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ABSTRACT

QA-RecombineIt provides a web interface to assess
the quality of protein 3D structure models and to
improve the accuracy of models by merging frag-
ments of multiple input models. QA-RecombineIt
has been developed for protein modelers who are
working on difficult problems, have a set of different
homology models and/or de novo models (from
methods such as I-TASSER or ROSETTA) and
would like to obtain one consensus model that
incorporates the best parts into one structure that
is internally coherent. An advanced mode is also
available, in which one can modify the operation of
the fragment recombination algorithm by manually
identifying individual fragments or entire models to
recombine. Our method produces up to 100 models
that are expected to be on the average more
accurate than the starting models. Therefore,
our server may be useful for crystallographic
protein structure determination, where protein
models are used for Molecular Replacement to
solve the phase problem. To address the latter pos-
sibility, a special feature was added to the QA-
RecombineIt server. The QA-RecombineIt server
can be freely accessed at http://iimcb.genesilico.
pl/qarecombineit/.

INTRODUCTION

The availability of experimentally determined high reso-
lution protein structures has significantly improved the
understanding of biological mechanisms and has greatly
facilitated rational drug design (1–4). Although the rate at
which protein structures are being determined by experi-
mental methods (mainly X-ray crystallography and

nuclear magnetic resonance spectroscopy) has increased
dramatically during the past years, this progress has not
been efficient enough to match the amount of data on
predicted protein sequences generated by genome
sequencing efforts. At the time of writing, there are
�83 000 protein structures in the PDB (5,6), but �23
million protein sequences in the non-redundant databases
(non-redundant GenBank CDS translations, PDB,
SwissProt, PIR and PRF) (7). As a complement to experi-
mental methods, many computational methods have been
developed to address the sequence-structure gap.
However, to generate a 3D structural model of the
target protein, typical users of structure modeling
methods (e.g. biologists willing to predict a structure of
their favorite protein) use only a few fully automated
servers, usually the ones that have performed well in the
most recent Critical Assessment of Techniques for Protein
Structure Prediction (CASP) experiment (8). The recom-
mended procedure is then to choose the model ranked the
highest according to a model quality assessment program
(MQAP), a method that predicts the accuracy of the
model with respect to the true structure (without
knowing the true structure) (9). Even though the model
with the best overall score is selected, it does not mean
that its local conformation over the entire length of the
target sequence is always the closest to the native structure
when compared with the conformations of the remaining
models. Thus, even if more accurately modeled regions
exist in the remaining models, they cannot be easily used
to improve the main model.
To address this challenging problem, we developed the

QA-RecombineIt web server. Our method operates in two
stages (Figure 1). In the first stage (QA-mode), our server
predicts the global quality of input models and provides
estimates of local quality as the deviation between C-a
atoms in the models and corresponding atoms in the
unknown native structure. Together with the input
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models, these predictions subsequently become the input
for the second stage (RecombineIt-mode), in which frag-
ments predicted to be better than others are judiciously
combined to generate hybrid (consensus) models. Finally,
hybrid models are scored by the MQAPs implemented in
the QA-mode and then presented to the user.
Although other freely available servers exist that either

predict protein structure from the amino acids sequence
(10–14) or assess the quality of protein models (15–19),
QA-RecombineIt is unique in providing an integrated
underlying methodology for both scoring and improving
models. QA-RecombineIt can be run for a set of models
generated by a variety of protein structure methods,
including fold recognition/de novo modeling, template-
based modeling and loop refinement, among others.
Essentially, our server can be used at the last step of any
protein structure prediction procedure.

