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Neuroimaging studies of neuropsychiatric behavior biomarkers across spectrum

disorders are typically based on diagnosis, thus failing to account for the heterogeneity

of multi-dimensional spectrum disorders such as autism (ASD). Control group trait

phenotypes are also seldom reported. Proton magnetic resonance spectroscopy

(1H-MRS) measures the abundance of neurochemicals such as neurotransmitters and

metabolites and hence can probe disorder phenotypes at clinical and sub-clinical

levels. This detailed review summarizes and critiques the current 1H-MRS research in

ASD. The literature reports reduced N-acetylaspartate (NAA), glutamate and glutamine

(Glx), γ-aminobutyric acid (GABA), creatine and choline, and increased glutamate for

children with ASD. Adult studies are few and results are inconclusive. Overall, the

literature has several limitations arising from differences in 1H-MRS methodology and

sample demographics. We argue that more consistent methods and greater emphasis

on phenotype studies will advance understanding of underlying cortical metabolite

disturbance in ASD, and the detection, diagnosis, and treatment of ASD and other

multi-dimensional psychiatric disorders.

Keywords: autism spectrum disorder, 1H-MRS, brain metabolites, phenotype correlates, review

1. BACKGROUND

Autism spectrum disorder (ASD) encompasses a triad of abnormalities: social interaction, language
and communication, and restricted and repetitive behaviors. The most recent revision of ASD in
the Diagnostic and Statistical Manual (APA, 2013, DSM-5) includes all pervasive developmental
disorders and Asperger’s syndrome (AS). While the DSM-5 highlights the spectrum nature of ASD
by removing the specification of language delay or disorder, by adopting this uni-dimensional
diagnostic style it omits the inherent, multi-dimensional nature of ASD (APA, 2013). In fact, the
ASD triad has been reported as genetically heterogeneous (Happé et al., 2006; Ronald et al., 2006;
Robinson et al., 2012) Furthermore, the spectrum of the symptom triad, particularly social cognitive
domain, are identified in the general population (Baron-Cohen et al., 2001; Ruzich et al., 2015).
Ambiguity in diagnosis and treatment (Coolidge et al., 2013; Ford and Crewther, 2014), and group
classification in scientific research has arisen as a result.

Current research methods fail to take into account the full extent of the spectrum heterogeneity
of ASD, thus lack the specificity required to make conclusive inferences. This is illustrated in
neuroimaging studies that use techniques such as magnetic resonance spectroscopy (MRS) which
identifies abnormalities in molecular behavior related to ASD.We suggest that greater emphasis on
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research into ASD’s specific phenotypes may resolve some of
these limitations, helping to inform the theoretical framework
around the ASD literature.

MRS uses similar principles as magnetic resonance imaging
(MRI), in that it is governed by the Larmor equation,ω = −γB0
where B0 is the external magnetic field and γ is a constant of
a specific nucleus, known as the gyromagnetic ratio (Bertholdo
et al., 2013; Kousi et al., 2013; Juchem and Rothman, 2014).
During exposure to a magnetic field, the resonance of the
atomic spins within nuclei become polarized in response to
the field. In the event of a radio frequency (RF) pulse in
MRS, spins within molecules absorb the energy and polarize
with the RF field. Following the termination of the RF pulse,
the spins precess along the axis of the magnet, creating a
rotating magnetic field at the Larmor frequency. This induces
an oscillating voltage in the RF receiver coil, which is being
analyzed by the MR spectrometer (Juchem and Rothman, 2014).
Each molecule has a different frequency shift due to its unique
molecular environment. The frequency shifts are based on the
chemical environment around the atomic nucleus, resulting in
the “chemical shift” of a particular metabolite that is presented
on a spectrum as shown in Figure 1 (Agzarian and Walls, 2011;
Bertholdo et al., 2013; Kousi et al., 2013; Juchem and Rothman,
2014). Put simply, the chemical shift is the change of the atomic
nucleus’ MR frequency due to the shielding provided by the
surrounding electrons. Due to the role of the external magnetic
field, i.e. MR scanner strength, on the resonant frequency of the

FIGURE 1 | The 1H-MRS chemical shift in vivo. The 1H-MRS chemical shift of a normal adult left temporal lobe at 3T. The y-axis represents the detected

concentration or intensity of the metabolite in moles per liter of tissue, or millimolar (mM). The x-axis is the frequency chemical shift in parts per million (ppm), upon

which metabolites are specified. Note: choline+, total Choline; Cr+PCr, creatine+phosphocreatine; Gln, glutamine; Glu, glutamate; GSH, glutathione; MM,

macromolecules; NAA, N-acetyl-aspartyl; NAAG, NAA-glutamic acid.

atomic nuclei, the chemical shift is expressed as a ratio-metric
difference relative to a reference frequency ωref . The chemical

shift (δ =
ω−ωref

ωref
) is therefore independent of the applied external

magnetic field, and is reported in parts per million (ppm; Ross
and Bluml, 2001; Bertholdo et al., 2013; Juchem and Rothman,
2014).

Neurochemicals are molecules that are involved in cortical

activity, and neurochemicals that are involved in, or are a product

of, metabolic processes are metabolites. Each metabolite has a
unique chemical shift which acts as its signature. This signature

is used for the quantification of that metabolite. The most

common method of metabolite quantification in vivo is through

the proton resonance of hydrogen (1H) atoms (Bertholdo

et al., 2013; Juchem and Rothman, 2014). 1H-MRS identifies

many metabolites in vivo, although only reliably quantifies the

low-molecular-weight metabolites: creatine and phosphocreatine

(Cr+PCr), N-acetylaspartate (NAA), choline, myo-Inositol and

lactate (Govindaraju et al., 1998). For this reason and at this
stage of the technological advancement, the literature is limited

to the aforementioned metabolites, and will be the focus of this

review. Metabolites have intricate and complex interactions with

other metabolites, as well as enzymes and neurotransmitters
as illustrated in Figures 2, 3, which then translate to the
interactions between aspects of human behavior and functioning.
The quantification of a particular metabolite therefore depends
on a number of processes, so reference concentrations of NAA,
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FIGURE 2 | In vivo neuron metabolite interactions. The intricate and complex interaction of metabolic pathways within a generic neuron in vivo, that are

accessible to 1H-MRS. ACh, Acetylcholine; AChE, ACh Esterase; A-CoA, Acetyl-CoA; ADP, Adenosine Diphosphate; Asp, Aspartate; Asp-Nat, L-aspartate

N-Acetyltransferase; ATP, Adenosine Triphosphate; Cho, Choline; ChT, Choline Transporter; CK, Creatine Kinase; CoA, Coenzyme A; Cr, Creatine; Cys, Cystine; EAAT,

(Continued)
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FIGURE 2 | Continued

Excitatory Amino-Acid Transporter; GABA, γ -AminoButyric Acid; GABAT, GABA Transaminase; GAD, Glutamate Decarboxylase; GAT, Glutamate Transporter; Gln,

Glutamine; GLNT, Glutamine Transporter; Glu, Glutamate; GluCys, γ -GlutamylCysteine Synthetase; GLUT3, Glucose Transporter 3; Glyc, Glycine; GPCh,

Glycerophosphocholine Diesterase; GSH, Glutathione; mI, myo-Inositol; NAA, N-Acetylaspartate; NAAG, NAA-Glutamic Acid; NAAGS, NAAGS acid Synthase; NH3,

Ammonia; OxiPhos, Oxidative Phosphorylation; PCh, Phosphocholine; PCr, Phosphocreatine; Pho, Phosphate; vAChT , Vesicular ACh Transporter; vGAT, Vesicular

GABA Transporter; vGLUT, Vesicular Glutamate Transporter.

FIGURE 3 | In vivo astrocytes metabolite interactions. The intricate and complex interaction of metabolic pathways within a generic astrocyte in vivo, that are

accessible to 1H-MRS. ADP, Adenosine Diphosphate; ATP, Adenosine Triphosphate; Cho, Choline; CK, Creatine Kinase; Cr, Creatine; Cys, Cystine; EAAT, Excitatory

Amino-Acid Transporter; GABA, γ -AminoButyric Acid; GABAT, GABA Transaminase; GAT, Glutamate Transporter; Gln, Glutamine; GlnSyn , Glutamine Synthetase;

Glu, Glutamate; GluCys, γ -GlutamylCysteine Synthetase; Glyc, Glycine; GSH, Glutathione; mI, myo-Inositol; NAA, N-Acetyaspartate; NAAG, NAA-Glutamic Acid;

NH3, Ammonia; OxiPhos, Oxidative Phosphorylation; PCr, Phosphocreatine; Pho, Phosphate; SSD, Succinate-Semialdehyde Dehydrogenase.

