Wang et al. BMC Evolutionary Biology (2017) 17:192
DOI 10.1186/512862-017-1036-6

Annotating long intergenic non-coding

BMC Evolutionary Biology

@ CrossMark

RNAs under artificial selection during

chicken domestication

Yun-Mei Wang'~, Hai-Bo Xu'?, Ming-Shan Wang'~, Newton Otieno Otecko'?, Ling-Qun Ye'?,

Dong-Dong Wu'?'® and Ya-Ping Zhang"*"

Abstract

Background: Numerous biological functions of long intergenic non-coding RNAs (lincRNAs) have been identified.
However, the contribution of lincRNAs to the domestication process has remained elusive. Following domestication
from their wild ancestors, animals display substantial changes in many phenotypic traits. Therefore, it is possible
that diverse molecular drivers play important roles in this process.

Results: We analyzed 821 transcriptomes in this study and annotated 4754 lincRNA genes in the chicken genome.
Our population genomic analysis indicates that 419 lincRNAs potentially evolved during artificial selection related to
the domestication of chicken, while a comparative transcriptomic analysis identified 68 lincRNAs that were
differentially expressed under different conditions. We also found 47 lincRNAs linked to special phenotypes.

Conclusions: Our study provides a comprehensive view of the genome-wide landscape of lincRNAs in chicken.
This will promote a better understanding of the roles of lincRNAs in domestication, and the genetic mechanisms

associated with the artificial selection of domestic animals.
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Background

The domestication of wild animals has dramatically im-
pacted human life, allowing a shift from hunter-gatherer
to farming societies, and promoted the rise of human
civilization. Driven by artificial selection, domestic ani-
mals generally display many phenotypic changes in be-
havior, morphology, and physiology compared to their
wild ancestors. Consequently, there is a very high pheno-
typic diversity among chicken breeds than any other bird
species. These phenotypic variations are valuable re-
sources for studying the evolution of complex genetic
traits. However, previous studies on the genetic mecha-
nisms underlying the evolution of complex traits have
mainly focused on protein-coding genes [1-4]. A major
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reason is that the functional annotation of long non-
coding RNAs (IncRNAs) is largely missing.

LincRNAs comprise a heterogeneous subset of RNAs
that are longer than 200 nucleotides (nt) and are tran-
scribed from intergenic regions without protein-coding
potential. An increasing number of investigations have
shown that many lincRNAs are not just transcriptional
‘noise’, but execute important functions in numerous
biological processes including: transcriptional regulation
[5-8], cell cycle and apoptosis [9, 10], as well as pluripo-
tency and differentiation control [11, 12]. While the se-
quences and expression levels of most lincRNAs evolve
rapidly, they are tissue-specific [13—15], but some show
clear evolutionary conservation with strong purifying se-
lection in exonic sequences or promoter regions [16].
LincRNAs have high relative abundance in genome, for
example, lincRNAs accounted for more than half of
chicken IncRNAs identified by Kuo et al. [17], but sparse
information on their functional background. Thus,
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extensive research is required to fully define and inte-
grate IncRNAs into genome biology.

In addition to its tremendous economic importance as
a food source, chicken serves as a model organism,
particularly to evolutionary biologists interested in
investigating artificial selection of complex traits [18].
Similar to other domestic animals, studies of chicken do-
mestication have primarily focused on protein-coding
genes [1-4], and little attention has so far been paid to
non-coding regions. Hence, the potential of IncRNAs to
advance our understanding of the genetic mechanisms
underlying diverse chicken phenotypes as well as other
complex traits remains largely untapped.

In this study, we leveraged large-scale RNA-sequencing
data (more than 800 transcriptomes) to unearth thousands
of lincRNAs in chicken, which we then utilized to investi-
gate their impact on domestication. We annotated the
functions of these lincRNAs and found 68 that were dif-
ferentially expressed under different conditions. We also
factored into our analyses significant trait-correlated
single-nucleotide polymorphisms (SNPs) from previous
genome-wide association studies (GWAS) of chickens
[19-38]. This analysis enabled us to uncover 47 lincRNA
genes that have significant SNPs associated with special
phenotypes. Based on population genetics analyses of
SNPs in red junglefowls (RJFs) and domestic chicken ge-
nomes, we identified 419 lincRNAs that exhibit significant
genetic differentiation between the two populations. Our
study provides important insights towards a better utility
of lincRNAs in studying domestication and artificial selec-
tion events.