MATERIALS AND METHODS

Model quality assessment

QA-RecombineIt relies on five different MQAP proced-
ures. The MQAPs can be divided into two categories: (i)
single-model MQAPs, i.e. methods that assess the quality
of a single model and (ii) clustering MQAPs, i.e. methods
that operate by structural comparisons between a number
of alternative models generated for the target sequence. It
was shown that in cases where many models based on
varied prediction methods are available, clustering
approaches significantly outperform single-model
MQAPs (18,20–22). However, in cases where only one
or few alternative models are available, the gap between
the clustering MQAPs and single-model MQAPs is
marginal, with single-model MQAPs outperforming clus-
tering MQAPs in some cases (18). Table 1 gives a

Figure 1. Flowchart describing the main functionalities of the QA-RecombineIt server. Protein sequence in FASTA format and 3D structure models
of the target protein must be provided to execute the server. QA-RecombineIt implements two modules, including QA-mode for assessment of
protein models and RecombineIt-mode for merging the best quality fragments derived from the input models. By default, these modules operate in a
fully automatic way. However, more advanced users can modify the operation of the fragment recombination algorithm (RecombineIt-mode) by
selecting the method according to which best fragments and/or models will be picked (box A), and/or manually identifying the models (box B) and/or
fragments(s) (box C) on the base of which the hybrid model(s) will be created.
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brief overview of the MQAPs integrated by the QA-
RecombineIt server. In the following sections, these
methods are presented in detail.

MetaMQAP

MetaMQAP is a meta-predictor that combines output
from a number of original methods used for predicting
global and/or local accuracy of protein structural
models, including VERIFY3D (23), PROSA (24),
BALA-SNAPP (25), ANOLEA (26), PROVE (27),
TUNE (28), REFINER (29) and PROQRES (30). In
addition, MetaMQAP analyzes the following features of
individual residues: secondary structure, solvent accessi-
bility and depth within the structure. Together with
linear regression, these parameters are used to assess the
deviations of C-a atoms for a given model. Then, based on
these predictions, the global accuracy of the model is
calculated and expressed according to the Global
Distance Test (GDT_TS) (31). This indicator corresponds
to the average value of fractions of C-a atoms in the model
that are placed within the distances of 1, 2, 4 or 8 Å from
corresponding C-a atoms in the experimentally
determined structure.

ProQ2

ProQ2 evaluates the following features (16): atom–atom
and residue–residue contacts, surface accessibility,
predicted secondary structure, predicted surface exposure
and evolutionary information calculated over a sequence
window. Based on these features, a support vector
machine algorithm predicts the value of S-score (32) as
the measure of accuracy for each residue in a protein
model. This score is defined as

S� scorei ¼
1

1+ di d0= Þ2
�

where di is the distance for residue i between the experi-
mentally determined structure and the model, and d0 is a
distance threshold. As the threshold is set to 3 Å, the
S-score is sensitive to errors ranging from 0 to 3 Å.
Once the local quality prediction is performed, the
global quality prediction for a model is achieved by
summing the local predictions and then dividing the sum
by the length of the target sequence.

Statistical potentials: DFIRE and GOAP

In general, statistical or knowledge-based potential is a
pseudo-energy function derived from known protein
structures. The majority of statistical potentials use the
inverse Boltzmann law to convert the ratio of observed

and expected frequencies of interactions into a scoring
function that assesses the likelihood that a given inter-
action is ‘good’ or ‘bad’ (33,34).
DFIRE is a distance-dependent, structure-derived, all-

atom statistical potential based on a distance-scaled, finite,
ideal-gas reference state of uniformly distributed
non-interacting ideal gas points. The DFIRE potential
was found to be efficient in the refinement of protein struc-
tures, in particular segments that contain secondary
structure elements or loops (35,36). A detailed descrip-
tion of the potential was presented by Zhou and Zhou.
(37).
GOAP was developed for atomic-resolution modeling

and refinement. Zhou and Skolnick improved the descrip-
tion of pairwise atomic interactions, similar to that of
DFIRE, by introducing the orientation-dependence of
all individual heavy atoms. To achieve this, a plane-like
object is introduced for each atom by using two of its
bonded neighboring atoms and itself. Then, a potential
value is calculated for each pair of interacting atoms. To
do so, the method analyzes the distance between a given
pair of atoms and the mutual orientation of the planes
assigned to the atoms. The GOAP potential has been
described in detail by Zhou and Skolnick (38).

