology), and rabbit anti-cytochrome C (1:100;
Abcam). Secondary antibodies used were Alexa fluor 488-, 594-,
and 647-conjugated donkey anti-goat, anti-rabbit, and anti-mouse
antibodies (1:500; Invitrogen) and biotinylated goat anti-rabbit
secondary (Jackson Laboratory). Fluorescence microscopy was
performed using a Zeiss Axiovert 200 microscope with an Axio-
cam MRM camera and Apotome II instrument for grid-based op-
tical sectioning. Post-imaging adjustments, including contrast,
fluorescent channel overlay, and pseudo-coloring, werewith Axi-
ovision and Adobe PhotoshopCS6. For subcellular quantification
of granule size, images were collected on a Zeiss LSM510 Meta
microscope with a 63× (plan-apo, 1.4 NA) objective with an Axi-
ocam MRM camera and Axiovision software.
Microscopic quantifications were with ImageJ software on op-

tical sections. PGC secretory vesicles were traced using the circle
tool and tracked using the ROI manager. After all vesicles were
traced, individual areas were measured using the Analyze area
measurement tool. In PCs and hepatocytes, nuclear position
quantification was performed by measuring the distance from
the center of the nucleus to the nearest plasma membrane. The
diameter was then measured. In ZCs, the line was drawn from
the nucleus to the basement membrane from H&E images. The
ratio of those measurements and the diameter of the cell pro-
duced the nuclear position normalized to cell diameter. The
number of PCs per unit was manually quantified. Cell area, pe-
rimeter, and circularity were calculated by outlining individual
cells from representative images and employing the measure-
ment tool in ImageJ.

Basal gastric acid pH measurement

Mice were fasted 12 h prior to pH measurements but given free
access to water. Each mouse was anesthetized with isoflurane
and the gastrointestinal was tract exposed. The gastroduodenal
junction was clamped with a hemostat, and 0.2 cc of nonbuffered
DNase-/RNase-free water (Sigma-Aldrich) was injected into the
stomach and aspirated after 4minwith an 18-gauge 2.5-in animal
feeding needle (Pet Surgical). The aspiratewas centrifuged at 800g
for 3 min, and pH was determined in triplicate with a precali-
brated UB-10 (Denver Instruments) using a combination PY-P22
probe with a 5-mm tip.

Graphing and statistics

Graphs and statistics were done with GraphPad Prism. Signifi-
cance was determined using Student’s t-test, χ2 test, rank-sum,
or Fisher’s exact test where appropriate (e.g., see “GeneChip and
Bioinformatics”). Sample sizes were determined based on statisti-
cal significance and practicality. A P-value of ≤0.05 was consid-

ered significant. Samples were randomized, and measurements
were blinded to prevent the introduction of experimental bias.

qRT–PCR

RNAwas isolated using RNeasy (Qiagen) per the manufacturer’s
protocol. The quality of the mRNA was verified with a BioTek
Take3 spectrophotometer and electrophoresis on a 2% agarose
gel. RNA was treated with DNase I (Invitrogen), and 1 µg of
RNAwas reverse-transcribedwith SuperScript III (Invitrogen) fol-
lowing the manufacture’s protocol. Measurements of cDNA
abundance were performed by qRT–PCR using either a Strata-
gene MX3000P detection system or a Bio-Rad CFX Connect sys-
tem. Power SYBR Green master mix (Thermo Scientific)
fluorescence was used to quantify the relative amplicon amounts
of each gene (normalizing genes were 18S or β-Actin). Primer de-
sign and sequence are in Supplemental Table S1.