Results

Constructing the lincRNA gene repertoire in the chicken
genome based on 821 transcriptomes

In order to capture the spectrum of chicken transcrip-
tional diversity, we curated 715 RNA-seq libraries from
48 public datasets available in the National Center for
Biotechnology Information (NCBI) database. We added
another 195 RNA-seq libraries from our own projects.
We excluded 89 libraries with mapping rates lower
than 60%, and kept 821 for further analysis (Fig. la
and Additional file 1). The reserved libraries comprise
21 cohorts that are mainly differentiated based on
organ type and developmental stage (Fig. 1b, Additional
files 2 and 3).

Following the procedure described in Fig. la and
Methods, we credibly identified a total of 8134 transcripts
from 4754 candidate lincRNA loci, encompassing almost
all chromosomes [39] (Fig. 1c). Additionally, we identified
2942 novel putative lincRNAs not previously reported in
two IncRNA databases, a domestic-animal long noncoding
RNA database (ALDB) [40] and NONCODE (Additional
file 4: Figure S1A).
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Based on maximum expression levels across the 821
samples, lincRNAs exhibited lower expression levels
than protein-coding genes, with an approximately 13
times lower median Fragments Per Kilobase of exon
model per Million mapped fragments (FPKM) value
(Additional file 4: Figure S1B). Meanwhile, our results
show that the lengths of chicken lincRNA transcripts
vary between approximately 200 base pairs (bp) and 1.5
kilobases (kb), with a median of about 1 kb, while pro-
tein-coding RNAs have a median length of approximately
3 kb (Additional file 4: Figure S1C and Additional file 5).
Averagely, about 2.6 exons are present in lincRNA tran-
scripts, far less than in protein-coding RNAs that have ap-
proximately 11 exons (Additional file 4: Figure S1D and
Additional file 5). These findings indicate that chicken
lincRNA transcripts are shorter and have fewer exons
than protein-coding transcripts. A similar trend has been
cited in human and mouse [41, 42] and further verified by
our reanalysis (Additional file 5 and Additional file 6:
Figure S2).

Functional annotation of lincRNA genes in chicken

To investigate the potential functions of lincRNAs, we
annotated transcripts based on flanking protein-coding
genes. It has been reported that numerous lincRNAs in-
fluence the expression of adjacent protein-coding genes
[43]. Our results indicate that the median distance be-
tween lincRNAs and their proximal protein-coding
genes is approximately 12 kb. About 59% of flanking
protein-coding genes is within 20 kb (Fig. 2a). A Pearson
correlation coefficient (PCC) of FPKM across all samples
indicates that expression correlations between lincRNAs
and their proximal protein-coding genes are stronger
than protein-coding gene pairs selected randomly (both
t-test and Wilcoxon test p-value <2.2e-16), but similar
to neighboring protein-coding gene pairs (t-test p-
value = 0.07 and Wilcoxon test p-value = 0.09, Fig. 2b).
This pattern is synonymous with that seen in other ver-
tebrates including humans and zebrafish [42, 44, 45]. A
more evident result was realized when only 162 high
quality samples (RNA Integrity Number, RIN, >8.0, and
mapping rates >80%) were analyzed (Fig. 2c).

The strong correlations between expression of
lincRNAs and proximal protein-coding genes illustrate
the presence of possible functional correlations as noted
in previous studies [46, 47]. Therefore, we performed
gene ontology (GO) enrichment using the database for
annotation, visualization and integrated discovery
(DAVID v6.7) for 1797 protein-coding genes located
within 20 kb proximity to lincRNAs. This analysis
showed enrichment for categories encompassing the de-
velopment of the nervous system, palate, and heart, as
well as the differentiation of brown fat cells and osteo-
blasts, the regulation of transcription and translation,
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apoptosis, proliferation, cell motility, and signal trans-
duction (Fig. 2d). We also applied DAVID annotation
for each tissue type by using parts of 1797 protein-
coding genes that are within 20 kb proximity to
lincRNAs and expressed in the tissue type (Methods).
We observed enrichment for most of the categories
stated before (Additional files 7 and 8). These results in-
dicate that the lincRNAs identified in this study are
likely involved in critical biological processes including:
development, differentiation, cell proliferation, cell
death, signaling, and transcriptional activity.

