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Abstract 

Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders with heterogeneous presentation, ranging from indolent disease 
courses to aggressive diseases similar to acute myeloid leukemia (AML). Approximately 90% of MDS patients harbor recurrent 
mutations , which – with the exception of mutated SF3B1 –have not (yet) been included into the diagnostic criteria or risk stratification 

for MDS. Accumulating evidence suggests their utility for diagnostic workup, treatment indication and prognosis. Subsequently, in 

patients with unexplained cytopenia or dysplasia identification of these mutations may lead to earlier diagnosis. The acquisition and 

expansion of additional driver mutations usually antecedes further disease progression to higher risk MDS or secondary AML and 

thus, can be clinically helpful to detect individuals that may benefit from aggressive treatment approaches. Here, we review our current 
understanding of somatic gene mutations, gene expression patterns and flow cytometry regarding their relevance for disease evolution 

from pre-neoplastic states to MDS and potentially AML. 
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Myelodysplastic syndromes (MDS) are clonal disorders characterized by 
ysplasia of at least one myeloid cell line, peripheral blood cytopenia, and
 propensity to eventually progress into acute myeloid leukemia (AML) [ 1 ].
linically, MDS presents highly heterogeneous and may range from indolent
isease courses with nearly normal life expectancies to aggressive neoplasm
imilar to that of AML. This clinical diversity underlines the demand for
ppropriate risk stratification at diagnosis and during disease course as well as
ersonalized treatment approaches to improve outcomes and avoid evitable 
dverse effects of toxic treatment regimens. A growing understanding of the
omplex biology and sequence of biological changes in MDS yield not only
he hope to improve prognostic and predictive tools for MDS patients but
lso to enlarge therapeutic options with novel molecular targets [ 2 , 3 ]. For
xample high teleomerase activity and telomere length have been associated
ith MDS, and consequently, Imetelstat - an inhibitor of telomerase activity
 entered clinical studies to evaluate its potential to reduce transfusion
ependence in lower risk MDS [ 4 , 5 ]. Several epigenetic changes have also
een shown to play a role in MDS pathogenesis and to impact prognosis, such
s microRNA expression patterns [ 6 ], or distinct DNA methylation profiles
hich may identify clusters containing outcome information independent of 

urrent MDS prognosis systems [ 7 ]. 
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However, today not at last due to practical need in the clinical routine,
methods of gene mutation assessment have developed a higher impact on
clinical decision making and personalized therapy approaches. Especially
the introduction of next generation sequencing (NGS) methods impacts
the clinical routine and increasingly allows the identification of recurrent
molecular aberrations with several related consequences [ 8 ]. Despite the
fact that – with the exception of mutated SF3B1 - these mutations have
not (yet) been included into the diagnostic criteria or risk stratification for
MDS [ 1 ], accumulating evidence suggests their utility for diagnostic workup,
treatment indication and prognostic considerations. Studies adapting high
throughput sequencing of myeloid genes showed that approximately 90%
of MDS patients carry at least one oncogenic mutation [ 3 , 8 , 9 ], that initiate
the disease but may also change with cytotoxic treatments or during
natural disease course. Hence, in patients with unexplained cytopenia, the
absence of a molecular or cytogenetic alterations constitutes a negative
predictive factor for the development of myeloid neoplasm [ 10 ]. However,
when identifying a molecular alteration, the distinct affected gene impact
the probability of developing a myeloid neoplasm. While mutations in
genes encoding splicing factors, as well as JAK2 or RUNX1 show a high
predictive value for the diagnosis of a myeloid neoplasm, mutations in TET2,
DNMT3A, ASXL1 also frequently occur in otherwise healthy individuals
[ 11 , 12 ] and are predictive mainly when occurring in combination with other
genetic lesions. Subsequently, in patients with unexplained cytopenia and/or
dysplasia identification of these mutations may lead to earlier diagnosis and
– if clinically necessary – treatment initiation of MDS [ 10 ]. During time, the
acquisition and expansion of additional driver mutations usually antecedes
further disease progression to higher risk MDS or secondary AML and
thus, can be clinically helpful to detect individuals that may benefit from
aggressive treatment approaches, including allogeneic hematopoietic stem cell
transplantation (HSCT) [ 8 ]. 