MQAPmulti

MQAPmulti is the only method implemented in QA-
RecombineIt that clusters the protein models being
scored. This method takes both protein models and the
amino acids sequence of the protein under analysis as
input. MQAPmulti executes three separate modules to cal-
culate intermediate scores and then combines them into
one final score. First, MQAPmulti predicts protein struc-
ture features from the target sequence using third-party
methods; these features include secondary sequence (39–
41), solvent accessibility (42,43) and contact maps (44).
The predictions obtained are compared with values of
the corresponding features calculated directly from the
3D structural models under evaluation. These (dis)agree-
ment terms, together with in-house implementation of the
DFIRE statistical potential and the number of unsatisfied
hydrogen bond donors/acceptors, are used to estimate a
global accuracy of each of the input models. To do so, a
linear regression is applied. It should be emphasized that
at this stage, every model is scored independently of the
others; thus, the predicted global quality is single-model
based. In the remaining part of this manuscript, we will
call this score ‘True-MQAPmulti score’. Second, models
are clustered according to their structural similarity. Two
measures of similarity between two models are applied:
GDT (31) (see earlier in the text) and Q-score (45,46),
which measures the structural similarity between two
models by comparing their internal residue distances.
Third, MQAPmulti combines the True-MQAPmulti
scores of all models with pairwise similarity of these
models to enhance the model quality assessment when
only a few models are considered. It is based on the as-
sumption that values of single-model scoring function, on
average, decrease as models become more similar to the
native structure. It was postulated and then proven (47)

Table 1. MQAPs implemented in QA-RecombineIt

Name MetaMQAP ProQ2 DFIRE GOAP MQAPmulti
Type LG/S LG/S G/S G/S LG/C

S, single-model MQAP; C, clustering MQAP; L, MQAP that predicts
local accuracy of a model; G, MQAP that predicts the global accuracy
of a model.
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that the model closest to the native structure should
provide the highest correlation coefficient of a score
(provided by such a single-model MQAP) versus
distance, when used as the reference in pairwise compari-
sons with the remaining models. For a set of models,
MQAPmulti calculates the correlation coefficient for
each model and uses the obtained correlation coefficient
as a score of model correctness. MQAPmulti uses two sets
of such Pearson’s correlation coefficients: between the
score provided by the True-MQAPmulti score and either
GDT_TS or Q-score. Finally, the predictions provided by
the aforementioned three modules (eight different scores
in total) are used, together with a support vector machine
algorithm (48,49), to predict the GDT_TS score of the
models concerned. The method was trained on CASP7
and CASP8 single-domain protein targets.

Tertiary structure prediction using fragment
recombination

RecombineIt is an automatic fragment recombination
algorithm that was inspired by both the Frankenstein’s
monster approach to comparative modeling—a manual
methodology developed previously in our laboratory
(50,51)—and many years of experience of our laboratory
members in protein structure prediction, in particular in
building models for challenging cases that include combin-
ation of template-based and template-free modeling [e.g.
(52)]. The RecombineIt algorithm comprises four steps.
First (stage I), five models are picked according to
the highest global score provided by MQAPmulti
(or MetaMQAP score, if <50 models are submitted by a
user); these models will be used later on as the ‘leading’
models. Simultaneously (stage II), based on the PSIPRED
(39) secondary structure prediction, the target sequence is
divided into partially overlapping blocks (10 overlapping
residues), initially containing one secondary structure
element and half of each loop region connected to this
element. For long sequences, if needed, these initial
blocks are merged (with neighboring blocks in the
sequence) to reduce the total number of blocks to �15.
Then, based on these block boundaries, the input models
are cut into fragments. Next (stage III), all possible com-
binations of the fragments are ranked (without explicitly
generating 3D models for each combination). To rank a
given combination of fragments, the sum of local
MQAPmulti scores (or MetaMQAP scores if <50
models are submitted) is calculated for all residues. In
addition, the combination is penalized if its fragments
are as follows: (i) derived from models that have different
folds from each other (i.e. the TM-score between a pair of
models is below 0.3); (ii) derived from models with folds
that differ from the folds of the ‘leading’ models (TM-
score< 0.3); and (iii) if the similarity of overlapping
regions of two merged together fragments is measured to
have TM-score smaller than 0.9 (53). If the number of
possible combinations of fragments is higher than 108,
an in-house developed genetic algorithm is used to find
the best combinations of the fragments. Finally (stage
IV), 3D models are built for each of the 100 top-scored
combinations of fragments by using MODELLER (54)