Tissue-specific analyses of lincRNAs

A number of previous studies have proposed that
IncRNAs exhibit high tissue specificity [13, 42, 45], im-
plying that many of these transcripts might function in a
tissue specific fashion. Thus, to further assess the poten-
tial functions of lincRNAs, we computed the tissue spe-
cificity index (TSI) for expression patterns of lincRNAs
and protein-coding genes [48]. TSI values ranged from 0
in housekeeping genes to 1 in tissue-specific genes. As ex-
pected, the results show that lincRNAs are more tissue-
specific than protein-coding genes (Fig. 3a). Moreover,
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Fig. 2 Functional annotation of lincRNAs based on adjacent protein-coding genes. a: Overview of distances from linCRNAs to their proximal
protein-coding genes within 20 kb. Red dashed line at about 12 kb shows the median distance for all flanking protein-coding genes. b: Density
of expression correlations between different gene groups by all samples. ¢: Density of expression correlations between different gene groups by
162 high quality samples. d: Significant categories enriched among protein-coding genes adjacent to lincRNAs within 20 kb

protein-coding genes flanking tissue-specific lincRNAs ex-
hibit higher levels of tissue specificity than other protein-
coding genes (Additional file 9: Figure S3A-C).

Because our data originated from different tissues with
divergent sampling backgrounds, we applied weighted
gene co-expression network analysis (WGCNA) in R
software [49] as well as sample similarity to categorize
the 821 samples into 21 tissue-related cohorts depending
on gene expression values (Fig. 1b, Additional file 3 and
Methods).

We then employed two strategies to retrieve tissue-
specific lincRNAs. First, a lincRNA with TSI greater than
or equal to 0.95 and whose highest FPKM value oc-
curred in one tissue-related group was considered to be
the tissue-related group’s specific lincRNA (designated
as tissue-specific lincRNA) [50]. This analysis resulted in

the identification of 3380 tissue-specific lincRNAs
(Fig. 3b, Additional file 9: Figure S3D and Additional
file 10). Secondly, 534 further tissue-specific lincRNAs
were obtained by utilizing the ‘rsgcc’ package in R
software [51] (Methods), and were all included in the
TSI set (Fig. 3b—c and Additional file 10).
Tissue-specific lincRNAs can augment tissue-specific
gene signatures [52]. Thus, we estimated Pearson corre-
lations for expression levels between each specific
lincRNA and all protein-coding genes across all samples
in associated tissue cohorts by paired comparison.
Protein-coding genes with significant p-values (< 0.05)
and ranked PCCs were used for gene set enrichment
analysis (GSEA) [53]. An association matrix [16, 43, 52]
was built between 534 tissue-specific lincRNA genes and
340 significant GO gene sets (false discovery rate,
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Fig. 3 Tissue specificity of lincRNAs. a: TSI of lincRNAs and protein-coding genes. b: Number of tissue-specific lincRNAs identified from the TSI
method (blue) and 'rsgcc’ package (orange), respectively. ¢: Expression heatmap of tissue-specific lincRNAs identified using ‘rsgcc’. Columns
represent samples while rows represent lincRNAs. d: Expression-based correlation matrix of 534 tissue-specific lincRNAs from ‘rsgcc’ (column) and
340 GSEA GO gene sets (row). Blue denotes a negative correlation, red a positive association, and white shows no significant relationship. These
GO sets were divided into 11 clusters (right) based on their functional similarity and correlation

FDR < 0.25). The GO sets were roughly clustered into
11 groups based on functional similarity and correla-
tions. These groups included signal transduction, metab-
olism, response to stimuli, and cell cycle (Fig. 3d).

Differentially expressed lincRNAs under different
conditions

To further investigate the potential functions of
lincRNAs, we tested if these transcripts play any role in

special biological processes in the NCBI transcriptome
projects. To do this, we picked eight diverse conditions
from eight projects that encompassed at least four bio-
logical replicates (Methods). We retained 68 differen-
tially expressed lincRNAs (p-value <0.05 and expression
fold change, FC > 2) from six projects using our filtering
criteria (Fig. 4a and Additional file 11).

Intriguingly, two differentially expressed lincRNAs,
identified from one project (NCBI project ID: SRP028166)
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where a transcriptome from abdominal fat was ana-
lyzed for high-growth (HG) and low-growth (LG)
genotype chicken lines at seven weeks of age, revealed
potentially important functions. Linc_gga001850n
(chr24: 437,952-441,166), a 222 nt transcript encoded
by two exons, had a 5.6-fold higher expression in HG
than LG abdominal fat chicken lines. The closest
protein-coding gene to this transcript, ST3 beta-
galactoside alpha-2,3-sialytransferase 4 (ST3GAL4), was