In MDS patients achieving a morphologic complete remission during
treatment the longitudinal evaluation of genetic aberrations may help
to estimate the depth of remission and planning of further treatment
interventions. Hence, known molecular responses could aid in clinical
decision-making, such as dose reductions in older patients under life-
long palliative therapy or the optimal timing of an allogeneic HSCT in
individuals with curative treatment approaches. Finally, after allogeneic
HSCT, repetitive analyses of known molecular alteration may even allow
measurable residual disease (MRD) evaluation in MDS patients, quite similar
to that already established in AML [ 13 ]. However, such longitudinal studies
have not been systematically performed so far. Furthermore, thresholds of
evolving molecular patterns identifying “danger signals” with regard to disease
evolution are not well defined. Lastly, therapeutic consequences in case of
clonal evolution or increase of MRD are scarce given the paucity of approved
treatment options in MDS [ 14 ]. 

Here, we review our current understanding of somatic gene mutations,
and gene expressions in MDS and their relevance for disease evolution from
pre-neoplastic states to MDS and potentially secondary AML as well as their
applicability for MRD detection when applying therapy to MDS patients,
and the respective treatment associations. While this approach by nature
cannot be a comprehensive review of every biological aspect, we believe it
represents an overview of the data with a stringent up to date clinical value. 

The molecular landscape in MDS 

There are no molecular changes that are specific for MDS and many
recurrent mutations are shared by other myeloid neoplasm and can sometimes
even be detected in healthy individuals. Mutations involved in DNA
methylation such as TET2, DNMT3A , as well as in histone modifiers
ASXL1 and EZH2 are common in MDS [ 8 ], but also frequently occur in
aging healthy individuals [ 11 , 12 ]. However, the observed composition and
frequencies of mutations differ, as e.g. somatic mutations in spliceosome
enes (especially SF3B1, SRSF2, U2AF1 , and ZRSR2 ), TP53, NF1, EZH2, 
nd BCOR have been observed more commonly in MDS, while mutations 
n FLT3, NPM1, DNMT3A, IDH1 , and IDH2 are more common in 
ML [ 9 ]. Chronic myelomonocytic leukemia (CMML) is enriched with 
utations in SRSF2 and TET2 , atypical chronic myeloid leukemia (aCML) 
ith mutations in ASXL1 and SETBP1, and the coexistence of JAK2 with 
F3B1 is typical for MDS/MPN with ring sideroblasts and thrombocytosis 
MDS/MPN RS-T) [ 15 ]. Additional to the composition of mutated genes, 
lso the genomic burden of each mutation differs and allows conclusions 
bout the chronology in which aberrations occurred during disease evolution. 
ypically early events in MDS are usually found with high variant allele 

requencies (VAFs) and include mutations in spliceosome genes, DNMT3A 

utations, ASXL1, or TET2 [ 3 , 8 , 9 , 16 , 17 ]. Frequent subclonal events that
re also known to drive disease progression to higher risk MDS or secondary
ML involve mutations in transcription regulators such as RUNX1 or CUX1, 
s well as signal transducers (i.e. NRAS, KRAS , or CBL ) or cohesin complex
omponents (i.e. STAG2 , or RAD21 ) [ 8 , 9 , 17 ]. Table 1 gives a broad overview
f recurrently affected genes in MDS and their clinical and prognostic 
elevance. 

Besides gene mutations, also aberrant microRNA [6] and gene expression 
n peripheral blood or bone marrow, including BAALC (brain and acute 
eukemia, cytoplasmic), MN1 (meningioma-1), and WT1 (Wilm’s tumor 
ene) have been shown to impact disease evolution and may refine prognostic 
nformation provided by the IPSS-R [ 18 , 19 ]. Following the description of the
rognostic significance of high expressed genes correlated with a leukemic 
tem cell (LCS) signature in AML, Wang et al identified a LCS associated
coring system based on the expression of the 4 genes LAPTM4B, NGFRAP1, 
MP1 , and CPXM1 [20] . While higher LSC4 scores associated with disease
isk as higher IPSS-R scores, complex cytogenetics, and mutations in 
UNX1, ASXL1 , and TP53 , the LSC4 score also independently predicted 
rognosis in MDS patients irrespective of IPSS-R risks [ 20 ]. However, 
espite their undoubtful relevance in disease evolution and risk stratification, 
ethodological obstacles in absolute gene quantification and generating 

omparable results between analyses, PCR quantification methods and 
aboratories so far prevented their introduction into the clinical practice. 