Cr+PCr or water allow for the calculation of each metabolites
contribution to the spectra (Juchem and Rothman, 2014).

A given metabolite is represented by one or several signals
along the MR chemical shift spectrum depending on the
number of different proton environments within its molecular
structure. These signals may be represented by a single peak,
or a doublet, triplet or multiplet as a result of spin-spin
coupling (J-coupling). J-coupling occurs when a proton within

a molecule has neighboring protons, and the number of
peaks is a function of the number of neighboring protons
within the molecular structure (Govindaraju et al., 1998, 2000;
Bertholdo et al., 2013; Juchem and Rothman, 2014). The
area under the peak represents the quantity of the respective
metabolite (see Figure 1). Furthermore, depending on the
chemical composition of some metabolites, there may be overlap
between them, making these metabolites difficult to isolate.
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This is true of GABA, glutamate and glutamine which are
often quantified together as Glx (Govindaraju et al., 2000;
Bertholdo et al., 2013; Kousi et al., 2013). This high level of
complexity and interaction has broader implications for the
theory of psychopathology. With advancing methods, 1H-MRS
is an important tool for providing insight into the integrity
of neuronal and glial cells, and cerebral energy metabolism
in healthy and diseased brains. Nevertheless, researchers must
be mindful of its limitations, such as the inability to isolate
intracellular tissues (neurons, glia) from extracellular fluid
metabolite levels, when making inferences based on the
literature at large, due to inconsistencies highlighted in this
review.

In psychopathological research, 1H-MRS elucidates possible
neurochemical underpinnings of symptom phenotypes. Such
markers have been investigated in ASD, with metabolite levels
shown to differ between clinical and control samples (Murphy
et al., 2002; Sokol et al., 2002; Kleinhans et al., 2007; Oner
et al., 2007; Suzuki et al., 2010; Brown et al., 2013; Horder
et al., 2013; Doyle-Thomas et al., 2014; Tebartz van Elst et al.,
2014). Metabolite levels have also been shown to correlate
with specific ASD phenotypes, for example; glutamate levels
related to sensory sensitivity and social communication and
interaction (Hardan et al., 2008; Doyle-Thomas et al., 2014;
Tebartz van Elst et al., 2014), and NAA levels related to deficits
in communication and social responsiveness (Kleinhans et al.,
2009; Brown et al., 2013). However, behavioral data is often
limited to the ASD sample despite presence of ASD traits
amongst control populations (Baron-Cohen et al., 2001). The
role of metabolites in ASD trait phenotypes is therefore largely
unknown, and limits the interpretation of the literature at
large. Differences in cognitive ability are also often overlooked
in controls despite its association with NAA and choline
levels (Jung et al., 1999). Demographic and methodological
variation in ASD 1H-MRS studies are highlighted in Tables 1, 2,
respectively.

Literature reviews to date highlight the importance of
advancing 1H-MRS techniques in ASD research, showing
generally decreased NAA (Aoki et al., 2012; Baruth et al.,
2013), Cr+PCr, choline, mI and Glx (Baruth et al., 2013),
and increased Glx in adults (Naaijen et al., 2015). However,
there is a great deal of inconsistency in region of interest
such that inferring about the efficacy of methodological
advances is difficult (Baruth et al., 2013; Naaijen et al., 2015).
Previous reviews also do not discuss the complexity and
interactions within and between the metabolic pathways,
which is of particular importance in development of the
theoretical framework around ASD. Furthermore, recent
reviews do not discuss the implications of omitting trait
phenotype data across experimental groups, despite existing
neurological and psychophysiological differences at a personality
trait level (Gomot et al., 2008; Sutherland and Crewther,
2010; Dinsdale et al., 2013; Ford and Crewther, 2014).
The current review focuses on these shortcomings and
methodological inconsistencies across studies that inevitably
compromises the understanding of metabolite abnormalities
in ASD.

2. CREATINE

Creatine and phosphocreatine levels are a reflection of cellular
adenosine triphosphate (ATP) metabolism (Pouwels and Frahm,
1998; Rae, 2014). Creatine synthesis begins in the kidney
where arginine and glycine produce guanidinacetate (GA) via
arginine-glycine transaminase. GA is transported to the liver
and creatine is synthesized via GA methyltransferase. Creatine
is then transported to the brain as an essential component of

energy equilibrium in vivo as illustrated in Figures 2, 3 (Ross

and Bluml, 2001; Rae, 2014). Creatine and phosphocreatine play

an essential role in ATP and adenosine diphosphate (ADP)

energy transfer and equilibrium within cells. ATP results from
oxidative phosphorylation in neuronal and glial mitochondria,
and glycolysis in the cytosol. In order to store energy effectively,
a phosphate bond is released from ATP and catabolised to
ADP, via the enzyme creatine kinase. The free phosphate bond
then binds with creatine to form phosphocreatine (Ross and
Bluml, 2001; Kousi et al., 2013; Rae, 2014). When cellular
mitochondria require energy, ADP and a third phosphate bond
are resynthesized to ATP via oxidative phosphorylation. In
the cytosol, the reversal of creatine kinase generates ATP;
phosphocreatine releases a phosphate bond, resulting in creatine,
which is taken up by ADP to resynthesize ATP. Due to the
high expression of creatine in the mitochondria of neurons and
in the cytosol of astrocytes (in Rae, 2014), creatine is most
abundant in the cerebellum, followed by gray matter and white
matter (Pouwels and Frahm, 1998; Ross and Bluml, 2001; Rae,
2014; Turner and Gant, 2014). Creatine and creatine kinase are
essential in cellular energy metabolism and in the maintenance
of cortical homeostasis, and may play a mobilizing role for
myo-inositol (Ross and Bluml, 2001; Rae, 2014; Turner and
Gant, 2014). Figures 2, 3 illustrate the importance of the cellular
energy metabolism in the normal production and functioning
of NAA, glutamate and GABA. Creatine concentration in vivo
corresponds to local expression and activity of creatine kinase
(Pouwels and Frahm, 1998; Rae, 2014).

In 1H-MRS, creatine and phosphocreatine (Cr+PCr) are
quantified together at 3.03 and 3.93 ppm (Kousi et al., 2013),
at a concentration of 5.1–10.6mmol/kgww (Govindaraju et al.,
2000). There is substantial variability of Cr+PCr across studies
as demonstrated by the differences between ASD and control
groups reported in Table 3, with Cr+PCr reduction reported
across the cortex in children with ASD (Friedman et al., 2003;
Levitt et al., 2003; DeVito et al., 2007; Hardan et al., 2008;
Corrigan et al., 2013). By contrast, regional increases in Cr+PCr
are reported in adults with ASD (Murphy et al., 2002; Page
et al., 2006; Suzuki et al., 2010; Brown et al., 2013). Variable
Cr+PCr levels are thought to indicate differences in energy
systems and metabolism at an intracellular level (Bertholdo et al.,
2013). Turner and Gant (2014) provide an extensive review of
the biochemistry of creatine, reporting an association between
reduced Cr+PCr and abnormal speech and motor learning,
intellectual disability and ASD-like behaviors. It is suggested that
these are symptoms of delayed or impaired axon growth during
development, of which Cr+PCr is an important ingredient
(Turner and Gant, 2014). Finding of this review largely support
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TABLE 2 | Scanning methods for child and adult ASD 1H-MRS studies.