also expressed at 2.2 times higher level in HG chick-
ens compared to their LG counterparts (Fig. 4a-b).
This gene encodes a member of the glycosyltransferase
29 family which is involved in protein glycosylation,
and has been shown to be associated with lipid traits
in different human ethnic groups [54-56]. Similarly,
linc_gga001994n (chr27: 2,426,075-2,428,073) tran-
scribes a 1554 nt lincRNA encoded by two exons and
showed a two times higher expression rate in HG
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compared to LG chicken. Its nearest protein-coding gene,
mannose receptor C type 2 (MRC2), had a 2.5 times higher
expression level in HG than LG chickens (Fig. 4a and c).
Previous results have identified MRC2 as a marker of
alternatively activated (M2) macrophages in adipose
tissue [57-59]. Weisberg et al. [60] further showed
that obesity is associated with macrophage accumula-
tion in adipose tissue. Our analysis suggests that both
linc_gga001850n and linc_gga001994n might be associ-
ated with adipose tissue development in chicken.

LincRNA genes containing phenotype associated SNPs
Several studies, particularly GWAS, have investigated
the genetic basis of chicken phenotypic traits [19, 20, 26,
61, 62]. These studies have revealed numerous annotated
loci in non-coding, especially intergenic, regions that
might involve IncRNA genes.

We retrieved 2601 significant SNPs associated with
113 characteristics from 20 previous GWAS [19-38].
Subsequent to location transformation (Methods), this
approach yielded 2594 significant SNPs which account
for 0.45% of the high-density 600 K array comprising
580,954 SNPs [63]. Our analysis showed that 98 of the
significant SNPs are located in 47 of the 4754 lincRNAs
(Fig. 4a and Additional file 12). This implies that about
1% of the transcripts we identified might perform im-
portant roles in multifarious chicken characteristics in-
cluding virus resistance, egg or meat production traits,
and comb phenotypes. For example, four genome-wide
significant SNPs associated with comb phenotypes (i.e.,
length, height, and weight) are located within
linc_gga013241 (chr4: 729,869-741,796), which tran-
scribes two isoforms 3647 bp and 3671 bp in length. In
addition, linc_gga000498 (chrl: 65,669,068—65,674,918)
also transcribes two isoforms 4923 bp and 1135 bp in
length, and probably influences eggshell thickness,
weight or strength, because the loci is linked with two
other significantly egg-correlated SNPs (Fig. 4a and d).

LincRNAs under potential artificial selection during
chicken domestication

Numerous phenotypic differences including behavior,
morphology, and reproduction, are evident between the
domestic chicken and its wild ancestor, RJF. Thus, to
further explore potential lincRNA markers of artificial
selection during chicken domestication, we evaluated
genetic differentiation between domestic chicken (702
genomes) and RJF (36 genomes). We calculated the
population differentiation of each SNP between domes-
tic chicken and RJF using fixation index (Fsr) values
[64] (Methods) (Fig. 5a). We located a total of 216
lincRNAs genes in the top 5% of Fsy (Fig. 4a and
Additional file 13). Functional annotation was carried out
using the tool g:Profiler (version r1622_e84_eg31) [65] for
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protein-coding genes nearest to these lincRNAs, giving
rise to biological process enrichment including develop-
ment (especially the nervous system), metabolism, and
adult behavior (Additional file 14: Figure S4A). We also
identified lincRNAs under potential artificial selection by
Pi and Hp, realizing 168 and 145 lincRNA genes in the
top 5% of Pi and Hp, respectively (Additional file 13 and
Additional file 14: Figure S4B). A total of 82 lincRNAs
overlapped in both Pi and Fsp, 21 in both Hp and
Fst, and 20 in both Pi and Hp. Thirteen lincRNAs
were identified by all of the three methods. Overall,
we found 419 potentially selected lincRNAs during
chicken domestication.

Interestingly, one brain-specific lincRNA gene,
linc_gga016043 (chr7:17,334,374-17,334,802), encodes
a 293 nt transcript with two exons, and is substan-
tially conserved within vertebrates (Fig. 5b). Both
linc_gga016043 and its proximally located protein-
coding gene Dix1 are specifically expressed in brain
and positively selected (Fig. 5a). DixI is related to glial
cell and neuronal differentiation, as well as apoptosis
[66—69]. Indeed, this gene is well-known as a Distal-less
homeobox transcription factor, functionally redundant to
DIx2 [67]. Previous work has shown that DIx1 is essential
for the functional longevity of adult cortical and hippo-
campal interneurons, as Dix1~~ mice show a subclass-
specific and age-dependent decrease in cortical and
hippocampal interneurons caused by apoptosis of Dix1-
expressing cells. This decrease leads to a reduction in
GABAergic synaptic suppression and results in epilepsy
[68]. Another study further found that DixI and Dix2
regulate embryonic forebrain development by balancing
neurogenesis and oligodendrogenesis [70]. de Melo et al.
[69] demonstrated that these genes are required for the
terminal differentiation and survival of retinal ganglion
cells in late-born mouse. Thus, it is likely that
linc_gga016043 affects the development and function of
the nervous system by regulating DIlxI expression,
and therefore selection of this gene might be linked
to chicken behavioral changes after domestication.
This shows that lincRNAs probably played an import-
ant role in behavior evolution during domestication
by influencing brain development.