lonal evolution – en route to MDS 

Over the past years the introduction of NGS approaches increased the 
ossibility to identify molecular aberrations also in patients in the absence 
f cytogenetic aberrations and in those with only mild or absent cytopenia. 
n fact, age-related clonal hematopoiesis (ARCH) is driven by mutations also 
ommonly found in MDS and AML (e.g. especially in the genes DNMT3A, 
ET2, ASXL1, JAK2 , or TP53 ) [ 11 , 12 , 21–23 ]. The condition is associated
ith an increased risk to develop a myeloid malignancy including MDS, as 
ell as with an increased all-cause mortality, especially by cardio-vascular 

vents [ 11 , 12 ]. This observation in combination with increased detection
intentional or unintentional) of such mutations led to an increasing need to 
ounsel and monitor individuals with detected mutations prospectively, and 
as prompted first centers to develop specialized clinics [ 24 ]. These findings
lso led to a still continuing debate on minimal diagnostic criteria for MDS
nd, especially in individuals with an otherwise unexplained cytopenia, the 
oundaries to MDS may be fluent [ 10 ]. 

However, to bring some clarification into the growing complexity of 
ow to interpret somatic mutations and their prognostic relevance robust 
efinitions were developed. All lack dysplasia in more or equal than 10% 

f cells, aberrant cytogenetics, or elevated blast counts and, subsequently, 
o not fulfill the WHO MDS disease criteria [ 1 ]. Clonal hematopoiesis of

ndeterminate potential (CHIP) or ARCH denotes the presence of at least one 
omatic mutation that is frequently found in myeloid neoplasia at a VAF ≥
% but without persistent cytopenia or history of an underlying hematologic 
isorder [ 25 ]. CHIP has been shown to associate with a higher risk to develop
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Table 1 

Relevant mutations and noteworthy clinical consequences / targets in MDS. 

Mutated Gene Clinical Associations Prognostic and Therapeutic Relevance 

DNMT3A - present in approximately 15% of MDS 

patients [ 8 , 16 ] 

- occur very early in disease evolution, most 

frequently as hotspot mutations in the R882 

codon [ 8 , 16 ] 

- linked to a higher risk of disease evolution to secondary AML, 

shorter survival in de novo MDS patients [67] and 

independently from MDS origin after HSCT [56] 

TET2 - among the most frequently mutated genes in 

MDS (20-30%) [ 3 , 8 ] 

- associated with increased response to hypomethylating 

agents, especially when present at high VAFs [42] 

- associated with shorter overall survival after HSCT [56] 

ASXL1 - present in 10% − 20% of MDS patients [ 3 , 8 ] 

- associated with thrombocytopenia, increased 

bone marrow blasts, trisomy 8, 

intermediate-risk karyotype and mutations of 

RUNX1, EZH2, IDH1, IDH2, NRAS, JAK2, 

SETBP1, and SRSF2 [ 16 , 68 ] 

- predict inferior outcome in MDS and CMML patients 

[ 16 , 68 , 69 ], including a shorter overall survival following HSCT 

[2] 

Spliceosome 

gene mutations 
- present in approximately 50% of MDS 

patients [8] 

- often represent early events with high VAFs 

at presentation [ 7 , 8 ] 

SF3B1 - among the most frequently mutated genes in 

MDS (25% − 35% of patients) [ 3 , 8 ] 

- strong correlation with ring sideroblast 

phenotype and ineffective erythropoiesis 

- may be seen as a distinct nosologic entity [28] 

- favorable prognosis [28] 

- high response rates to luspatercept [39] 

- K666N mutation may be associated with increased 

progression of MDS and distinct RNA splicing [70] 

IDH1 and IDH2 - less common in MDS as compared to AML, 

affect < 5% of MDS patients [42] 

- prognostic impact in MDS are still up to debate, IDH1 

mutations may have an adverse prognostic effect [71] 