CHILDREN Scanner Pulse Water Tissue Diff NAA Cr+PCr Cho mI Glx Glu GABA Lac

strength sequence suppression comp

Bejjani et al., 2012 1.5T PRESS (25/1500) Yes + + + + +

No Yes GM ACC + + + + +

Chugani et al., 1999 1.5T PEPSI (30/2000) No No + +

Corrigan et al., 2013 1.5T PEPSI (20/2000) Yes

(272/20/2000)

No + + + + +

Endo et al., 2007 1.5T PRESS (35/2000) CHESS Yes NS + +

Fayed and Modrego, 2005 1.5T PRESS (30/2000) Yes NS + + +

Friedman et al., 2003 1.5T PEPSI (20/2000 272/2000) No No Corr + + + +

Friedman et al., 2006 1.5T PEPSI (20/2000 272/2000) No No Corr + + + +

Fujii et al., 2010 1.5T PRESS (135/1300) No No + + + +

Gabis et al., 2008 1.5T PRESS (40/2000) No No + + +

Hardan et al., 2008 1.5T STEAM (20/1600) No Yes NS + + + +

Hashimoto et al., 1997 1.5T STEAM (270/1500) CHESS No + + + +

Hashimoto et al., 1998 1.5T STEAM (270/1500) CHESS No + + + +

Hassan et al., 2013 1.5T PRESS (30/1500) Yes No +

Hisaoka et al., 2001 1.5T PRESS (135/1300) No No + + +

Kubas et al., 2012 1.5T PRESS (35/1500) MOIST No + + + + + +

Levitt et al., 2003 1.5T 3D Axial (272/2300) Yes Yes WM occ

GM oar

+ + +

O’Brien et al., 2010 1.5T PRESS (35/3000) Yes Yes NS + + + +

Otsuka et al., 1999 1.5T STEAM (18/5000) CHESS No + + +

Sokol et al., 2002 1.5T PRESS (NR) NR Yes + + + +

Vasconcelos et al., 2008 1.5T PRESS (30/1500) NR No + + + +

Zeegers et al., 2007 1.5T PRESS (144/2000) Yes + + +

DeVito et al., 2007 3T SEMS (135/1800) CHESS Yes NS + + + + +

Doyle-Thomas et al., 2014 3T 2D axial (30/2000) No No + + + + +

Gaetz et al., 2014 3T MEGA-PRESS (68/1500) No Yes NS +

Harada et al., 2011 3T STEAM (15/5000)

MEGA-PRESS (68/2500)

Yes Yes NS + + +

Rojas et al., 2011 3T MEGA-PRESS (70/2500) Yes Yes NS +

Joshi et al., 2013 4T 2D-JPRESS (30-250/2000) No No Corr +

ADULTS

Horder et al., 2013 1.5T PRESS (30/3000) No Yes NS + + + + +

Kleinhans et al., 2007 1.5T PRESS (35/3000) No No +

Kleinhans et al., 2009 1.5T PRESS (30/2000) No Yes NS

Murphy et al., 2002 1.5T PRESS (136/2000) CHESS Yes NS + + +

O’Brien et al., 2010 1.5T PRESS (35/3000) Yes Yes NS + + + +

Oner et al., 2007 1.5T PRESS (270/1500) No No + + +

Page et al., 2006 1.5T PRESS (35/3000) CHESS Yes NS + + + + +

Suzuki et al., 2010 1.5T PRESS (144/1500) CHESS Yes NS + + +

Bernardi et al., 2011 3T PRESS (30/2000) Yes No + + + + +

Brown et al., 2013 3T PRESS (30/2000) No No + + + + + +

Tebartz van Elst et al., 2014 3T PRESS (30/3000) No Yes Corr + + + + + +

1.5T , 3T , 4T ; Cho, Choline; Cr+PCr, Creatine+Phosphocreatine; GABA, γ -Aminobutyric Acid; Glx, Glutamine+Glutamate; Glu, Glutamate; Lac, Lactate; mI, myo-Inositol;

NAA, N-Acetyl-Aspartate; CHESS, Chemical Shift Selective; PEPSI, Proton Echo Planar Spectroscopic Imaging; PRESS, Point-Resolved Spectroscopy; STEAM, Stimulated Echo

Acquisition Mode; T, Testla; Corr, Corrected.
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TABLE 3 | 1H-MRS quantified Creatine+Phosphocreatine (Cr+PCr) differences for children and Adults with ASD.

Region Children Adult Region Children Adult

GM � Corrigan et al., 2013† HAC Kleinhans et al., 2009

Corrigan et al., 2013‡ Left Zeegers et al., 2007 ⇈ Suzuki et al., 2010

Corrigan et al., 2013# Right O’Brien et al., 2010 O’Brien et al., 2010

Friedman et al., 2006 Otsuka et al., 1999 ⇈ Page et al., 2006

Frontal DeVito et al., 2007 Thalamus Levitt et al., 2003 Bernardi et al., 2011

Occipital Left � DeVito et al., 2007 Left � Hardan et al., 2008

Right DeVito et al., 2007 � Friedman et al., 2003

Temporal Left � DeVito et al., 2007 Right Hardan et al., 2008

Right DeVito et al., 2007 Friedman et al., 2003

WM � Corrigan et al., 2013†

⇈ Corrigan et al., 2013‡ Cerebellum DeVito et al., 2007

Left Vasconcelos et al., 2008 Tebartz van Elst et al., 2014

Corrigan et al., 2013# Otsuka et al., 1999

Friedman et al., 2006 Right Suzuki et al., 2010

DeVito et al., 2007 Cingulate Hisaoka et al., 2001

Frontal Levitt et al., 2003 Friedman et al., 2003

Left � Friedman et al., 2003 Putamen Levitt et al., 2003

Zeegers et al., 2007 Friedman et al., 2003

Right Friedman et al., 2003 ACC Levitt et al., 2003 Bernardi et al., 2011

Parietal Levitt et al., 2003 Vasconcelos et al., 2008 Tebartz van Elst et al., 2014

Left � Friedman et al., 2003 Bejjani et al., 2012

Right Friedman et al., 2003 Fujii et al., 2010

Frontal Hisaoka et al., 2001 Caudate Friedman et al., 2003

Levitt et al., 2003 Head Left Levitt et al., 2003

Left Vasconcelos et al., 2008 Right ⇈ Levitt et al., 2003

MPF Right ⇈ Murphy et al., 2002 Body Left � Levitt et al., 2003

DLPFC Left Fujii et al., 2010 � Horder et al., 2013 Right Levitt et al., 2003

Right Fujii et al., 2010 Callosum Ant � Friedman et al., 2003

Parietal Hisaoka et al., 2001 Post Friedman et al., 2003

Levitt et al., 2003 Insula Left � Friedman et al., 2003

Left Horder et al., 2013 Right Friedman et al., 2003

Right Hashimoto et al., 1998 Page et al., 2006 Striatum Left Vasconcelos et al., 2008

MPF Murphy et al., 2002 Brainstem
Hisaoka et al., 2001

IPS Bernardi et al., 2011 BasalGanglia Left � Horder et al., 2013

Temporal Hisaoka et al., 2001

MTL Friedman et al., 2003

Auditory Left Rojas et al., 2011 ⇈ Brown et al., 2013

Right ↑ Brown et al., 2013

TPJ Bernardi et al., 2011

STG Friedman et al., 2003

Occipital Friedman et al., 2003

Left Levitt et al., 2003

Right � Levitt et al., 2003

1.5T , 3T ; �, p < 0.001; ↓, p < 0.01; ⇈, p < 0.001; ↑, p < 0.01;
†
3–4 years; ‡6–7 years; #9–10 years; ACC, Anterior Cingulate Cortex; Ant, Anterior; Cent Semi, Centrum

Semiovale; Cr+PCr, Creatine+Phosphocreatine; DLPFC, Dorsolateral Prefrontal Cortex; GM, Gray Matter; HAC, Hippocampus-Amygdala Complex; IPS, Intraparietal Suclus; MPF,

Medial Prefrontal; MTL, Medial Temporal Lobe; Post, Posterior; STG, Superior Temporal Gyrus; TPJ, Temporo-parietal Junction; WM, White Matter.

delayed or impaired axon growth across the cortex for children
with ASD, as well as abnormalities in the storage and transport
of cellular energy, and in regulating tissue energy (Turner and

Gant, 2014). In adults with ASD however, Cr+PCr appears to
accelerate to abnormally high levels within the auditory cortex,
hippocampus-amygdala complex (HAC) and medial prefrontal
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region, suggesting greater availability and transportation of
Cr+PCr (Murphy et al., 2002; Page et al., 2006; Suzuki et al., 2010;
Brown et al., 2013).

Despite group differences in Cr+PCr level, no relationship
between Cr+PCr level and autism symptom severity has been
found in children (Murphy et al., 2002; Page et al., 2006;
Horder et al., 2013), nor with communication, social anxiety
and social distress in adults (Kleinhans et al., 2009). Cr+PCr
level in the HAC of adults with ASD decreased with more severe
social deficits and repetitive behaviors (Kleinhans et al., 2009).
Later still, hippocampal Cr+PCr in high functioning adults
increased with more aggressive behavior (Suzuki et al., 2010).
These correlates suggest that increased hippocampal cell density
is implicated in aggressive behavior modulation (Suzuki et al.,
2010).