Moreover, we identified a significant SNP, revealed by
GWAS to be associated with egg weight, in a positively
selected lincRNA, linc_gga013852 (chr4:74,811,206—
74,823,353). This lincRNA has three transcript variants
3068 bp, 2406 bp, and 2083 bp in length created via al-
ternative splicing. Importantly, another seven significant
SNPs related to egg weight are within slit guidance lig-
and 2 (Slit2), the closest protein-coding gene to
linc_gga013852. Slit2 presents strong selection signal
(Fig. 5a). It has been reported that the SLIT/ROBO
pathway (including the three SLIT ligand genes, Slitl,
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Slit2, and Slit3, and their receptors Robol, Robo2, Robo3,
and Robo4) influences pre-hierarchical follicular devel-
opment of the hen ovary via intrafollicular autocrine
and/or paracrine signaling [71]. Dickinson et al. [72] also
showed that this pathway influences luteolysis in female
humans.

Our results further show that linc_gga007616
(chr2:11,328,445-11,332,216), a lincRNA specifically
expressed in testis, is under selection, and transcribes a
435 nt transcript from two exons. This lincRNA is prob-
ably involved in spermatogenesis by regulating the
expression of its nearest protein-coding gene, phospho-
fructokinase platelet (PFKP), which has selective signals
and high expression in testis (Fig. 5a). Indeed, Hering
et al. [73] reported the presence of a significant genome-
wide SNP marker that lies adjacent to PFKP, and is

associated with sperm concentration in Holstein-Friesian
bulls. It is also known that PFKP acts as a marker of
oocyte developmental competence in cumulus cells
[74], and can indicate whether oocytes are capable of
establishing a pregnancy [75]. One key property that
supported the long chicken breeding history is egg-
laying. Phenotypes of this attribute including egg size,
egg number, and laying season, have changed signifi-
cantly following domestication from RJF. We there-
fore hypothesize that population differentiation of the
two lincRNAs, linc_gga013852 and linc_gga007616,
may be associated with the evolution of egg laying in
domestic chicken.

Taken together, these results suggest that lincRNAs
have played an important role in domestication, where
little attention was previously paid.
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Discussion and conclusions

We applied a series of stringent criteria and procedures
in this study, and identified more than 4700 candidate
lincRNA genes based on 821 transcriptomes. LincRNAs
in the chicken genome exhibit similar features to those
reported in other species, for instance, a significant ex-
pression correlation with adjacent protein-coding genes,
and high level of tissue specificity. Enrichment analyses
of lincRNA-adjacent protein-coding genes also show
that chicken lincRNAs likely regulate transcription, cell
proliferation, apoptosis, and development [42, 44—47].

In order to gain deeper insights on the biological sig-
nificance of lincRNAs, we leveraged data from 48 NCBI
projects and curated 68 differentially expressed lincRNA
genes (i.e., p-value <0.05, FC > 2). These lincRNAs prob-
ably influence biological processes such as abdominal fat
accumulation in divergent growth genotypes, responses
to heat stress in the chicken hepatocellular carcinoma
cell line, and sperm mobility in the New Hampshire
chicken breed (Additional file 11). Based on these as-
sessments, two lincRNA genes, linc_gga001850n and
linc_gga001994n (transcript lengths of 222 nt and
1554 nt, respectively), can be hypothesized to influ-
ence abdominal fat accumulation in chicken lines. In-
deed, ST3GAL4, the nearest protein-coding gene to
linc_gga001850n, has been linked with lipid traits in
different populations [54-56], while the closest
protein-coding gene to linc_gga001994n, MRC2, is a
marker of M2 macrophages in adipose tissues and is
thus related to obesity [57-60]. These two lincRNA
genes are therefore promising targets for future stud-
ies on chicken breeding and adipose metabolism.