FIB-SEM 3D nanotomography

Mouse gastric tissueswere bisected into fixative containing 2.5%
glutaraldehyde and 2% paraformaldehyde in 0.15 M cacodylate
buffer containing 2 mM CaCl2 (pH 7.4), fixed for 15 min at 37°C
and then overnight at 4°C, sliced into ∼1.5-mm-thick pieces,
rinsed in cacodylate buffer for 10 min at room temperature, and
subjected to secondary fixation in 1%osmiumtetroxide/0.3%po-
tassium ferrocyanide in cacodylate buffer for 1 h on ice. The sam-
ples were then washed in ultrapure water and stained en bloc in
2% aqueous uranyl acetate for 1 h. After staining, samples were
briefly washed in ultrapure water, dehydrated in a graded acetone
series, and infiltrated with microwave assistance (Pelco BioWave
Pro) into LX112 resin,whichwas cured in an oven for 48 h at 60°C.
Cured blockswere trimmed andmounted onto SEMpinswith sil-
ver epoxy and facedwith a diamond knife. Toluidine blue-stained
sections (300 nm thick) were used to locate a region of interest.
Blocks were sputter-coated with 10 nm of iridium (Leica, ACE
600) with rotation on a planetary stage to ensure saturation. Re-
gions of interest on a FIB-SEM (Zeiss, Crossbeam 540) were locat-
ed by secondary electron imaging at 10 KeV. Once a region was
found, the samplewaspreparedusing theATLAS (Fibics) 3Dnano-
tomography engine. In short, a platinum pad was deposited on a
40-µm× 40-µm region of interest with the FIB set to 30 KeV and
1.5nA.Threevertical lines for focusand sigmationand twoangled
lines for z-tracking were milled into the platinum pad at 50 pA,
and a protective pad of carbon was deposited on top of the milled
platinumat 1.5 nA. Following this, a rough trench 50µmwide and
55µmdeepwasmilled at 30nAandpolished at 7 nA.Once polish-
ing of the block facewas complete, face detection, focusing, and z-
trackingwereall performedon the fiducialmarks thatweremilled
into the platinumpad. Imagingwas performed at2KeVand1.1 nA
using the EsB (energy selective backscatter) detector with a grid
voltage of 1100 V. The block was milled at a current of 700 pA
with 20-nm slices, and 2000 × 1750 pixel images were acquired
at a resolution of 20 nm/pixel with a dwell of 8 or 10 µsec and a
line average of 3 for a total z-depth of 35 µm.

3D reconstruction

All EM serial images were imported into the Amira 6 3D software
package for 3D reconstruction. Areas of interest were manually
segmented into data objects with intervening unsegmented slices
(“X”) based on object volume. For organelles with suboptimal
contrast, the thresholding function was used for manual segmen-
tation. The interpolation function was used to highlight areas of
interest between manually segmented slices. 3D models were
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generated from labeled objects. The “Smooth” and “Simplify”
functions were used for model generation, and pseudocoloring
was used to enhance visualization for each organelle. Animations
were created with the Animation Director in the software. Vol-
ume measurements were performed as per the Amira6 3D soft-
ware instructions. Measurements <1 × 105 m were excluded due
to a lack of resolution in the Z-stack.

EM

For TEM, stomachs were fixed, sectioned, stained, and imaged as
described previously (Capoccia et al. 2013).

GeneChip and bioinformatics

A 0.5-cm2 section of corpus stomach was collected from
Atp4bCre;LSL-Mist1myc transgenic and control mice, and RNA
was purified using RNeasy (Qiagen). RNA integrity was analyzed
via Agilent Bioanalyzer, and samples were processed and hybrid-
ized to Affymetrix Mouse Gene 2.0 ST expression arrays per the
manufacturer’s instructions as performed by the Washington
University Genome Technology Access Core (GTAC). Gene-
Chips were analyzed with Partek analysis (record GSE81549)
(Direnzo et al. 2012). To determine the overlap between genes in-
creased by MIST1 forced expression in PCs and MIST1-induced
genes in pancreatic acinar cells, we first identified the cohort of
250 genes increased with P < 0.001 (after Bonferroni multiple hy-
pothesis correction) in bothwild-type versusMist1−/− acinar cells
and Mist1 rescue versus Mist1−/− acinar cells. We then deter-
mined the minimal fold change threshold for the gastric
MIST1-PC versus control GeneChips that resulted in a χ2 P-value
of <0.001 for significant overlap between the acinar and PC pro-
files, yielding the 36 genes shown in Supplemental Figure S6A.
We also analyzed GeneChip data from laser-captured wild-type
versusMist1−/−ZCs and neck cells (record GSE 43441) (Capoccia
et al. 2013). Geneswere categorized as “dependent” onMIST1 ex-
pression in chief cells if theywere above the level of detection and
fulfilled the following criteria: (1) exhibited significantly in-
creased expression in wild-type ZCs compared with wild-type
neck cells, (2) showed decreased expression in the ZCs of
Mist1−/− ZCs versus wild type, and (3) did not have increased ex-
pression in the neck cells of Mist1−/− neck cells versus Mist1−/−