- promising data from early clinical trials for IDH inhibitors 

enasidenib and ivosidenib [72] 

RUNX1 - present in approximately 10% of patients [ 3 , 8 ] 

- linked to a higher incidence of 

thrombocytopenia [3] 

- implied in disease progression and frequently found in 

secondary AML evolving from MDS [73] 

- associated with shorter survival following HSCT [2] 

- may lead to unresponsiveness to lenalidomide in del(5q) 

MDS [38] 

NRAS, KRAS - present in approximately 10% of MDS 

patients [ 3 , 8 ] 

- late, mostly subclonal events [ 32 , 33 ] 

- a cooperation between genes involved in the 

cohesin and RAS pathways was observed in 

15% − 20% of MDS patients who evolved to 

secondary AML [32] 

- adverse prognostic impact in lower risk MDS patients 

through a high transformation rate to secondary AML [ 32 , 33 ] 

TP53 - present in 5% − 10% of MDS patients [ 3 , 8 ] 

- associate with reduced hemoglobin and 

platelet counts at MDS presentation [9] 

- closely linked to complex karyotypes 

- provide a survival advantage during radio-chemotherapy and 

are enriched in individuals with therapy related MDS [ 13 , 14 ] 

- associate with dismal outcomes regardless of the applied 

therapy (HMA, allogeneic HSCT)[ 42 , 56 ] 

- adverse prognosis may depend on the mutation burden, 

allelic state and genomic context [74] 

- response to decitabine comparable to that of intermediate risk 

MDS patients [45] 

- loss of a mutation associates with improved outcome during 

disease course [65] 

- promising data from early clinical trials for 

- TP53 reactivator APR-246 in combination with azacitidine 

[75] 

- inhibitor of mitochondrial metabolism CPI-613 (Devimistat) 

- CD47 antibody Magrolimab 

( continued on next page ) 
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Table 1 ( continued ) 

Mutated Gene Clinical Associations Prognostic and Therapeutic Relevance 

PPM1D - present in < 5% of MDS patients [ 3 , 8 ] 

- provide a survival advantage during 

radio-chemotherapy and are enriched in 

individuals with therapy related MDS [ 29 , 55 ] 

- no significant impact on outcomes [55] 

NPM1 - among the most frequently mutated genes in 

AML, but only found in around 2% of MDS 

cases [ 8 , 46 ] 

- associated with an aggressive MDS phenotype and a high 

progression risk to AML [ 8 , 46 ], should be treated as AML 

whenever possible 

- similar to AML, appear to be stable during disease course 

[ 8 , 46 ] 

- intensive chemotherapy and HSCT seem to improve 

outcomes [46] 

- high activity of combination therapies of venetoclax and 

HMA in NPM1 -mutated AML as well as in higher risk MDS 

[47] hint to a similarly high potential in MDS harboring NPM1 

mutations 
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hematological cancers at a frequency of approximately 0.5% to 1% per year
[26] as well a higher incidence of cardio-vascular events [ 11 , 12 , 27 ]. A somatic
mutation at a VAF > 2% together with a cytopenia but not (yet) fulfilling
diagnostic criteria for MDS constitutes a clonal cytopenia of undetermined
significance (CCUS) [ 25 ]. CCUS associates with a much higher risk of
progression to MDS of up to 50% to 90% in 5 years [ 10 ], especially when
spliceosome gene mutations or co-mutated epigenetic regulators are affected,
and with higher number and VAFs of the affected genes [ 10 ]. In fact, SF3B1 -
mutated CCUS patients almost invariably develop overt MDS with ring
sideroblasts [ 28 ]. Still, so far close monitoring to early detect a myeloid
neoplasm – if it occurs – should be the only clinical consequence, as not
every precursor state will progress into a malignant disease [ 26 ]. 

Already of clinical importance is the presence of mutations in
TP53 or PPM1D which associates with or pre-dispose to therapy-
related MDS following chemo- or radiotherapy. Likely, their presence
will have consequences regarding a more stringent indication for adjuvant
chemotherapy in solid tumor patients with low relapse risk in the future
[ 24 , 29 ]. However, the consequences of the presence of such mutations, while
lacking signs of dysplasia, cytogenetic changes, or blood count abnormalities
yet widely remain an area of very active research and great uncertainties
regarding boundaries to MDS that overlap in some areas. 