(version 9v3) in a multi-template mode. In this last step,
each fragment is considered to be a single template. As the
fragments of a given combination only partially overlap
in their sequences, it would be impossible for the
MODELLER program to model the 3D structure
without additional distance restraints between the frag-
ments. Thus, for each fragment, a set of distances
between its C-a atoms and the remaining C-a atoms
from the model, from which this fragment was derived,
is measured. Then, the data are provided for the
MODELLER program. Notably, for a given combination
of fragments that are derived from many models, there are
always two variants of a pair for given residues X and Y.
One variant corresponds to the situation in which X is
contained in a fragment derived from model Z0, and Y is
contained in the rest of the same model. However, for a
different model (Z00), the situation is reversed: Y is located
in a fragment, whereas X is found within the rest of the
model Z00. Thus, for cases where the conformations of
models Z0 and Z00 are not identical to one another, the
distances between C-a atoms of residues X and Y in
model Z0 may not be equal to those observed in model
Z00. To avoid overwriting such conflicting distance con-
straints assigned to the same pair of residues, only the
distances between C-a atoms of odd-numbered residues
within a fragment and C-a atoms of even-numbered
residues within the remaining part of the model are
taken into account.

By default, the QA-RecombineIt server uses
MQAPmulti in stages I and III (or MetaMQAP if <50
models are submitted), and MetaMQAP is used by default
at stage IV. However, a user can select another set of
MQAPs (those described in the previous subsection) to
be executed and/or used by RecombineIt.

DESCRIPTION OF THE QA-RecombineIT
WEBSERVER

The QA-RecombineIt web server operates through two
stages. In the first stage, called the QA-mode, starting
from protein sequence and computational models of the
protein, our server predicts both global and local accuracy
of these models. In the second stage, called RecombineIt-
mode, the server runs an algorithm that performs a ‘re-
combination’ of the best ranked parts of the input models
into new hybrid structures that are likely to be better than
the input models themselves. Such an approach, when
used manually by human predictors, has proven to
generate, on average, more accurate models than corres-
ponding input models (50,51). Finally, QA-RecombineIt,
in the last step, predicts the model quality for both the
original input models as well as the hybrid models result-
ing from recombination and then selects the highest
ranked model(s).

INPUT AND OUTPUT

QA-mode

The only data required as input are a protein sequence of
the target protein either as a one-letter sequence or in the
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FASTA format and 3D structure models for that protein
sequence. The models can be produced by a variety of
protein structure predictors. Although a model does not
need to have all of its residues modeled, the only restric-
tion is that the number of a residue has to be in agreement
with its number in the target sequence. On sequence sub-
mission to the server, a unique URL for the output of
model quality assessment (QA-mode) is generated. The
user may bookmark this URL. If a user provides an
email address, she or he will be sent a reminder with the
link to an output page once the job has been completed
(Figure 2A). The results page is split into five panels. The
‘Summary’ panel does not only summarize the output but
also allows users to select an MQAP to rank models or to
visualize their local correctness. The ‘Tools’ panel allows
users to either download the selected models annotated
according to the local model quality (B-factor values
modified according to predictions provided by
MetaMQAP or ProQ2 or MQAPmulti) or to use the
TM-score program (53) to superimpose the selected
models and then visualize this superposition by JMOL
(55) (Supplementary Figure S1). The ‘RecombineIt sub-
mission’ panel allows users to execute the RecombineIt
algorithm by pressing the ‘Submit recombination of
models’ button. Advanced users may want to activate an
option, by which they can define ‘leading’ models and/or
fragments; this can be accomplished by pressing the
‘advanced mode’ button (Figure 2B). This will force
RecombineIt to build models that are as close as
possible to one of the selected ‘leading’ models and/or to
select fragments that are similar to those selected as
‘leading’ fragments for recombination. Here, it is import-
ant to emphasize that manual selection of ‘leading models’
can have a significant impact on the results. Thus, this
functionality is only recommended to advanced users
with experience in template selection for a given type of
targets. The best template does not necessarily have to
exhibit the highest sequence similarity with the target.
Other important factors that should be considered
include the accuracy of the structure (e.g. resolution and
R-free of a crystallographic structure or the number of
restrains per residue in an nuclear magnetic resonance
structure) and the similarity between the physiological
conditions (e.g. solvent, pH, ligands, quaternary inter-
actions) of the template and the physiological conditions
in which the user wants the target to be modeled. For
example, this advanced option can be useful to those
wanting to model a ligand-bound protein structure;
users can select a model created on the base of a structure
with a ligand as the ‘leading’ model. Selecting ‘leading’
fragments helps to have control over the local conform-
ation (e.g. active site) of models built and to avoid the
inclusion of templates that may have higher sequence simi-
larity or better resolution, but exhibit ‘wrong’ conform-
ation owing to interactions with other molecules or the
absence thereof. The next panel, ‘Sequence 1D informa-
tion’, shows secondary structure, solvent accessibility and
disorder regions predicted for the target protein (see
‘Materials and Methods’ section). Each line of the
‘Model quality assessment’ (Figure 2B) panel contains
global quality assessment for a given model. Local