ZCs. Two transcripts, Pon3 and Paip2b, met the first two more
important criteria but showed low-level neck cell expression in
both null and wild-type mice.
In another analysis, we used a database of organ-specific gene

expression provided by GeneVisible (Hruz et al. 2008) to deter-
mine the 10 organs in which MIST1 and each potential MIST1
target gene were most preferentially expressed. The number of
“top 10” tissues shared between MIST1 and each putative target
was determined as an assessment of correlation with MIST1 tis-
sue-specific expression patterns. The 10 tissues in which MIST1
was most enriched were extraembryonic tissue/fluid, lacrimal
gland, pancreas, Paneth cell, parotid gland, pituitary gland (hy-
pophysis), placenta, prostate (prostate gland), salivary gland, and
seminal vesicle. These tissue correlation patterns were highly
statistically significant. At the time of analysis, there were 302
separate tissues in the database. Of the 10 tissues in which
MIST1 was most commonly expressed, five were also among
the top 10 tissues for expression of three putative MIST1 target
genes (5330417C22Rik, Large2, and Qpctl). Three more targets
(Copz2, Nudt22, and Bckdk) had four overlapping genes in their
top 10. We set the cutoff for significance at a three-tissue overlap,
since, if all tissue profiles could be treated with equal weight, the
odds of there being three genes at random overlapping between

two top 10 lists from a 302-member pool would be approximately
P < 0.01. In reality, our analysis is likely too stringent, as we did a
control analysis using genes that showed no fold change differ-
ence in MIST1-PCs versus controls to determine the pattern of
tissue overlap of these randomly chosen genes. Of 12 random
genes (the same number that showed a more than three-tissue
overlap among our putative targets) only one shared even a single
tissue among its top 10most expressed withMIST1’s top 10most
expressed (P < 0.003).
RaymondMacDonald from theUniversity of Texas Southwest-

ern (pers. comm.; part of this work recently published in Jiang
et al. 2016) generously provided us with acinar ChIP-seq data
from chromatin immunoprecipitated frompancreatic acinar cells
using a rabbit anti-MIST1 antibody that we generated previously
(Lennerz et al. 2010). The raw data were processed using Partek
software to determine significant MIST1-binding peaks (P-value
< 0.05) and the distances of the peaks from the TSS of each gene.
The subset of significant peaks in our cohort of putative MIST1
targets was used for subsequent analyses. Using the MEME suite
(Bailey and Elkan 1994), we derived the most common motif
within 1000 bp of the ChIP-seq peaks (P-value < 0.01) of our puta-
tive MIST1 targets that had significant MIST1-bound peaks. To
determine evolutionary conservation of E boxes, the Multiz-
Align tool in the University of California at Santa Cruz genome
browser was used (including species from rats to opossums).
Each E box (CANNTG) near ChIP-seq peaks within the first in-
tron was determined using the Short Match tool, and sequence
conservation was determined manually across species.
To count the frequency of E-box motifs within a larger set of

MIST1 target genes, DNA sequences were obtained from mouse
reference genome (assembly mm10) by using Bedtools. The gene
promoters were defined as a 2-kb sequence around the gene TSS
of the 214 genes whose expression was dependent on MIST1 and
also containedMIST1-bound peaks on ChIP-seq within their pro-
moters. Sixteen combinations of CANNTG were counted in
both positive sense and negative sense of a 2-kb DNA sequence,
and their locations were recorded by using an in-house script. For
one set of control sequences neighboring the ChIP-seq peak, the
16 combinations of CANNTG were counted in both a positive-
sense and a negative-sense DNA sequence 1 kb upstream of/
downstream from the ChIP-seq peak. The enrichment scores in
the third column of Figure 6C were calculated by the frequency
of a given CANNTG sequence within the MIST1 ChIP-seq
peak relative to its frequency within the flanking 1-kb regions
(with each prevalence normalized relative to the length of
DNA, given that ChIP-seq peaks were not all of exactly equal
length). The E-box frequencies within other control sequences
were also run, such as within promoters of genes not bound by
MIST1 and not showing a statistically significant MIST1-depen-
dent change in transcript expression. In general, control sequenc-
es were indistinguishable from the flanking DNA control, so we
used only the flanking sequence controls for the final analysis in
Figure 6C.
Finally, mRNA was purified and analyzed from LSL-Mist1myc

transgenic mice injected with AAV8-TBG-iCre using the same
methods as described previously. Sampleswere processed and hy-
bridized to AffymetrixMouseGene 2.0 STmicroarrays. All genes
that were above the statistically significant threshold derived
from the stomach GeneChips were determined “up-regulated”
in our analyses (record GSE93612).
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