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Several fusion genes are directly involved in the initiation and progression of cancers.
Numerous bioinformatics tools have been developed to detect fusion events, but they are
mainly based on RNA-seq data. The whole-exome sequencing (WES) represents a
powerful technology that is widely used for disease-related DNA variant detection. In
this study, we build a novel analysis pipeline called Fuseq-WES to detect fusion genes at
DNA level based on the WES data. The same method applies also for targeted panel
sequencing data. We assess the method to real datasets of acute myeloid leukemia (AML)
and prostate cancer patients. The result shows that two of the main AML fusion genes
discovered in RNA-seq data, PML-RARA and CBFB-MYH11, are detected in the WES
data in 36 and 63% of the available samples, respectively. For the targeted deep-
sequencing of prostate cancer patients, detection of the TMPRSS2-ERG fusion, which
is the most frequent chimeric alteration in prostate cancer, is 91% concordant with a
manually curated procedure based on four other methods. In summary, the overall results
indicate that it is challenging to detect fusion genes in WES data with a standard coverage
of ~ 15–30x, where fusion candidates discovered in the RNA-seq data are often not
detected in the WES data and vice versa. A subsampling study of the prostate data
suggests that a coverage of at least 75x is necessary to achieve high accuracy.
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1 INTRODUCTION

Fusion genes represent an important class of genomic alteration contributing to the tumorigenesis
for both solid and hematological cancers. The hybrid genes are often produced by recurrent
chromosomal rearrangements, such as translocation, deletion and insertion (De Braekeleer et al.,
2011; Sonoda et al., 2018; Suo et al., 2018). In the early 1980s, the first fusion gene was discovered in
patients with chronic myeloid leukemia (CML), which was caused by the translocation between
chromosome 9 and 22. The fusion gene, BCR-ABL1, plays a prominent role in inducing the chronic
myeloid leukemia (Chandran et al., 2019). In the last decades, a great number of fusion genes with
functional impacts have been detected in different cancers. For example, the TMPRSS2-ERG, which
originates from an interstitial deletion in chromosome 21, has been identified in ~50% of prostate
cancer cases (Kron et al., 2017). In the high-grade serous ovarian cancer, about 7% of patients
carrying the BCAM-AKT2 fusion, which is specific and unique for this cancer type (Kannan et al.,
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2015; Mohajeri et al., 2013). Recent studies have revealed the
importance and significance of fusion gene to serve as diagnostic
marker and drug target (Bruno and Fontanini 2020). A
comprehensive characterization of fusion genes can facilitate
the molecular diagnosis and improve customized therapy for
cancer patients.

The advent of next generation sequencing has greatly
accelerated the discovery of genomic mutations underlying
human diseases. In the last several years, the RNA-seq data
have been widely used to detect fusion events. Multiple
bioinformatics tools are developed to predict fusions from
RNA-seq data, such as TopHat-Fusion (Kim and Salzberg
2011), JAFFA (Davidson et al., 2015), STAR-Fusion (Haas
et al., 2017) and Fuseq (Vu et al., 2018). Generally, according
to their detection strategies, these methods can be divided into
two categories: 1) mapping-first method and 2) de novo
assembly-first method (Kumar et al., 2016). In the mapping-
first approach, the RNA-seq reads are first mapped to the
reference genome or transcriptome. The discordantly mapped
reads including spanning and split reads are then extracted to
predict the fusion genes (Haas et al., 2019). For the de novo
assembly-first approach, the reads are first assembled into
longer transcripts, which are then compared with the
reference sequence to identify candidate fusion events.
Although these methods achieve favorable results when
detecting chimeric genes, further improvements in accuracy
and performance are still needed to produce more reliable
estimates (Carrara et al., 2013).

Apart from RNA sequencing, the whole-exome sequencing
(WES) represents another primary type of sequencing application
which has been frequently utilized in cancer studies (Bao et al.,
2014). The experiment of WES contains two major steps: 1)
capturing the protein-coding region and 2) sequencing the reads
at deep level using high-throughput sequencing platforms. The
use of WES achieves big success in identifying complex
mutational signatures associated with various diseases, such as
breast cancer and Alzheimer’s disease (Dieci et al., 2016;
Raghavan et al., 2018). Compared with the whole-genome
sequencing, WES only sequence the exon region, which
accounts for < 2% of the whole genome. This feature makes
the whole-exome sequencing much more cost-effective and
practical for large-scale usage in medical research and clinical
diagnostics.