model quality (MetaMQAP or ProQ2 or MQAPmulti) is
also reported in the form of a heat map (a spectrum of
colors from blue to red represents the spectrum of residues
predicted to be correct or incorrect). The last panel
‘Detailed information’ shows (dis)agreements between sec-
ondary structure and solvent accessibility predicted (from
sequence) versus observed (in the model). Also the predic-
tions of global and local accuracies are reported. The
latter is presented as interactive charts of residue devi-
ations (in Ångströms) in the function of a residue
number. Finally, for each model, the image of its 3D struc-
ture is shown and colored according to the predicted local
quality.

RecombineIt-mode

Once a user clicks ‘Submit recombination of models’
button, the QA-mode output becomes an input to the
RecombineIt-mode. As in the QA-mode, a unique URL
for the output of RecombineIt-mode is generated, which
the user may bookmark. The output page of the
RecombineIt-mode is similar to that of the QA-mode,
except for three differences. First, in contrast to the QA-
mode, the RecombineIt-mode has an additional panel
named ‘Model fragments’ that summarizes the fragment
composition of the generated hybrid models (Figure 2C).
At the top of this panel, an interactive model cloud is
presented, where the font sizes correspond to the import-
ance of each model in the recombination process, i.e.
font size represents the number of times that a fragment
from a given model has been applied to generate a hybrid
model. Below the model cloud, a linear combination of
fragments is presented for each hybrid model. Second,
additional fields, named ‘Fragment definition’, are added
to the output of the RecombineIt-mode to show the
boundaries of the fragments used by RecombineIt. The
last difference between the aforementioned two outputs
is the lack of a ‘RecombineIt options and submission’
panel.

Molecular replacement mode

In protein crystallography, the determination of a 3D
structure of a protein of interest entails gathering the in-
tensity and phase information for a crystal diffraction
pattern [review (56)]. Unfortunately, in a typical macro-
molecular X-ray diffraction experiment, only the
intensities of reflections are measured, and information
about phases is lost. The Molecular Replacement (MR)
technique is one solution to this problem. MR approxi-
mates the phase information using a 3D structure of a
related protein or a theoretical model of the protein
under investigation (called a ‘search model’) (57).
Recently, we have shown that using comparative models
only marginally increases (by 4.5%) the MR success ratio
in comparison with the structures of templates. However,
as we have demonstrated, the situation changes dramatic-
ally once the comparative models are used together with
their local accuracy (58). One of the ways to improve the
utility of theoretical models of protein structure in MR is
to recalculate the B-factor of each atom on the base of its
predicted accuracy and then use such a modified search
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model with MR programs that take into account B-factor
values as the indicator of uncertainties of atomic
positions. By doing that, we have shown that predicted
local accuracy of a model increases the MR success ratio
by 45% compared with corresponding templates (58).
Inspired by these findings, we have added functionality
to QA-RecombineIt. By using the ‘‘Tools’’ panel, users
can download models with B-factor values modified
according to the MQAPmulti local score. Such models
can be used as search models by MR programs that take
into account atoms’ B-factor values, e.g. AMoRe (59) or
MOLREP (60).