Clonal evolution – transforming from MDS to secondary AML 

Frequency differences in the mutated genes in low risk MDS, compared to
high risk MDS and also to secondary AML indicate that the order of mutation
acquisition is not random during progression ( Figure 1 ). Several studies with
paired MDS and secondary AML samples have shown that signaling gene
mutations ( NRAS, KRAS, FLT3, PTPN11 ) and myeloid transcription factors
(i.e. CEBPA, RUNX1 ), as well as TP53 , and cohesin complex components
( STAG2, RAD21 ), along with new cytogenetic abnormalities, expand or
emerge at the time of disease progression [ 9 , 16 , 17 , 26 , 30 , 31 ]. In many cases,
disease progression is associated with clonal evolution, typically defined by
the expansion of a subclone with a unique set of mutation patterns that
drive disease progression to high risk MDS or secondary AML. Especially
the combination of STAG2 mutations and NRAS mutations may play an
important role in progress to secondary AML in a subgroup of patients [ 32 ].
Furthermore, mutations in the genes FLT3, PTPN11, NRAS, and NPM1
have been associated with a fast progression from MDS to AML [ 30 , 33 ],
and mutations in ASXL1 with progression from CMML to secondary AML
[ 34 ]. Thus, monitoring tumor burden and clonal evolution using serial
equencing may provide advantages over using e.g . the blast count - which
ften underestimates the tumor burden - and may allow for early detection 
f disease progression prior to clinical deterioration [ 35 ]. 

olecular markers predicting treatment response 

Molecular aberrations underlie the pathogenic mechanism driving MDS, 
nd subsequently, can be utilized to estimate treatment responses ( Figure 2 ).
 long-known example in MDS is the 5q-syndrome with its particular 
henotype through haploinsufficiency of a variety of genes, subsequent high 
esponse rates to lenalidomide [ 36 ], and resistance mechanism through 
evelopment of TP53 mutations with their underlying pathogenesis [37] . 
lso the presence of RUNX1 and GATA2 mutations may render del(5q) 
DS unresponsive to lenalidomide induced megakaryocytic differentiation 

nd apoptosis [ 38 ]. Accordingly, SF3B1 -mutated MDS not only shows a
elatively favorable prognosis in general, but also constitutes a condition with 
 high likelihood to respond to luspatercept with abolishment of transfusion 
equirement, a recently approved treatment option for low risk MDS patients 
 28 , 39 ]. 

In low risk MDS treatment with erythropoiesis stimulating agents (ESA) 
r luspatercept aims at improving anemia. However, the molecular changes 
hat impact responses is only poorly investigated. While Kosmider et al did 
ot identify a specific typical MDS mutation, they showed that the presence
f more than 2 mutations associated with a lower likelihood of responses 
 40 ], while a recent American society of Hematology (ASH) abstract with
arbepoetin suggested that in this context, ASXL1 mutations might be linked 
o lower response rates [ 41 ]. 

Also in patients with high risk MDS, in whom hypomethylating agents 
HMA) remain the current standard of care with clinical responses of 
pproximately 40% to 50% and complete remission rates of 10% to 15%, 
olecular alterations may allow response prediction. HMA inhibit DNA 

ethyltransferases which leads to a decreased methylation of DNA cytosine 
esidues. Of the genes frequently mutated in MDS that encode proteins 
nvolved in epigenetic regulations, TET2 mutations at VAFs > 10% have 
een repeatedly shown to predict response to HMA [ 42 , 43 ], especially in
he context of unmutated ASXL1 [ 42 ], but did not result in longer survival
n 2 analyses. In contrast, a third study suggested similar response rates 
ut significantly longer survival in patients with either TET2 or EZH2 
utations under treatment with azacitidine in two independent cohorts [ 44 ]. 
dditionally, in a murine model Tet2 loss sensitized cells to treatment with 
zacitidine in vivo which supports these clinical observations [ 42 ]. On the
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Fig. 1. Schematic display of a hierarchical, branching model of the natural MDS disease course. Acquisition of additional genetic abnormalities over time 
which gradually lead to a more aggressive disease phenotype. 