In our previous study, we have developed a method named
Fuseq to identify fusion genes from RNA-seq data, which
provides an accurate and fast prediction of the fusion
aberration (Vu et al., 2018). In this study, we aim to
evaluate the potential value of exome sequencing data for
the purpose of fusion detection. We construct a novel
analysis method, named Fuseq-WES, and implement it to
several cancer type cohorts including acute myeloid
leukemia (AML) and prostate cancer. We find that the
fusion genes detected from WES data are concordant with
those from RNA-seq data. For example, two of the major
fusion genes, PML-RARA and CBFB-MYH11, are validated in
36 and 63% of the available samples, respectively. Detection of
the well-established fusion gene TMPRSS2-ERG in prostate

cancer using targeted deep DNA-sequencing data has 91%
concordance manually curated calls of the fusion. A
subsampling study of the prostate data suggests that a
coverage of at least 75x is necessary for Fuseq-WES to
achieve high accuracy.

2 MATERIALS AND METHODS

2.1 Overview of Fuseq-WES Pipeline
Figure 1 shows the workflow of Fuseq-WES method. There are
four key steps in the pipeline: 1) extraction of discordant and split
reads from read alignment; 2) reads annotation and build the
fusion equivalence class; 3) apply various statistical tests and
filters to remove false positive fusion candidates and 4) output the
final fusion gene lists.

2.2 Extraction of Discordant and Split Reads
Reads mapping is the process to infer which region in the
reference sequence that a read can originate from. In recent
years, a wide range of computational tools have been developed
and implemented for reads mapping, e.g., BWA, HISAT2 and
Bowtie2 (Li and Durbin 2009, Li and Durbin 2010; Langmead and
Salzberg 2012; Kim et al., 2019). The standard output of these
tools is in SAM (Sequence Alignment/Map) format, or its binary
version, BAM (Binary Alignment/MAP) format. Both formats
records the detailed results from read alignment (Li et al., 2009; Li
2011). In the SAM/BAM file, each alignment line has 11
mandatory fields such as mapping position, flag, CIGAR string
and mapping quality (Li et al., 2008). Fuseq-WES first filters out
reads with mapping quality less than 30, and then extracts the
discordant and split reads based on the flag and CIGAR string
fields. As shown in Figure 1, the discordant reads are a pair of
reads mapping to each side of the fusion gene and the reads are
spanning the fusion junction; while the split reads are those
overlapping with the fusion junction directly. We keep these two
types of reads and exclude the other reads which are mapped to
reference perfectly.

2.3 Build the Fusion Equivalence Class
All the discordant and split reads are first annotated with the
information of mapping position, chromosome, gene names
and transcript names. In this step, a GTF (General Transfer
Format) file recording the characteristics of genome/
transcriptome structure is provided as input (Breese and Liu
2013). In our previous study, we have introduced a novel
concept, fusion equivalence class (FEQ), to predict high-
confidence fusion gene from discordant reads (Vu et al.,
2018). As shown in Figure 2, we assume that there is a pair
of discordant reads, read1 and read2, mapping to the
constituent parts of fusion gene GeneA-GeneB. The read1 is
mapped to transcript tx1 and tx2, and read2 is mapped tx3, tx4
and tx5. We then produce the FEQ, which is the possible
combination of fusion transcripts (ftx). In this example, there
are six fusion transcripts generated from read1 and read2 (ftx1
to ftx6). Thus, the FEQ describes the reads sharing between
potential fusion genes. Based on the FEQ sets and the
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information of annotation, we infer the corresponding fusion
genes (FGEs). In this case, read1 and read2 contribute one read-
pair as the supporting reads for the FGEs candidates.

2.3.1 Fusion Gene Candidates From Split Reads
According to the definition, split reads overlap with the fusion
breakpoints, thus provide direct evidence supporting a potential
fusion event (Haas et al., 2017). For each split read, we set the
threshold that the maximum number of genes it can map to as
two, which means that a split read map to more than two distinct
genes will be discarded. Also, if the split reads are from the same

read pair and were overlapping with each other, the non-overlap
region should be over 20 bases.