VALIDATION

Both components of QA-RecombineIt were tested in the
CASP9 experiment, a community-wide blind assessment
of computational methods for protein structure predic-
tion. MQAPmulti was ranked the 4th best MQAP in pre-
dicting local model quality (http://predictioncenter.org/
casp9/doc/presentations/CASP9_QA.pdf) and among the
10 best performing MQAPs for global model quality
assessment (http://predictioncenter.org/casp9/doc/presen-
tations/CASP9_QA.pdf). For local quality assessment
(expressed in Ångströms), the Pearson’s correlation
between the correct and predicted accuracy was 0.58.

Figure 2. QA-RecombineIt outputs. The example of the output of QA-mode (A). (B)—global and local quality of models. Local quality of each
model is presented as a heat map. Once the user activates the ‘advance mode’, they can modify the operation of the fragment recombination
algorithm by manually identifying the fragments and/or entire models on the base of which the hybrid model(s) will be created. The last panel
(C) summarizes the fragment composition of the hybrid models generated. Word balloons indicate and explain the most important features of the
results page by which the user can interact with the page; LBM, left mouse button.
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For global model quality (GDT_TS), the correlation was
0.96.

In the case of tertiary structure prediction in the CASP9
experiment, all targets were assigned two expiration dates:
first, for automatic server predictors that can meet a 3-day
deadline, and, second, for all other predictors, including
slower automated methods and human groups. Models
submitted for the first deadline were made available for
predictors targeting the second deadline. During the
CASP9 experiment, RecombineIt operated in a fully
automatic mode and used as input only the models of
automated server predictors submitted for the first
deadline (see Supplementary Figure S2 for more details).
Our method was run in its basic mode, i.e. neither
‘leading’ models nor fragments were selected manually.
For the targets with at least one template to predict
protein structure, including 52 template-based modeling
(TBM) targets and 3 TBM/free modeling (FM) targets,
the ‘Zhang’ group performed the best among all predictors
(server and regular ones), achieving the sum of GDT_TS
Z-scores=51.89. The RaptorX server was ranked as the
best among servers and 16th among all predictors (sum of
GDT_TS Z-scores=44.77). RecombineIt was ranked 4th
with the sum of GDT_TS Z-scores=49.69. Hence,
RecombineIt run in its ‘basic’ mode produced predictions
that were on the average better than all fully automated
servers that generated models, which served as the
RecombineIt input. Our method also outperformed most
of the human expert groups, whose performance sur-
passed that of all of the servers and whose models were
not used by our method.

Although RecombineIt performs well for template-
based models, its predictive power is limited in cases of
template-free modeling (Supplementary Table S1). For the
FM targets, where no template existed to predict the
target protein structures, the top-scoring ‘Eloffson’
group achieved the sum of GDT_TS Z-scores=27.14,
whereas the highest ranked server, QUARK, scored
23.08. In this category, our method achieved the
GDT_TS Z-score sum of 21.31, which was worse that
the score of the QUARK method, whose models were
used as an input. Thus, RecombineIt can be safely recom-
mended as a ‘consensus predictor’ for cases of difficult
TBM, where the protein to be modeled may exhibit a
known fold that is likely to be present in at least some
of the input models. However, in the case of structures
with completely new folds, and if good models are
absent in the starting data set, our procedure cannot guar-
antee any improvement over the best starting model, even
though it is likely to propose a solution that is better than
the average.

CONCLUSIONS

The QA-RecombineIt server provides a unified interface
for quality assessment and recombination of protein struc-
ture models. The algorithms underlying the QA-
RecombineIt server were independently tested in the
recent CASP9 competition and were found to be competi-
tive in several categories, including model quality

assessment and protein structure prediction of
TBM targets and TBM/FM targets. As our server can
be run with an input consisting of models generated by
a variety of protein structure methods (both template-
based and template-free), QA-RecombineIt can be used
as the final step in any protein structure prediction
procedure.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figures 1–2.
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