Fig. 2. Genetic factors able to predict responses for different MDS treatment options (Graphic was constructed using Servier Medical Art). 
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other hand, CBL mutations were linked to a lower response rate to HMA
while TP53 and PTPN11 mutations resulted in shorter survival, but did not
affect initially response to treatment [ 42 , 44 ]. In fact, Bejar et al especially
pointed out that they were not able to identify a mutation profile predicting
treatment failure of HMA [ 42 ]. Another study suggested that the use of
decitabine may improve response rates in TP53 mutated MDS patients
compared to standard chemotherapy and may provide a bridge to allogeneic
SCT as curative treatment option for some patients [ 45 ]. For the rare
ut aggressive MDS subgroup with mutated NPM1 a potential benefit of
ntensive chemotherapy and HSCT has been described, indicating that these
atients should be treated similar to patients diagnosed with AML [ 46 ].
owever, combination therapies of venetoclax and HMA have been shown

o have high activity in NPM1 -mutated AML as well as in higher risk MDS
 47 ]. Subsequently, it will be interesting to investigate this combination also
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in this rare MDS subgroup harboring NPM1 mutations. Certainly, many
of the described clinical observations would benefit from prospective trials
further confirming the observed results. 

Molecular markers in transplanted MDS patients 

As of today, allogeneic HSCT remains the only treatment option capable
to fully eradicate and cure MDS. Generally, allogeneic HSCT is mainly
applied in high risk MDS, where it has demonstrated improved long term
survival compared to other treatment options, especially HMA [ 48 ]. In
contrast, in low risk MDS patients the expected longer survival and a
substantial transplant-related toxicity has led to refrain from allogeneic HSCT
for the majority of patients in this group. However, clinical factors, as well
as the presence of TP53, RUNX1 , or ASXL1 mutations may modify the
approach and the center specific non-relapse mortality (NRM) is a key
parameter when considering allogeneic HSCT in low risk MDS [ 49 ]. Higher
intensity conditioning may be preferable for disease control, but the preferred
regimen especially in an older and comorbid patient population is still under
debate [ 50–52 ]. Another important aspect is the tumor burden of the patients
going into transplantation. Many centers use HMA or AML-induction-like
therapies, depending on the pre-transplant tumor burden and patient age to
reduce blast levels prior to allogeneic HSCT. However, here the best approach
is also up to debate and the existing data is not uncontroversial [ 53 , 54 ]. Given
all these uncertainties the growing knowledge of MDS biology may aid in
refining and individualizing the therapeutic approaches. 

Due to the descripted therapeutic approach in general, the mutational
landscape in transplanted MDS patients is skewed towards aberrations more
frequently found in high risk MDS [ 55 ]. In a pivotal study by Lindsley et al
TP53 mutations – present in 19% of the patients in the analyzed cohort
- associated with shorter overall survival and higher relapse rates following
allogeneic HSCT, independently of the applied conditioning regimen [ 55 ].
RAS-pathway mutations (defined as NRAS, KRAS, PTPN11, CBL, NF1,
RIT1, FLT3 , and KIT ) on the other hand associated with shorter overall
survival following allogeneic HSCT in younger patients ( < 40 yr) only after
reduced intensity conditioning (RIC). Thus, patients with RAS-pathway
mutations may benefit from myeloablative conditioning (MAC) in this
group. The presence of JAK2 mutations were associated with higher rates
of death without relapse, regardless of the conditioning regimen – although
the reason remains unknown. In an Italian study including 274 MDS
patients somatic mutation in ASXL1, RUNX1 , or TP53 were independently
associated with unfavorable outcomes and shorter survival after allogeneic
HSCT [ 2 ]. Furthermore, in another smaller study of 87 MDS patients
who underwent allogeneic HSCT for MDS, mutations in the genes TP53,
TET2 , and DNMT3A associated with shorter overall survival. Noteworthy,
in this study all 18 TP53 -mutant patients died within five years after
HSCT [ 56 ]. Intriguingly, the microenvironment of TP53 mutant MDS
shows an immune privileged, evasive phenotype with a PDL1 overexpression
which may contribute also to an inferior graft-versus-disease response after
allogeneic HSCT [ 57 ]. These findings provide a possible target for an
immune-checkpoint-based approach to improve outcomes in TP53 -mutated
MDS patients destined for allogeneic HSCT. 