2.4 Statistical Tests and Filters
In this step, several statistical tests and filters are applied to exclude
the false positives. For example, in terms of the general features, the
chromosomes of fusion genes are limited to autosome 1–22 and
chromosome X and Y. The constituent genes should be protein-
coding genes and the distance between the two genes from the same
chromosomemust be large enough (10 kilo bases in this study). Also,
we set the minimum number of supporting read pairs of a fusion
event to be one. Apart from the filtering criteria regarding the general
characteristics, another primary factor causing false positives is
paralog genes with extremely similar sequences. To address this
issue, we implement an RNA-seq simulation to detect paralogs genes/
transcripts. The simulation scheme is similar with what we did in our
previous study (Deng et al., 2020). We apply an R package Polyester
to simulate an artificial sample, in which all the transcripts are
assigned a large number of reads to be expressed, e.g., 10,000
(Frazee et al., 2015). After reads mapping, we summarize the
reads sharing between different transcripts, which is an important
indicator for sequence similarity in transcripts. We then extend the
similar sequences from transcript level to gene level, and determine a
set of genes that are paralogs. If two genes from a fusion event are
paralogs, this fusion gene will be discarded as false positive.

2.5 Real whole-Exome Sequencing
Datasets From Cancer Cohorts
In this study, we employ our method to several real WES datasets
including the BeatAML cohort, TCGA-AML cohort and the

FIGURE 1 | Workflow of Fuseq-WES to detect fusion genes from whole-exome sequencing data.

FIGURE 2 | Construction of fusion equivalence class and fusion
transcripts; prediction of fusion genes.
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Prostate Biomarkers cohort (Network 2013; Nordström et al.,
2017; Tyner et al., 2018). All of these studies provide rich
resources containing RNA-seq, exome-seq, health record,
genetic mutation and biomarker data. We first detect the
fusion genes from RNA-seq data and then utilize Fuseq-WES
to validate the fusion candidates using whole-exome
sequencing data.

2.5.1 BeatAML Cohort
The BeatAML cohort includes a total of 672 tumor specimens
representing 562 unique patients, which gives a comprehensive
genomic landscape of AML. Specimens from bone marrow and
peripheral blood were obtained from patients with informed
consent (Tyner et al., 2018). The exome sequencing was
performed on 531 patients using the Illumina Nextera
RapidCapture Exome capture probes and protocols. After
quality control and library preparation, the DNA segments
were sequenced using the HiSeq 2500 with paired end 100-
cycle protocols. The WES data were then mapped to reference
genome using BWAMEMversion 0.7.10 (Li 2018). The SAM files
were sorted and converted as BAM format using SortSam (do
Valle et al., 2016). Also, the BeatAML study has performed RNA
sequencing on 411 patients, the samples were processed using
Agilent SureSelect Strand-Specific RNA Library Preparation Kit.
Reads were sequenced on HiSeq 2500 using a 100-cycle paired-
end protocol and saved as FASTQ files (Holm et al., 2019).

2.5.2 TCGA-Acute Myeloid Leukemia Cohort
The TCGA-AML cohort represents another primary project
investigating the genomic and epigenomic landscape of AML
(Network 2013). In this study, whole-exome sequencing was
performed on 150 adult patients using matched tumor and
skin tissues. The exome library was constructed and sequenced
on either an Illumina HiSeq 2000 or Illumina GAIIX 76-bp
platform. The raw reads were aligned to human reference
genome using BWA and saved in BAM files. The RNA
sequencing was performed on 179 cases using 76-bp pair-end
protocols. All datasets were deposited through the Cancer
Genome Atlas data portal (https://tcga-data.nci.nih.gov/tcga)
for public access.