Cortical Cr+PCr was in the past considered stable, and
thus has been used extensively as a reference to other, more
clinically variable metabolites (Ross and Bluml, 2001; Bertholdo
et al., 2013; Brown et al., 2013; Kousi et al., 2013). However,
this review demonstrates clinical differences in Cr+PCr levels
(Murphy et al., 2002; Friedman et al., 2003; Levitt et al., 2003;
Page et al., 2006; DeVito et al., 2007; Hardan et al., 2008; Suzuki
et al., 2010; Brown et al., 2013; Corrigan et al., 2013), and
recently the use of Cr+PCr has been criticized (Rae, 2014; Turner
and Gant, 2014). Future research should avoid this method,
and careful interpretation of existing literature employing a
metabolite reference must ensue.

In sum, increased Cr+PCr is associated with greater cell
density. Thus, perhaps counterintuitively, greater HAC and
hippocampal cell density in adults with ASD may be related
to more aggressive behavior, and less severe social deficits
and repetitive behaviors, respectively. The role of creatine and
phosphocreatine in ASD pathology, and clinical and nonclinical
behavioral phenotypes, must be further scrutinized.

3. GLUTAMATE, GLUTAMINE,
γ-AMINOBUTYRIC ACID (GABA) AND
GLUTATHIONE

Glutamate, glutamine, and GABA are amino acid
neurotransmitters that interact through the glutamate/GABA-
glutamine cycle to maintain cortical excitation/inhibition
equilibrium (for a review see Rubenstein and Merzenich, 2003;
Bak et al., 2006). Glutathione is synthesized from glutamate,
cysteine, and glycine through γ-glutamylcysteine synthetase
and GSH (glutathione transportation form) synthetase (Meister
and Anderson, 1983). Their interconnectivity is illustrated
in Figures 2, 3. Due to their structural and neurochemical
similarity, glutamate, glutamine, GABA, and glutathione possess
a similar resonant frequency, thus are difficult to isolate and
quantify with standard 1H-MRS protocols at a low field strength
of 1.5T (Puts and Edden, 2012; Rae, 2014), and are reported
as Glx (DeVito et al., 2007; Bernardi et al., 2011; Bejjani et al.,
2012; Corrigan et al., 2013; Horder et al., 2013; Kousi et al.,
2013; Doyle-Thomas et al., 2014). However, these metabolites
have vastly different functions and are implicated in different

theories of psychopathology, including the hyper-glutamatergic
(Fatemi, 2008), hypo-GABAergic (Fatemi et al., 2009) and
N-methyl-D-aspartate receptor (NMDAr) dysfunction theories
(Gandal et al., 2012; Lee et al., 2015). The methods by which
these metabolites were quantified should therefore be taken into
account when interpreting the broader literature.

An MR scanner strength of 3T or above and specific scanner
parameter adjustments [echo time (TE): Schubert et al., 2004;
Ganji et al., 2012, radio frequency pulse sequence: Hancu, 2009;
Puts and Edden, 2012; Mullins et al., 2014] are recommended
to isolate glutamate and glutamine, and are essential for the
isolation of GABA and glutathione. A priori metabolite peak
frequency information also improves its isolation (Govindaraju
et al., 1998, 2000). Specialized software tools such as LCModel
(Provencher, 2001), Tarquin (Wilson et al., 2011), and jMRUI
(Naressi et al., 2001) are also utilized formetabolite quantification
as they provide basis sets of predefined spectral peak models,
rather than individual metabolite resonance values (Provencher,
2001; Mullins et al., 2014). Gannet (Edden et al., 2014) has
been developed specifically for GABA-MRS analysis, with the
frequency and phase correction specialized to deliver an accurate
spectra while dealing with instability in the acquisition.

Aberrations in the glutamate-GABA-glutamine cycle in ASD
will be discussed in turn below. Genetic influences on the
neurobiological interaction between glutamate and GABA are
beyond the scope of this review, see Pardo and Eberhart (2007)
for a detailed review.

3.1. Glutamate-Glutamine Cycle
Glutamate is synthesized from glutamine in the mitochondria
of glutamatergic neurons via the phosphate-activated enzyme
glutaminase, which releases ammonia (Gladden, 2004; Bak et al.,
2006; Amaral et al., 2013). Glutamate is taken up by a vesicular
transporter and then released into the synapse. Any glutamate
not taken up by the postsynaptic neuron is then returned to the
presynaptic terminal or taken up by neighboring microglia and
astrocytes to maintain a low concentration of glutamate in the
synaptic cleft and avoid excitotoxicity (for an extensive review
see McKenna, 2007). Within the astrocyte, glutamine synthetase
catalyses glutamate and ammonia to resynthesize glutamine,
as well as interacting with the Krebs cycle. Glutamine level is
most abundant in the glia as a function of glutamate uptake
(Bak et al., 2006) and is thus thought to predict glutamatergic
activity (Rothman et al., 2003; Marsman et al., 2013). Glutamine
is then transported back to the glutamatergic neuron, or may
be resynthesized to glutamate via glutaminase in the astrocyte
(Gladden, 2004; Bak et al., 2006; McKenna, 2007; Amaral et al.,
2013).

Glutamatergic neurons are the most abundant cortical
neurons, taking up 60–80% of glucose oxidation and energy
consumption (Rothman et al., 2003). Glutamate is also the
most abundant neurotransmitter (90% of synapses) (McKenna
et al., 2011), playing an important role in neurodevelopmental
processes such as neural migration, differentiation, plasticity
(Page et al., 2006; Bejjani et al., 2012; Baruth et al., 2013), as
well as metabolism through its contribution to the neuronal and
glial Krebs cycle (Rae, 2014). Both glutamate and glutamine are
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most concentrated in gray matter (Pouwels and Frahm, 1998),
and Glx interaction is involved in neurotransmitter regulation
and detoxification (Kousi et al., 2013). Furthermore, NMDArs
and enzyme synthesis modulate the availability of neuronal, glial
and synaptic glutamate and glutamine, and go undetected in 1H-
MRS, thus inherently affecting the level of detected Glx (Stagg
et al., 2011).

In 1H-MRS, glutamate level is quantified from a prominent
multiplet between 2.35 and 2.04 ppm, and a doublet-of-doublets
at 3.74 ppm (Govindaraju et al., 2000). Glutamine level is
quantified from a prominent multiplet between 2.46 and 2.12
ppm, and a triplet at 3.75 ppm (Govindaraju et al., 2000).
The concentration of brain glutamate is between 6.0 and 12.5
mmol/kgww, while glutamine concentration is between 3.0 and
5.8mmol/kgww (Govindaraju et al., 2000). The interpretation of
Glx level tends to focus on the excitatory nature of glutamate,
overlooking the roles of glutamine (e.g. DeVito et al., 2007;
Horder et al., 2013). Some research has shown no influence of
glutamine on differences in Glx, suggesting that Glx may in
fact be a relatively sound measure of glutamate (Stagg et al.,
2009). However, due to the inter-relatedness of glutamate and
glutamine, it is unclear what separate quantification of these
metabolites might indicate.

Glutamate and Glx differences for children and adults with
ASD are reported in Table 4. For children with ASD, at 4T,
glutamate concentration is reduced in the auditory cortex and
increased in the anterior cingulate cortex (ACC; Joshi et al.,
2013). Increased glutamate is also reported in subcortical regions
at 1.5T, which is more likely a measure of Glx (Hassan et al.,
2013). Reduced Glx is reported throughout the brain at 3T
(DeVito et al., 2007), which may be a result of reduced glutamate
or glutamine, or both. No studies investigate isolated glutamine
in children, although a blood plasma study reported increased
glutamate and reduced glutamine in high functioning children
with ASD (Shimmura et al., 2011). For adults with ASD, increased
auditory cortical glutamate and Glx is reported (Brown et al.,
2013), while in the ACC it is reduced (Tebartz van Elst et al.,
2014). Additional differences in Glx are reported in Table 4.