MRD detection in MDS 

Until today, only a few published studies fill the relative void of
MRD assessment in MDS patients. Most of them have been conducted
in the context of an allogeneic HSCT, which currently remains the only
treatment capable to fully eradicate the disease. Still, post-transplant relapse
or progression remains a major cause of transplant failure, and longitudinal
MRD testing following allogeneic HSCT will help to identify patients at
risk of disease progression. So far, known potential MRD markers in MDS
include (CD34-lineage specific) chimerism analysis [ 58 , 59 ], flow cytometry
 60 ], and WT1 expression levels [ 60–62 ], but all only included small patient
umbers. In terms of traceable driver mutations, a recent study of 53 patients

ncluding 14 with MDS analyzed circulating tumor DNA by sensitive digital 
roplet PCR assays for individual driver mutations after allogeneic HSCT. 
ncreasing levels of the individual mutational burden between one month 
nd three months was a sensitive predictor of relapse following allogeneic 
SCT [ 63 ]. In another study that searched bone marrow for known gene
utations adapting NGS 30 days after performing HSCT, the risk of disease 

rogression was higher among patients in whom mutations were detected 
ompared to those in whom these mutations were not detected [ 64 ]. In a
ecent paper that analyzed the impact of NGS-based mutation negativity 
uring disease course in a heterogenous patient population that included 
5 MDS patients with different treatments, including allogeneic HSCT, 
t was shown that achieving NGS-based mutation negativity associated 
ith improved outcomes [ 65 ], which was especially true for the loss of
P53 mutations [ 65 ]. First prospective analyses already utilized MRD to 
re-emptively treat impeding relapse and showed feasibility to potentially 
revent or delay hematological relapse. The RELAZA2 trial tested an 
zacitidine-based MRD-guided therapy in 53 AML and MDS patients that 
chieved complete remission following either intensive chemotherapy or 
llogeneic HSCT with a traceable molecular marker (i.e. mainly NPM1 
utations) or CD34 + peripheral blood chimerism [ 66 ]. Rautenberg et al
onitored 35 MDS and AML patients for peripheral blood WT1 expression 

ollowing allogeneic HSCT [ 62 ], also initiating treatment with azacitidine in 
atients with elevated levels. After 6 cycles of azacitidine treatment, 37% of 
atients achieved a WT1 level normalization which correlated with improved 
utcomes. Noteworthy, these studies mostly used peripheral blood for MRD 

onitoring avoiding unpleasant bone marrow biopsies for the patients. 
owever, so far large studies analyzing MRD in MDS following remission 

chievement including in the context of an allogeneic HSCT are missing 
nd, thus, it remains an open question, which methods, targets, material 
peripheral blood vs bone marrow) or time-point would be most informative. 

For the detection of MDS-associated mutations for MRD analysis in 
he context of cytoreductive therapy without HSCT, data remains limited –
ikely also due to the difficulty to discriminate between CHIP and malignant 
opulations. However, often VAF levels of MDS-associated mutations clearly 
xceed the bone marrow blast count and also lower-risk MDS patients 
ith a normal blast count can have an molecular or cytogenetic aberrations 

n nearly all bone marrow cells [ 9 ]. This indicates that the blast count
n MDS patients may frequently underestimate the actual disease burden. 
ubsequently, close monitoring of known mutations may provide additional 
rognostic information, albeit not comparable to the extent known from 

cute leukemias. 

onclusion and future perspectives 

Our knowledge on MDS biology is getting increasingly complex and 
ontinuously growing at an unprecedented pace. Zealously running NGS 
anels for MDS-related mutations leading to CHIP or CCUS diagnosis in 
still) apparently healthy individuals result in challenging discussions and 
ecisions regarding further actions [ 24 ]. Especially the detection of recurrent
utations, gene expression patterns, and flow cytometric analyses have 

esulted in continuously improved risk stratification and the development 
f personalized therapies. With the growing knowledge of the complex MDS 
nd pre-MDS biology also comes the opportunity for therapeutic trials which 
ill help to clinically address actionable genetic changes in MDS. 
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