2.5.3 Prostate Biomarkers Cohort
Prostate cancer is a genetically heterogeneous disease which
remains the most common and deadliest malignancy among
Swedish men (Nordström et al., 2017). The metastatic
castrate-resistant prostate cancer (mCRPC), where the tumor
continues to progress regardless of low testosterone level, is one of
the most aggressive cancer subtypes (Zhang et al., 2017). The

Prostate Biomarkers (ProBio) cohort was built to evaluate the
therapeutically predictive markers in mCRPC. A total of 750 men
were recruited and randomized to receive either standard of care
or treatment with medications. The germline DNA and
circulating tumor DNA were extracted from blood samples
and then sequenced using the targeted deep-sequencing
approach. The TMPRSS2-ERG fusion gene is the most
frequent genomic mutation in prostate cancer, which can be
found in 55% of cases. From the ProBio group, we obtain a total of
65 patients and the targeted sequencing data, where the
TMPRSS2 and ERG are selected for deep sequencing with an
average 1500X read depth. To assess the effect of coverage on the
accuracy of Fuseq-WES, we perform a subsampling study by
taking a random sample of the reads at coverage 7.5x to 150x.

3 RESULTS

3.1 Fusion Gene Detection in Acute Myeloid
Leukemia Patients
We first apply the Fuseq-WES method to validate the fusion
genes in BeatAML dataset. PML-RARA is a well characterized
fusion gene in acute promyelocytic leukemia (APL), which is a
clinically and biologically unique subtype of AML (Liquori et al.,
2020). The fusion is produced as the consequence of balanced
translocation t (15; 17) (q24; q21), which involves the PML gene
on chromosome 15 and the RARA gene on chromosome 17.
From the RNA-seq data, we detect 16 samples harboring this
chimeric gene. In BeatAML project, we find 11 matched samples
with available exome sequencing data. We run the detection
pipeline on these samples and validate the PML-RARA in four
out of 11 samples. Table 1 shows the number of discordant and
split reads supporting the fusion event. For example, in Sample
20–00147, there are five discordant reads and seven split reads
mapped to the fusion gene. For Sample 13–00226, 14–00831 and
20–00566 the total number of supportive reads are four, two and
two, respectively.

The inversion involving p13 and q22 segment on chromosome
16 leads to the fusion of CBFB andMYH11. The CBFB-MYH11 is
consistently observed in patients with AML subtype M4Eo (do
Valle et al., 2016). Several studies have shown that the chimeric
protein product can inhibit differentiation of hematopoietic cells

TABLE 1 | Number of supporting reads for PML-RARA in BeatAML samples.

Sample ID Fusion Discordant Read Split Read Total

Sample_13-00 226 PML-RARA 2 2 4
Sample_14-00 831 PML-RARA 0 2 2
Sample_20-00 147 PML-RARA 5 7 12
Sample_20-00 566 PML-RARA 1 1 2

TABLE 2 | The number of samples harboring fusion genes detected from RNA-
seq data; number of matched samples with exome sequencing data and
number of samples carrying fusion genes identified using WES data in BeatAML
and TCGA dataset, respectively.

BeatAML RNA-seq data WES data Fuseq-WES

PML-RARA 16 11 4
CBFB-MYH11 25 24 15
RUNX1-RUNX1T1 9 6 0

— TCGA RNA-seq data WES data Fuseq-WES

PML-RARA 16 6 3
CBFB-MYH11 11 6 0
RUNX1-RUNX1T1 7 4 2
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and contribute to the development of AML with the presence of
additional alterations. Table 2 shows that in the BeatAML
dataset, the fusion event is detected in 25 patients using RNA-
seq data. There are 24 cases with matched whole-exome
sequencing data; among which, we find that 15 samples are
carrying this fusion gene. The validation rate in CBFB-MYH11
(0.63) is much higher than that in PML-RARA (0.36). By
checking the gene/exon structure in the UCSC genome
browser (Karolchik et al., 2003), we notice that the MYH11
has a total of 43 exons, which gives a high exon density
considering that the gene length is 153,896 bp.

The formation of RUNX1-RUNX1T1 fusion is due to the
balanced translocation between chromosome 8 and 21, which can
be identified in 5–12% of AML cases (Grinev et al., 2015). In the
BeatAML data, we detect nine patients carrying this fusion gene.
There are six matched samples with WES data available.
However, as Table 2 shows, we are not able to detect the
RUNX1-RUNX1T1 fusion in any of the six samples.