Across child and adult studies, higher and lower glutamate
and Glx levels appear regionally specific. However, the ratio
of glutamate to glutamine in the Glx level is unknown, thus
so is the degree of excitatory neurotransmission. Furthermore,
abnormalities in glutamate and Glx level in ASD appear to
differ between adult and child samples, suggesting age or disease
related changes throughout the lifespan (Naaijen et al., 2015).
Tebartz van Elst et al. (2014) suggest an ACC over-excitation
in children, and over-inhibition in adults with ASD. Their
hypothesis was supported by finding similar glutamine levels
between ASD and control adults (Tebartz van Elst et al., 2014),
as well as no change in glutamine following excitatory and
inhibitory stimulation (Stagg et al., 2009).

To date, no childhood studies report isolated glutamate
correlates of ASD behavioral phenotypes. Reports of heightened
sensory sensitivity and deficits in bodymovementmodulation are
associated with trend level thalamic Glx increase (Hardan et al.,
2008). Increased thalamic Glx/Cr+PCr is also associated with
poor social interaction in children with ASD (Doyle-Thomas

et al., 2014). In adult studies, autism spectrum quotient (AQ)
score increases with left auditory glutamate level (Brown et al.,
2013), and with reduced ACC glutamate (Tebartz van Elst et al.,
2014). Scores on AQ subscales Communication and Imagination,
as well as empathy, also increases with decreasing glutamate
level (Tebartz van Elst et al., 2014). This is also seen for
Communication and Glx in the basal ganglia (Horder et al., 2013)
and ACC (Tebartz van Elst et al., 2014). Alternately, control
group ACC glutamate levels increase with social skill deficits and
more fluid imagination (Tebartz van Elst et al., 2014), while Glx
in the ACC reduces with more social skill deficits (Tebartz van
Elst et al., 2014). Reduced dorsolateral prefrontal cortex (DLPFC)
glutamate in controls is suggested to predict better perspective
taking (Montag et al., 2008), and reduced Glx in the ACC may
related to executive function deficits such as decision-making,
impulse control, empathy and emotion (Bernardi et al., 2011).
No relationship between ASD diagnostic domains and Glx in the
HAC and parietal regions has been reported (Page et al., 2006).

In sum, regional differences in glutamate and Glx have been
related to ASD related phenotypes and behavior, though much
needs to be done to isolate glutamate and glutamine, as well as
clinical and non-clinical phenotypes, in order to drawmeaningful
conclusions.

3.2. GABA-Glutamate-Glutamine Cycle
GABA is the major inhibitory neurotransmitter in the cortex,
responsible for halting excitatory glutamatergic activity, so
naturally, disruption to either of these metabolites will affect
the other (Marsman et al., 2013). GABAergic inter-neurons
make up 15–20% of cortical neurons (Buzaki et al., 2007).
GABA level is low at 1.3 to 1.9 mmol/kgww (Govindaraju et al.,
2000), with ∼1 mmol/kgww in intracellular space and ∼2µ
mol/kgww in extracellular space (Puts and Edden, 2012; Rae,
2014). In GABAergic inter-neurons, glutamine is synthesized
to glutamate via glutamate synthase, and is then synthesized
via the rate limiting enzyme glutamate decarboxylase (GAD)
67 into GABA before transportation and release at the synapse
(Bak et al., 2006). GABA receptors on the postsynaptic neuron
receive GABAergic neurotransmitters, while ∼20% is taken up
by neighboring astrocytes, suggesting a role in the modulation
of GABAergic synapses (Rae, 2014). Any excess GABA returns
to the extrasynaptic membrane of the presynaptic terminal,
or is taken up by neighboring glia to control overspill (Rae,
2014). In the glia, GABA transaminase metabolizes GABA and
α-ketoglutarate to form succinic semialdehyde. The succinic
semialdehyde is oxidized to re-enter the Krebs cycle as succinate.
Succinate is also taken up by available α-ketoglutarate to reform
glutamate (Bak et al., 2006; Rae, 2014).

The inhibitory role of GABA is thought to be adult brain
specific, with GABA and its transporters involved in the
maintenance and modulation of cognition, sleep, motor control,
pain and anxiety (Rae, 2014). The role of GABA in children,
however, is initially excitatory in early developmental periods,
and switches to inhibitory via the chloride potassium co-
transporter (Herlenius and Lagercrantz, 2004; Ben-Ari et al.,
2007; Quattrocki and Friston, 2014). Aberrations in this
transition may result in behavioral abnormalities from early
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development, which is supported by studies that demonstrate
the excitatory role of GABA in the neurodevelopmental stages
preceding glutamate maturation (for extensive reviews, see
Hensch, 2005; Ben-Ari et al., 2007; LeBlanc and Fagiolini, 2011).

GABA resonates at 1.9, 2.3, and 3.0 ppm, and requires
editing pulse sequences such as MEGA-PRESS (Meshcher-
Garwood point resolved spectroscopy) to quantify its peak at
1.9 ppm (Mullins et al., 2014). Stagg et al. (2011) suggests the
quantification of GABA is in fact more reliable than that of
glutamate, however this only applies when GABA is acquired
with isolation techniques. Macromolecules (MMs) such as DNA,
RNA, most proteins and phospholipids (Ross and Bluml, 2001)
contribute GABA, glutamate and glutamine levels (Ganji et al.,
2012; Mullins et al., 2014; Rae, 2014) and are inaccessible with
NMR and thus difficult to exclude (Mullins et al., 2014). MMs
however, should be addressed in reports (Bhattacharyya, 2014).

Investigations into GABA levels in ASD are limited due
to the relatively recent development of specialized GABA 1H-
MRS protocols, with only childhood studies published. Table 5
illustrates a general reaction in GABA level between children
with ASD and controls (Kubas et al., 2012), however data were
not acquires with a specialized 1H-MRS methods (see Table 1),
and therefore may therefore reflect Glx decrease. Nonetheless,
auditory cortex GABA was not related to language function or
social responsiveness in children with ASD (Gaetz et al., 2014).
In sum, due to the overall lack of research in this area, little
is known about the implications of GABA aberrance in ASD,
though differences suggest abnormalities in inhibitory control
pathways. Further research with phenotype data is essential for
the understanding of inhibitory modulation in the ASD triad.

3.3. Excitatory/Inhibitory Equilibrium
Due to their interconnectivity (Figures 2, 3), reduced
GABA along with regional differences in glutamate and
Glx concentration might indicate a cortical excitation/inhibition
imbalance, or a disruption in synaptic mechanisms, which then
contributes to ASD psychopathology (Rojas et al., 2011; Parellada
et al., 2014). Furthermore, the glutamate/GABA cycle is involved

TABLE 5 | 1H-MRS quantified GABA differences for children with ASD.

Region GABA GABA/Ratio

Frontal ↓ /Cr+PCr Kubas et al., 2012

Left ↓ Harada et al., 2011 ↓ /NAA Harada et al., 2011

/Glu Harada et al., 2011

Motor Left ↓ /Cr Gaetz et al., 2014

Auditory Left ↓ /Cr Gaetz et al., 2014

↓ /Cr Rojas et al., 2011

Visual Left /Cr Gaetz et al., 2014

Lent Left /NAA Harada et al., 2011

/Glu Harada et al., 2011

1.5T , 3T ; �, p < 0.001; ↓, p < 0.01; ⇈, p < 0.001; ↑, p < 0.01 Cr+PCr,

Creatine+Phosphocreatine; GABA, γ-Aminobutyric Acid; Glu, Glutamate; Lent, Lenticular

Nuclei; NAA, N-Acetyl-Aspartate.

in the production of the neurotransmitter NAA-glutamic acid
(NAAG) and in the Krebs cycle (Figures 2, 3). Regional increases
of glutamate supports Fatemi’s (2008) hyper-glutamatergic
hypothesis that the GAD67 rate limiting enzyme is deficient and
results in reduced synthesis of glutamate to GABA (Fatemi, 2008;
Bejjani et al., 2012), thus a higher concentration of glutamate
(Blaylock and Strunecka, 2009; Shimmura et al., 2011; Hassan
et al., 2013). Stagg et al. (2009) suggest GAD67 dysfunction
might be caused by a deficiency in glutamate modulation.
Cortical GABA concentration is low however (Govindaraju et al.,
2000), and may not have a substantial influence on glutamate
levels. Increased glutamate has also been thought to result from
reduced glutamine synthetase or increased glial population in
ASD (Fatemi, 2008; McKenna et al., 2011). Although, post-
synaptic receptors of GABA may up-regulate to compensate
for reduced GABA inhibition (Benes et al., 1996), reduced
GABA may be a result of GABAA receptor down-regulation
(Fatemi, 2008; Fatemi et al., 2009; Gaetz et al., 2014). This down
regulation may lead to glutamatergic hyper-function (Harada
et al., 2011) and disrupt the maintenance and modulation of
excitatory/inhibitory equilibrium.