Changes in many phenotypes including behavior,
reproduction, and body size, occurred during chicken
domestication. Through a whole-genome comparative
analysis of RJF and domestic chicken, we identified 419
candidate lincRNAs under selection (Additional file 13).
GWAS data and the annotation of neighboring protein-
coding genes revealed that lincRNAs probably contrib-
uted to chicken domestication by influencing reproduct-
ive capability, behavior, and body morphology. For
example, the gene linc_gga016043, highly conserved in
vertebrates, was likely involved in the evolution of be-
havior during chicken domestication as it influenced
brain development by regulating the expression of its
nearest protein-coding gene, DixI. This protein-coding
gene has been shown to be associated with glial cell and
neuronal differentiation, as well as apoptosis [66—69]. In
addition, linc_gga013852 and linc_gga007616 may
modulate chicken fertility by regulating egg laying prop-
erties, while their nearest protein-coding genes, Slit2
and PFKP, affect either pre-hierarchical follicular
development of hen ovary or bull sperm concentra-
tion [71-75]. This study therefore provides evidence
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for the functional involvement of lincRNAs in chicken
domestication.

Overall, our findings show that genetic changes that
occurred over the millennia of chicken domestication
and development involved not only protein-coding
genes, but also lincRNAs. Indeed, it is likely that
lincRNAs played a substantial role in this process.
Further experimental evidence will provide a deeper un-
derstanding of the role of these transcripts in the evolu-
tion of complex traits in chicken and other domestic
animals.

Methods

RNA-sequencing data

A total of 715 RNA-seq data from 48 chicken projects
were downloaded from the NCBI website (http://
www.ncbi.nlm.nih.gov/). A detailed description of this
dataset is presented in Additional file 1. We augmented
these data with another set of 195 chicken RNA samples
taken from an unpublished study within our research
group. Samples were collected from 157 embryo tissues,
28 adult encephalic regions, and ten adults organs, in-
cluding brain, kidney, heart, eye, and eggs. RNA was iso-
lated using Trizol reagent (Invitrogen) and RNeasy Mini
Kits (Qiagen). RNA samples with a RIN value greater
than 7.0 were used for library construction and sequen-
cing on the Illumina Hiseq 2000 platform using an insert
size of approximately 300 bp.

Read alignment, transcript assembly, and quantification
Adaptors and low quality reads with insert size shorter
than 25 bp or average quality scores less than 18 were
trimmed using the software btrim [76]. Sequence frag-
ments were aligned to the chicken genome galGal4.79
(Ensembl v79 [77]) using TopHat2 software (v2.0.14)
[78], with defaults except setting ‘-—read-mismatches;,
‘—read-edit-dist; as well as ‘—read-gap-length’ to no more
than three bases. Samples with alignment rates (ie.,
overall read mapping rates of single-end sequencing li-
braries and concordant pair alignment rates of paired-
end sequencing libraries) greater than or equal to 60%
were reserved for subsequent transcript assembly and
quantification in Cufflinks software (v2.2.1) [79], using
the default parameters and the ‘-GTF-guide’ option. Ac-
cepted hits bam files from TopHat2 with the same ex-
perimental identification numbers were merged using
SAMtools (v0.1.18) [80] into single bam files for subse-
quent analytical steps. Full command lines are described
in Additional file 15.

As described by Zhong et al. [81] and Necsulea et al.
[13], strand-specific RNA-seq data can be combined with
nonstrand-specific RNA-Seq data ignoring strand infor-
mation to ensure compatibility between the two types of
data. In our assessment, we found that overall read
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mapping rates, concordant pair alignment rates, as well as
gene FPKM values were nearly the same when considering
the strandness information or not (Additional file 16:
Figure S5). This suggests that treating strand-specific li-
braries as unstranded would present no significant impact
on expression levels in our study. This approach is in
agreement with several previous studies [8, 13, 43, 82, 83].
Therefore, for consistency, we set the parameter ‘~library-
type’ at default (ie, fr-unstranded) when running
TopHat2 and Cufflinks for all samples. We also excluded
mono-exonic transcripts in following analyses, as the pres-
ence of canonical (GT-AG) introns in transcript enables
prediction of the transcription strand of loci [13].