We apply the same analysis scheme on the TCGA-AML
data to validate the fusion genes. The PML-RARA fusion is
detected in 16 samples from RNA-seq data. We obtain six
samples with matched exome sequencing data and the fusion
event is identified in three of them. For CBFB-MYH11, the
RNA-seq data shows that a total of 11 samples carry the fusion
and there are six of them having exome sequencing data.
Surprisingly, unlike the high validation rate in BeatAML
data, none of the six samples having CBFB-MYH11
detected. The RUNX1-RUNX1T1 is identified in seven
samples using RNA-seq and is confirmed in two out of four
samples with WES data available.

3.2 Detection of TMPRSS2-ERG in Prostate
Cancer
The Prostate Biomarkers (ProBio) project implements a targeted
deep-sequencing approach to characterize the genomic profile of
selected genes. TMPRSS2-ERG (TE) is a predominant fusion
gene with a 55% prevalence in prostate cancer patients. From the
project we obtain 65 samples with targeted sequencing data. We
first use four separate tools for fusion gene detection, which
include SvABA (Wala et al., 2018), LUMPY (Layer et al., 2014),
GRIDSS (Cameron et al., 2017) and an in-house python-based
tool named SVcaller. The fusions identified by at least two of the
four tools are called positive. All positive-fusion calls for
TMPRSS2-ERG are manually verified using the Intergrative
Genomics Viewer (IGV); for convenience, we refer to this
final call as the IGV call. We then employ the Fuseq-WES

pipeline to detect fusion events. Table 3 shows the
comparison between the two detection strategies.

The IGV call identifies 37 patients to be carrying the TE fusion,
while the remaining 28 are TE negative. Using the Fuseq-WES
approach, the TE fusion is identified in 41 samples and absent in
24 samples. Overall, the results are concordant in 36 TE positive
and 23 TE negative cases, indicating a 91% agreement between
the two analyses. The detailed number of mapped and split reads
supporting the TE fusion is given in Supplementary Table S1.
For the five discordant cases identified as negative by IGV and
positive by Fuseq-WES, the number of total supporting reads are
34, 16, 9, 4 and 2. We investigate the reason for discordance: the
fusion junctions discovered by Fuseq-WES contain no short
insertion that is frequently observed in true fusions (Wala
et al., 2018).

We further investigate how sequencing depth impacts on the
accuracy of Fuseq-WES. First, we randomly select 10 samples for
which the TE fusion is validated manually. Then, for each sample
we randomly subsample the reads from original data (1500X
coverage) to generate five lower-coverage samples including 150x
(10%), 75x (5%), 30x (2%), 15x (1%) and 7.5x (0.05%). Finally, we
perform Fuseq-WES for all 10 samples and report in Table 4. The
results show that the decrease of sample coverage is strongly
correlated with the reduction of validation rate and the number of
supporting reads of TE fusion. When the coverage is comparable
to the actual WES data of TCGA-AML and BeatAML, the
validation rate of TE fusion is close to validation rate of the
cohorts: 0.7, 0.5, and 0.4 for 30x, 15x, and 7.5x, respectively. Thus
a coverage of at least 75x seems needed to get high accuracy.

4 DISCUSSION AND CONCLUSION

In this study, we aim to exploit the potential value of whole exome
sequencing data in the context of fusion gene detection. We
develop a new method named Fuseq-WES and apply it to several
representative cancer datasets. In two of the most comprehensive
cohorts of AML, i.e. BeatAML and TCGA-AML, we identify and
validate three fusion genes, PML-RARA, CBFB-MYH11 and
RUNX1-RUNX1T1, which play important roles in the
development and progression of AML. In the Prostate

TABLE 3 | Comparison of detection results for TMPRSS2-ERG fusion in ProBio
patients using the IGV and Fuseq-WES methods. Overall there is 91%
concordance between the two methods.

Positive IGV Negative IGV Total

Postive Fuseq-WES 36 5 41
Negative Fuseq-WES 1 23 24
Total 37 28 65

TABLE 4 | Fuseq-WES detection results (in terms of the number of supporting
reads) for TMPRSS2-ERG fusion in 10 ProBio samples. For each ProBio
sample, we obtained random subsamples of the reads of the original data at
various lower-coverage levels.