Theories regarding the role of NMDArs in glutamate,
glutamine and GABA levels are inconclusive. The uptake of
glutamate by NMDArs triggers the flux of calcium into the
cell, facilitating synaptic plasticity that is necessary for memory
and learning (Debanne et al., 2003; Lally et al., 2014). NMDAr
antagonism leads to disinhibition of excitatory pyramidal cells
(Lisman et al., 2008), as well as reduced excitation of GABAergic
neurons (Kondziella et al., 2007; Marsman et al., 2014).
Altogether, an disinhibited excitatory cells along with insufficient
inhibitory output might facilitate excitotoxicity, which may then
lead to cell death through the influx of calcium and downstream
behavioral effects (Rossignol, 2011). Indeed, NMDAr down-
regulation in has been associated with autism and schizophrenia-
like behaviors and electrophysiology (Rossignol, 2011; Gandal
et al., 2012).

Excitotoxicity is especially dangerous during the critical
developmental stage in pre- and early postnatal development
(Deng et al., 2004; LeBlanc and Fagiolini, 2011), with
excitatory/inhibitory imbalance affecting cortical plasticity
(Lam et al., 2006; LeBlanc and Fagiolini, 2011; Berger et al.,
2013). Autistic symptoms arise in this critical period, providing
strong evidence for an excitation/inhibition imbalance that leads
to aberrant neuronal growth and connectivity (Harada et al.,
2011; LeBlanc and Fagiolini, 2011). However, this association
does not account for possible compensatory up-regulation of
GABA receptors (Benes et al., 1996), and due to the excitatory
role of GABA during this stage (Herlenius and Lagercrantz,
2004; Ben-Ari et al., 2007; Rossignol, 2011), there may be
additional vulnerability to excitotoxicity. A recent review
by Lee et al. (2015) reports reduced social withdrawal and
stereotyped behavior in ASD patients following NMDAr agonist
administration suggesting deficits in NMDAr function in ASD. In
rodents, down-regulation of NMDArs was related to more social
deficits, less communication, and more stereotyped behavior
(Gandal et al., 2012). Sensory hyper-reactivity through increased
excitation in the auditory, visual and tactile domains has also
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been reported in ASD (Doyle-Thomas et al., 2014). Furthermore,
the down-regulation of GABA, thus reduced inhibition, has been
associated with gross and fine motor stereotypes in ASD children
such as repetitive simple motor patterns (Gaetz et al., 2014),
which suggests a hyper-glutamatergia. Intriguingly, NMDAr
antagonist administration has been shown to increase negative
symptoms of schizophrenia (Olney et al., 1999; Merritt et al.,
2013; Marsman et al., 2014), which are closely related to the social
and communication phenotypes of ASD. NMDAr aberrance is
therefore thought to lead to symptoms across psychopathology
(in Olney et al., 1999).

GABA-glutamate regulation, particularly through NMDAr
function, in the auditory cortices has also been associated with
aberrant neurophysiological potentials, such as short mismatch
negativity latency (Kujala et al., 2007; Kompus et al., 2015), N1
amplitude and γ-band response (Rossignol, 2011; Gandal et al.,
2012; McFadden et al., 2012). Such abnormalities have also been
identified in schizophrenia (Kirihara et al., 2012; Kärgel et al.,
2014) and may lead to potential brain chemical relationship
between neuropsychiatric disorder phenotypes (Gandal et al.,
2012).

NMDAr antagonism has also led to an increase in glutamine
and reduction in glutamate, which might indicate a glutaminase
deficiency (Marsman et al., 2013). This increase may also be
explained by an increase in glutamine synthetase as a result
of reduced nitric oxide production that follows calcium release
into the cell due to NMDAr activation Kosenko et al. (2003).
NMDAr antagonist administration has been shown to reduce
ASD symptoms such as social and cognitive dysfunction, and
stereotyped behaviors, suggesting increased functionality or
number of NMDArs in ASD (Lee et al., 2015). Decreased
glutamate has also been related to increasing negative symptoms
in schizophrenia patients (Marsman et al., 2014). Altogether, the
literature suggests abnormality in glutamate receptor function
that compromises the synthesis of GABA for inhibitory
neurotransmission (in Olney et al., 1999; Gandal et al., 2012;
Marsman et al., 2013).

Following neuronal excitation by transcranial direct current
stimulation (tDCS), 1H-MRS measured GABA was reduced,
while Glx and isolated glutamine level did not change, indicating
no neuronal excitation related change in glutamate level (Stagg
et al., 2009). Stagg et al. (2009) infer GABA reduction due
to reduced GAD67 activity in response to increased excitatory
neuronal firing (Stagg et al., 2009). 1H-MRS quantifies only tissue
and cyclic glutamate concentration, not NMDAr modulation
of glutamate, which may explain the lack of difference in
glutamate following neuronal excitation (Stagg et al., 2009).
Interestingly, following induced inhibition, both glutamate and
GABA concentrations were reduced, suggesting a modulatory
effect of glutamate on GAD67 activity (Stagg et al., 2009). This
inference counters the hyper-glutamatergic hypothesis that a
GAD67 deficiency leads to excess glutamate (Fatemi, 2008). The
current review reports decreased GABA and regionally specific
reduction in Glx, which, suggests a regulatory role of glutamate in
GAD67 production of GABA (Stagg et al., 2009). Concurrently,
increased regional glutamate suggests regionally specific hyper-
glutamatergia (Fatemi, 2008). Altogether, there is sound evidence

for an excitation-inhibition disturbance, specifically hyper-
glutmatergia, in ASD that manifests as phenotypes that exist in
ASD such as poor social and communication skills (Horder et al.,
2013; Doyle-Thomas et al., 2014; Tebartz van Elst et al., 2014).

3.4. Glutathione
Glutathione is a protective factor against mitochondrial oxidative
stress caused by reactive oxygen species, thus deficiencies lead to
the breakdown of mitochondrial function (Rossignol and Frye,
2012; Rae, 2014). Glutathione is generally more abundant in
astrocytes, with levels higher in gray matter than white matter
(Govindaraju et al., 1998; Rae, 2014) and deficiencies are linked
to reduced NAA level, which is essential for neuronal integrity
(Govindaraju et al., 1998; Rae, 2014).

Glutathione is extremely difficult to isolate with 1H-MRS
due to its frequency overlap with glutamate, glutamine, GABA,
Cr+PCr, aspartate, and NAA (Govindaraju et al., 1998), even
at high magnetic field strengths such as 14T. Radio frequency
pulse sequences such as MEGA-PRESS and short TE (Matsuzawa
et al., 2008), as well as specialized fitting software, such as
LCModel, have been successful in isolating glutathione (Rae,
2014). Nonetheless, there is limited 1H-MRS literature discussing
the role of glutathione in psychopathology.

To date, no published 1H-MRS studies quantify glutathione
in ASD samples, though a review of mitochondrial function
in ASD reports reduced glutathione and therefore increased
mitochondrial dysfunction and oxidative stress (Rossignol and
Frye, 2012). Pharmaceutical interventions targeted at increasing
glutathione levels have been found to alleviate ASD symptoms
(James et al., 2009; Hardan et al., 2012), supporting a deficiency
of glutathione in ASD (Rossignol and Frye, 2012). Negative
symptoms of schizophrenia have been associated with reduced
glutathione in the posterior medial frontal cortex, however
gray matter volume differences were not reported in this study
(Matsuzawa et al., 2008). Due to the apparent phenotypic link
between autism and schizophrenia spectrum disorders (Ford
and Crewther, 2014), glutathione level may be related to social
cognitive dysfunction in ASD, but clearly more research must be
done.