Identification of lincRNAs

We used theCuffcompare program in Cufflinks suite to
obtain a non-redundant set of transcripts of all Cufflinks
processed data. Next, a series of parameters (i.e., exon
number, FPKM, and coverage greater than 1, 1, and 3,
respectively, and transcript length no less than 200) were
used to filter potential false positive transcripts. Newly
identified intergenic transcripts were used to detect
protein-coding potential using CPC scores [84]. Tran-
scripts with CPC scores less than zero were considered
to be potentially non-coding. We used BLASTx [85] to
search against a non-redundant protein database to filter
potential transcripts. Loci with transcripts that exhibited
significant hits (i.e., alignment length greater than 30 bp
and e-value less than 0.001) were abandoned, eventually
leading to 4754 reliable candidate lincRNAs loci. All
candidate lincRNA transcripts were then separately
compared with references of known IncRNAs from two
IncRNA databases, ALDB (v1.0) [40], and NONCODE
(2016) using Cuffcompare (v2.2.1) [79]. Loci with tran-
script annotated with class codes ‘=’,‘c’,j, ‘0’, or ‘p’ were
discarded as novel lincRNAs.

Length and exon number comparisons between lincRNA
and protein-coding transcripts

We retrieved transcript information, including chicken
protein-coding transcripts as well as lincRNA and
protein-coding transcripts in human (GRCh38.p2) and
mouse (GRCm38.p3), from the BioMart section of
Ensembl 79 [77, 86]. We counted length and exon num-
ber of these transcripts, and compared them between
lincRNAs and protein-coding genes in the three species
respectively.

Expression correlations between lincRNA and proximal
protein-coding genes

Location information of protein-coding genes in the
chicken genome was downloaded from the Table Browse
of UCSC (University of California, Santa Cruz, UCSC)
[87]. The closest protein-coding gene to each lincRNA
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was then obtained with the ‘closest’ setting in the bed-
tools software (v2.22.0) [88], using default parameters
with the exception of reporting distance with respect to
the reference genome (-D = ref).

To examine expression relevance, we calculated
PCCs of FPKM values across all samples by paired
comparison for three pairs with the same numbers.
Specifically, lincRNAs and their corresponding
protein-coding genes within 20 kb proximity, neigh-
boring protein-coding gene pairs with distances less
than 20 kb, and protein-coding gene pairs selected
randomly. Two tests, Student’s - and Wilcoxon, were
utilized to check for the significance of expression
correlation among the three pairs.

To test whether the 1797 protein-coding genes used
for DAVID annotation were expressed in the same tis-
sues as the lincRNAs, we calculated the number of
lincRNA/proximal protein-coding gene pairs expressed
in a given tissue type. Here, only a lincRNA and its
proximal protein-coding gene both with a mean FPKM
value larger than 1 [89-91] in one tissue are kept and
considered to be expressed in that tissue.

Calculation of tissue specificity
We calculated the TSI following published formula [48]
as follows:

Zf\;(l_xi)
N-1

T =

Where, N refers to the number of tissues while x; de-
notes the expression level in tissue i, and is normalized
by the maximal expression value across N tissues.

Because of potential differences in the designs of
source studies, we clustered our 821 samples into 21
tissue-related groups via sample coherence and by using
the ‘plotClusterTreeSamples’ function in the WGCNA
package [49] with the FPKM values of all genes (Fig. 1b
and Additional files 2 and 3). Clustering dendrograms
comprising samples from markedly different tissues were
classed as ‘others’.

We utilized the ‘rsgcc’ package for tissue-specific
lincRNA identification, calculating tissue specificity
scores as follows:

1- min(R(1), R(2), ..., R(i), ..., R(n)).

Where R(i) = M(i) / E(i); E(i) is the mean or max-
imal expression value of tissue i, and M(i) is the max-
imal expression value of other tissues. Thus, a gene is
considered to exhibit tissue-specific expression if this
score is higher than the parameter ‘tsThreshold’ [51].
We log-transformed FPKM values and applied the
maximum value of expression to each tissue-related
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group. LincRNAs with specificity scores greater than
or equal to 0.75 were considered specific to corre-
sponding tissues.

Functional annotation of lincRNAs using GSEA

We calculated PCCs of expression between each tissue-
specific lincRNA and all protein-coding genes for each
tissue. Significantly correlated (p-value <0.05) protein-
coding genes ranked by PCC were chosen for GO en-
richment assessment in GSEA [53]. We established an
association matrix between tissue-specific lincRNAs and
significant GO biological process gene sets (ie.,
FDR < 0.25), with the numbers 1, -1, and 0 correspond-
ing to positive, negative, and no significant correlations,
respectively. Depending on functional similarity and
relevance, GO gene sets were grouped into 11 clusters,
and a heatmap plotted for the clustered association
matrix (Fig. 3d).