Sample 150x (10%) 75x (5%) 30x (2%) 15x (1%) 7.5x (0.05%)

1 17 12 6 2 0
2 3 1 0 0 0
3 38 17 9 5 2
4 5 3 0 0 0
5 5 3 1 0 0
6 2 1 2 0 0
7 1 1 0 0 0
8 160 64 28 12 4
9 5 2 2 2 1
10 65 31 16 7 5
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Biomarker dataset, we validate the most recurrent fusion gene,
TMPRSS2-ERG, and achieve a 91% concordance using two
detection schemes.

Compared with the identification results using RNA-seq data,
we find that only a fraction of the fusion genes could be detected
in the exome sequencing data. For example, from the BeatAML
dataset, we obtain 11 samples with exome-seq data for PML-
RARA, and four of them are successfully identified to carry this
chimeric alteration. In the TCGA-AML cohort, there are six
exome-seq samples and we validate three of them carrying the
PML-RARA fusion. High-confidence detection of fusion genes
mainly depends on split reads. Thus, we also summarize the
number of split reads in the WES and RNA-seq data
(Supplementary Table S2). In the BeatAML dataset, the
median number of split reads in WES is 15, while in the
matched RNA-seq samples the median number is 55. From
the TCGA-AML dataset, the median number of split reads in
WES data is only two, and the number in RNA-seq samples is
nine. These results indicate that WES has three times fewer split-
reads than RNA-seq, which partially explains the small number of
validated samples using exome-seq data.

An obvious limitation of WES is that only the exome region is
targeted from genomic DNA for sequencing. In this case, if a
fusion junction is located in an intronic region that is out of the
targeted enrichment of exonic regions, the exome sequencing is
unable to capture that break point. In contrast, the RNA-seq
holds an inherent advantage over exome-seq, by which the non-
coding regions are removed to produce mature messenger RNA
(mRNA), so that the chimeric junction is detectable by
subsequent sequencing. Therefore, a fusion gene can be
identified using WES data only if the break point is located in
or close to the exonic regions. Another limitation of WES is the
short read length, especially the length of valid split reads
covering the fusion junction. We have drawn a conceptual
figure in Supplementary Figure S1 to illustrate the fusion
detection near the exon junction region using WES and RNA-
seq reads. As the figure shows, when the breakpoints are close
enough to the exon boundary of Gene A and Gene B, the exome-
seq reads still have the chance to cover the fusion junction and
thus capture the fusion event.

We also find that the validation rate is highly associated with
gene-exon structure and the read coverage in WES data. A gene
with dense exon distribution and the sequencing data with high
coverage could facilitate the fusion detection. For the CBFB-
MYH11 fusion, in the BeatAML data we identify a total of 15
samples with the mutation among 24 WES cases. The high
validation rate could be due to that the MYH11 has 43 exons
with the gene length of ~154,000 bp, which represents a high
density covering the whole region of the gene. However, using the
TCGA-AML data, we cannot validate the fusion gene in any of
the six cases with WES data available. From the BAM file we
notice that the median read-depth of TCGA-AML and BeatAML
samples are 15x and 40x, respectively, which is lower than the 75x
threshold as indicated in Table 4. Altogether, we conclude that
the higher validation rate is directly related to the exon density
and read coverage in the exome sequencing data.

This observation is confirmed by the analysis using prostate
cancer data. The ProBio project applies a targeted sequencing
method including the exons and introns, and provides ultra-deep
sequenced data with read-depth up to 1500x. We achieve an
overall agreement in 91% of the 65 cancer patients. A
subsampling study of the prostate data suggests that at least
~75x is needed for Fuseq-WES to get high sensitivity and accurate
results. We have summarized the coverage of WES data of 23
primary cancers in The Cancer Genome Atlas (TCGA) database,
which is presented in Supplementary Table S3. For example, the
coverages of glioblastomas and lung adenocarcinoma are about
138x and 98x, respectively (Brennan et al., 2013; Collisson et al.,
2014). The high read coverage makes these datasets promising
resources to detect fusion genes using Fuseq-WESmethod. Taken
together, we recommend the implementation of Fuseq-WES on
high-coverage exome-seq and the targeted sequencing data to
detect fusion genes. With the increasing number of exome-seq
data generated and published, we anticipate that the WES will
yield insightful results of fusion gene detection in cancer studies.
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