4. N-ACETYLASPARTATE (NAA)

NAA is predominately synthesized in the mitochondria of
neurons, and in oligodendrocytes (Kousi et al., 2013; Rae, 2014).
Figure 2 illustrates that aspartate, a product of the Krebs cycle,
is synthesized with acetyl coenzyme A (A-CoA), a product of
glycolysis, via the enzyme L-aspartate N-acetyltransferase (Asp-
Nat) inside the mitochondria, resulting in NAA (Patel and
Clark, 1979; Moffett et al., 2007). NAA is then transported
to oligodendrocytes, or binds with glutamic acid within the
neuronal cytoplasm producing the neurotransmitter NAAG
(Kousi et al., 2013; Rae, 2014). In the presynaptic terminal,
NAAG activates metabotropic glutamate receptors, releasing
NAAG into the synapse that is taken up as NAA by post-synaptic
cells, with excess taken up by astrocytes of the blood-brain
barrier (Moffett et al., 2007). NAA is catabolised in glial cells and
catabolism in oligodendrocytes is a precursor to fatty acids that
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form the myelin surrounding neuronal axons (Rae, 2014). NAA
clearly relies on the integrity of glutamate, Cr+PCr and several
other neurochemical processes (Figures 2, 3).

NAA level quantified with 1H-MRS is thought to reflect
neural density and viability, and indicate neuronal integrity and
metabolism (Pouwels and Frahm, 1998; Chugani et al., 1999;
Levitt et al., 2003; Kleinhans et al., 2007; Kousi et al., 2013).
However, cross-disciplinary studies have challenged this (see Rae,
2014, for a detailed review). NAA has a chemical shift of 2.01
ppm (Kousi et al., 2013; Rae, 2014) with a cortical concentration
of NAA from 7.9 to 16.6 mmol/kgww (Govindaraju et al.,
2000). NAAG contributes a amount of it 0.6–2.7 mmol/kgww
(Govindaraju et al., 2000) to the NAA signal due to its close
resonant frequency (Kousi et al., 2013; Rae, 2014). NAA is
generally comparable across gray and white matter, but is more
concentrated in occipital graymatter (Pouwels and Frahm, 1998).
NAAG, due to its role in the neurotransmission of NAA, is more
abundant in white matter than gray matter (Pouwels and Frahm,
1998).

Table 6 reveals consistently reduced NAA in children with
ASD, but not adults, supporting the findings of the meta-
analysis by Aoki et al. (2012). Widespread reduction in NAA
and NAA/Cr+PCr suggests dysfunction, loss or immaturity of
neurons (DeVito et al., 2007; Gabis et al., 2008; Aoki et al., 2012;
Horder et al., 2013), particularly in the mitochondria (Endo et al.,
2007), and reduced axon density (Levitt et al., 2003). Therefore,
according to Aoki et al. (2012), the hallmark cortical density of
ASD might be caused by non-neuronal factors such as excess
glial cells and myelination, enlarged glial cells, and/or premature
myelination. Across childhood, patterns of gray and white matter
NAA level differ between ASD and typically developing children.
In typically developing 3–10 year olds, there is overall gradual
increase in gray matter NAA. In contrast, children with ASD
have a high NAA level early in development, which plateaus
from 6–7 years, and then continues to increase to abnormaly
high levels by 9–10 years of age. A similar trajectory is seen
in white matter, although for typically developing children
there is a peak at 6–7 years (Corrigan et al., 2013). Earlier
studies support these findings (Zeegers et al., 2007; O’Brien
et al., 2010). NAA levels seem to plateau in adulthood ASD,
but continues to increase in controls reflecting compromised
neural density and integrity throughout the lifespan (O’Brien
et al., 2010), further highlighting an aberrant NAA trajectory
in ASD.

In children with ASD, reduced parietal axon density, marked
by reduced white matter NAA, is associated with deficits in
socially directed eye gaze, spatial perception, and memory (Levitt
et al., 2003). Similarly, reduced NAA/Cr+PCr level in the ACC is
associated with poorer social functioning (Fujii et al., 2010), and
in the right medial temporal lobe (MTL) with poor emotional
and listening response (Endo et al., 2007). Furthermore, NAA
deficits in Wernicke’s language center on the left, and auditory
interpretation, non-verbal communication and memory on the
right may associated with language deficits (Hisaoka et al., 2001)
and NAA/Cr+PCr deficit in regions responsible for executive
functions may explain social and communication disabilities
(Fujii et al., 2010; Horder et al., 2013).

In adults with ASD, deficits in social responsiveness worsen
with higher levels of auditory (Brown et al., 2013) and prefrontal
cortex NAA (Murphy et al., 2002). NAA deficit in the HAC
have been suggested to cause communication difficulties through
compromised integrity of neurons in the amygdala during
development rather than adulthood (Kleinhans et al., 2009).
There was no relationship with social avoidance and distress.
The HAC is thought to be central to ASD related behaviors
(Gabis et al., 2008), with reduced NAA in the HAC associated
with repetitive behaviors in adults with ASD (Kleinhans et al.,
2009), while increased ACC and decreased DLPFC NAA/choline
was related to more obsessive compulsive behaviors (Oner et al.,
2007). The temporal lobes and limbic system, which include
the HAC and ACC, are in close proximity and connectivity.
Considering this networks involvement in emotion processing,
motor response to emotional cues and attention, it is of little
surprise that marked social and emotional difficulties may
manifest from an NAA deficiency.

Reduced frontal NAA level has been identified in
schizophrenia studies (Marsman et al., 2013), suggesting
that common neuronal impairment and/or loss (Kleinhans et al.,
2007; Horder et al., 2013; Marsman et al., 2014) may explain
similarities in social and cognitive deficits between the disorders.
Altogether, NAA level abnormalities may underpin some of
the central phenotypes of ASD: verbal and non-verbal social
communication and interaction. However, inconsistencies across
methodologies and assessment of ASD and control groups,
and the interconnectedness of metabolic pathways, such as the
synthesis of NAAG, must be considered when quantifying NAA
with 1H-MRS.

5. CHOLINE CONTAINING COMPOUNDS

Choline containing compounds are essential components of
cellular membranes, and necessary for the synthesis of the
neurotransmitter acetylcholine (ACh). Choline is typically
synthesized in the liver and is transported across the blood-
brain barrier, as it cannot be synthesized in the brain de
novo. Choline typically crosses into the brain in the form
of phosphatidylcholine or lysophosphatidylcholine (Rae, 2014).
Once in the brain, several enzymic reactions take place to
synthesize choline containing compounds and ACh; see Figure 2
for an illustration, and Rae (2014) for a detailed description.

In 1H-MRS, the choline peak contains both
phosphorylcholine (PCh) and glycerophosphorylcholine
(GPCh), with a small contribution of ACh and free choline
(Govindaraju et al., 2000; Rae, 2014), referred to hereafter as
choline+. Choline+ resonates at 3.2 ppm (Govindaraju et al.,
1998; Kousi et al., 2013), with concentration varying between
0.9 and 2.5 mmol/kgww across the brain (Govindaraju et al.,
2000). Choline moieties are highly interconnected, and are at
equilibrium with membrane phospholipids that make up 40% of
myelin. Due to its role in myelination, 1H-MRS measured levels
of choline+ are largest in whitematter (Pouwels and Frahm, 1998;
Bertholdo et al., 2013). Thus, measured cortical choline+ levels
indicate cellular membrane metabolism (Pouwels and Frahm,
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TABLE 6 | 1H-MRS quantified NAA differences for children and adults with ASD.