Differential expression analysis of lincRNAs in eight out of
48 transcriptome projects
Taking into account sample numbers and experimental
conditions, we chose eight out of 48 NCBI projects to
identify differentially expressed lincRNAs. Detailed infor-
mation about these projects can be found in NCBL
Briefly, fluctuations of environmental temperature trig-
gers evolutionarily conserved responses in homothermic
animals [92]. Projects SRP030116 and SRP038918 char-
acterized transcriptome responses to heat stress in
chicken liver and hepatocellular carcinoma cell lines, re-
spectively. In addition, abdominal fat is one of the most
important chicken phenotypic and metabolic measure-
ments. Three projects have focused on transcriptional
differentiation of abdominal fat in divergently selected
chickens; SRP017597 focused on fat and lean chicken
lines, while SRP028166 addressed high and low growth
genotypes, and SRP058295 looked at modern commer-
cial broiler chickens with high or low feed efficiencies.
The bacterium Campylobacter jejuni from poorly
cooked chicken meat often causes human bacterial
gastroenteritis. Thus, to investigate the resistance mech-
anisms of birds to C. jejuni colonization, RNA-seq ana-
lysis of whole caecum from C. jejuni-susceptible and
resistant chickens was carried out in project SRP018692
[93]. Project SRP042038 analyzed expression differences
in whole testes between high and low sperm mobility
lines of New Hampshire breed chickens. Finally, meat
production in domesticated chicken has been under in-
tensive selective pressure. Davis et al. [94] identified dif-
ferentially enriched genes in the post-hatching pectoralis
major muscle between modern and legacy broiler lines
(project SRP052755).

We detected differential expression of lincRNAs under
the variable conditions seen in the eight projects
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discussed above as previously described [95, 96]. In de-
tail, we performed Student’s t-test for log2 (FPKM +1),
and assessed statistically significant differences using a
Benjamini-Hochberg-corrected p-value <0.05. Significant
lincRNAs with an FC greater than 2 or less than 0.5, as
well as a mean FPKM from at least one of two contrary
conditions larger than 1 were considered differentially
expressed. By using these filtering criteria, we found 68
differentially expressed lincRNAs in six projects. No dif-
ferentially expressed lincRNAs were found in the other
two projects.

Phenotype associated SNPs

We collected a total of 2601 genome-wide significant
SNPs, involving about 113 features from 20 previous
GWAS studies, ignoring association test models per-
formed in these studies. In the case of SNPs based on
galGal3 assembly, we utilized LiftOver tool of web
version (http://genome.ucsc.edu/cgi-bin/hgLiftOver) to
align them with galGal4. Because SNPs based on galGal3
were identified using Illumina 60 K Chicken SNP
Beadchip with 52,303 SNPs [97], which forms part of the
Affymetrix® Axiom® array 600 K Array consisting of
580,954 SNPs [63], we used the 600 K array for further
ratio calculations.

Population differentiation of lincRNA genes between
domestic chicken and RJF

Whole genomes from 36 RJFs and 702 domestic chick-
ens were obtained from an unpublished project within
our laboratory, and taken through an analytical pipeline
used by previous studies [2, 98, 99]. In detail, we
trimmed off adaptors and low-quality reads with insert
size shorter than 25 bp or average quality scores less
than 20 using btrim [76], and then used the BWA-MEM
algorithm [100] of the BWA software package (v0.7.12-
r1039) for genomic sequence alignment with options ‘-t
12 -M -R’. Aligned bam files were then sorted and dupli-
cates marked using the Picards package (v1.56). SNP
calls were carried out via Genome Analysis Toolkit
(GenomeAnalysisTK-2.6-4, GATK) [101]. Population dif-
ferentiation between RJF and domestic chicken was eval-
uated using Fst for each SNP as previously described
[64]. A 50 kb sliding window size was used for the Fst
statistic, and regions in the top 5% of results were
regarded as potential candidates for artificial selection.
We also identified the lincRNAs potentially under artifi-
cial selection by Pi (nucleotide diversity) and H,, (hetero-
zygosity). Nucleotide diversities (Am or APi) = nRJF -
nVC were also calculated using a sliding window ana-
lysis with a window size of 50 kb and a step size of
25 kb as described elsewhere [98]. H}, was calculated fol-
lowing published formula [1] in sliding 40-kb windows:
Hp = 23¥nMAJEnMIN/(EnMAJ + ZnMIN)? where
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nMAJ and nMIN represent the most and least abundant
allele respectively, while XnMAJ and EnMIN are the
sums of nMA] and nMIN, respectively, for all SNPs in
the window.
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