Region Children Adult

NAA NAA/Cr+PCr NAA NAA/Cr+PCr

GM � Corrigan et al., 2013†

Corrigan et al., 2013‡#

� Friedman et al., 2006

Frontal � DeVito et al., 2007

Occipital � DeVito et al., 2007

Temporal ↓ DeVito et al., 2007

WM � Corrigan et al., 2013†#

Corrigan et al., 2013‡

� Friedman et al., 2006

↓ DeVito et al., 2007

Frontal Zeegers et al., 2007

Left ↓ Friedman et al., 2003

� Levitt et al., 2003

Right Friedman et al., 2003

Levitt et al., 2003

Parietal Left � Friedman et al., 2003

� Levitt et al., 2003

Right ↓ Friedman et al., 2003

Levitt et al., 2003

Frontal Hisaoka et al., 2001 � Kubas et al., 2012

Levitt et al., 2003

Left Harada et al., 2011 Vasconcelos et al., 2008 � Kleinhans et al., 2007

Right Chugani et al., 1999

MPF Right Endo et al., 2007 ↑ Murphy et al., 2002 Murphy et al., 2002

DLPFC Left � Fujii et al., 2010 � Horder et al., 2013

Right Fujii et al., 2010 Oner et al., 2007

Parietal Hisaoka et al., 2001

Levitt et al., 2003

Left Horder et al., 2013

Kleinhans et al., 2007

Right Hashimoto et al., 1997 Page et al., 2006 Page et al., 2006

Hashimoto et al., 1998 Murphy et al., 2002 Murphy et al., 2002

IPS Left Bernardi et al., 2011

Right ↓ Bernardi et al., 2011

Temporal � Hisaoka et al., 2001

Left Chugani et al., 1999

MTL Friedman et al., 2003

Right � Endo et al., 2007

Auditory ↑ Brown et al., 2013

TPJ Left Bernardi et al., 2011

Right ↓ Bernardi et al., 2011

STG Left Friedman et al., 2003

Right � Friedman et al., 2003

Occipital Friedman et al., 2003 Kleinhans et al., 2007

Levitt et al., 2003

HAC � Gabis et al., 2008 Kleinhans et al., 2009 Kleinhans et al.,

2009

Left Zeegers et al., 2007 Suzuki et al., 2010

Right ⇈ O’O’Brien et al., 2010 ⇈ O’Brien et al., 2010 Page et al., 2006 Page et al., 2006

� Otsuka et al., 1999 O’Brien et al., 2010 O’Brien et al., 2010

(Continued)
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TABLE 6 | Continued

Region Children Adult

NAA NAA/Cr+PCr NAA NAA/Cr+PCr

Thalamus � Hardan et al., 2008 Doyle-Thomas et al.,

2014

Bernardi et al., 2011

� Friedman et al., 2003

Levitt et al., 2003

Cerebellum ↓ DeVito et al., 2007 Gabis et al., 2008

Left � Chugani et al., 1999 Vasconcelos et al., 2008 Tebartz van Elst et al.,

2014

� Otsuka et al., 1999

Right � Suzuki et al., 2010

Kleinhans et al., 2007

Cingulate Hisaoka et al., 2001

Left � Friedman et al., 2003

Right ↓ Friedman et al., 2003

Putamen Levitt et al., 2003

Left � Friedman et al., 2003

Right Friedman et al., 2003

ACC Levitt et al., 2003 � Fujii et al., 2010 � Tebartz van Elst et al.,

2014

Vasconcelos et al., 2008 Bernardi et al., 2011

Left Bejjani et al., 2012

Right ⇈ Bejjani et al., 2012 ↑ Oner et al., 2007

Caudate Friedman et al., 2003

Head Levitt et al., 2003 Doyle-Thomas et al.,

2014

Body Left � Levitt et al., 2003

Right Levitt et al., 2003

Lent Left Harada et al., 2011

Callosum Friedman et al., 2003

Insula Friedman et al., 2003

Vermis Endo et al., 2007 Kleinhans et al., 2007

Centsemi Left Fayed and Modrego,

2005

Striatum Left Vasconcelos et al., 2008

Brainstem Hisaoka et al., 2001

BasGan Left � Horder et al., 2013

1.5T , 3T ; �, p < 0.001; ↓, p <, 0.01; ⇈, p < 0.001; ↑, p < 0.01;
†
3–4 years; ‡6–7 years; #9–10 years; ACC, Anterior Cingulate Cortex; BasGan , Basal Ganglia; Cent

Semi, Centrum Semiovale; Cr, Creatine+Phosphocreatine; DLPFC, Dorsolateral Prefrontal Cortex; GM, Gray Matter; HAC, Hippocampus-Amygdala Complex; Intraparietal Suclus; Lent,

Lenticular Nuclei; MPF, Medial Prefrontal; MPL, Medial Parietal Lobe; MTL, Medial Temporal Lobe; STG, Superior Temporal Gyrus; TPJ, Temporo-parietal Junction; WM, White Matter.

1998), specifically the equilibrium of membrane phospholipid
anabolism and catabolism (Pouwels and Frahm, 1998; Blüml
et al., 1999; Gabis et al., 2008; Suzuki et al., 2010; Bertholdo et al.,
2013; Rae, 2014), with elevated levels in childhood thought to
be due to membrane phospholipid anabolism for myelin growth
(Blüml et al., 1999). The cholinergic system also plays a role in
cognitive development and function (Lam et al., 2006).

Choline+ levels in children are generally reduced, particularly
in cortical gray matter, temporal regions and the left thalamus,
suggesting a decrease in membrane phospholipid turnover
(Table 7; Friedman et al., 2003, 2006; Levitt et al., 2003; Fayed and

Modrego, 2005; DeVito et al., 2007; Hardan et al., 2008; Corrigan
et al., 2013). These data are also indicative of neurodevelopmental
delay as a result of reduced glial cell density (in Baruth et al., 2013)
and deficient myelination leading to slower neural processes
(Corrigan et al., 2013). By contrast, increases in choline+ in the
caudate (Levitt et al., 2003), and choline+/Cr+PCr in the ACC
(Vasconcelos et al., 2008) andHAC (Gabis et al., 2008) of children
with ASD marks regionally abnormal membrane phospholipid
turnover (Vasconcelos et al., 2008). Choline+/Cr+PCr in the
HAC progressively decreased from 10–50 years of age in AS,
but not controls (O’Brien et al., 2010), contradicting the broader
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TABLE 7 | 1H-MRS quantified total choline (Cho) differences for children and adults with ASD.

Region Children Adult

Choline Cho/Cr+PCr Choline Cho/Cr+PCr

GM � Corrigan et al., 2013†‡

Corrigan et al., 2013#

� Friedman et al., 2006

� Fayed and Modrego,

2005

Frontal ↓ DeVito et al., 2007

Occipital DeVito et al., 2007

Temporal DeVito et al., 2007

WM � Corrigan et al., 2013†

Corrigan et al., 2013‡#

Friedman et al., 2006

Fayed and Modrego,

2005

DeVito et al., 2007

Frontal Friedman et al., 2003

Levitt et al., 2003

Zeegers et al., 2007

Parietal Friedman et al., 2003

Levitt et al., 2003

Frontal Hisaoka et al., 2001 Kubas et al., 2012

Levitt et al., 2003

Left Vasconcelos et al., 2008

MPF Right Endo et al., 2007 ⇈ Murphy et al., 2002

DLPFC Left Fujii et al., 2010 Horder et al., 2013

Right Fujii et al., 2010 Oner et al., 2007

Parietal Levitt et al., 2003

Hisaoka et al., 2001

Left Horder et al., 2013

Right Hashimoto et al., 1997 Page et al., 2006 Page et al., 2006

Hashimoto et al., 1998

MPL Right Murphy et al., 2002

IPS Bernardi et al., 2011

Temporal Hisaoka et al., 2001

MTL � Friedman et al., 2003 Endo et al., 2007

Auditory Brown et al., 2013

TPJ Bernardi et al., 2011

STG Left Friedman et al., 2003

Right � Friedman et al., 2003

Occipital Friedman et al., 2003

Levitt et al., 2003

HAC Kleinhans et al., 2009 Kleinhans et al., 2009

Left Zeegers et al., 2007 ⇈ Gabis et al., 2008 ⇈ Suzuki et al., 2010

Right Otsuka et al., 1999 Gabis et al., 2008

O’Brien et al., 2010 O’Brien et al., 2010 Page et al., 2006 Page et al., 2006

O’Brien et al., 2010 O’Brien et al., 2010

Thalamus Levitt et al., 2003 Doyle-Thomas et al.,

2014

Bernardi et al., 2011

Left � Friedman et al., 2003

� Hardan et al., 2008

(Continued)
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TABLE 7 | Continued

Region Children Adult

Choline Cho/Cr+PCr Choline Cho/Cr+PCr

Right Friedman et al., 2003

Hardan et al., 2008

Cerebellum DeVito et al., 2007 ⇈ Gabis et al., 2008

Left Otsuka et al., 1999 Vasconcelos et al., 2008 Tebartz van Elst et al.,

2014

Right Suzuki et al., 2010

Cingulate Hisaoka et al., 2001

Friedman et al., 2003

Putamen Levitt et al., 2003 Doyle-Thomas et al.,

2014

Friedman et al., 2003

ACC Bejjani et al., 2012 Fujii et al., 2010 Tebartz van Elst et al.,

2014

Left ⇈ Vasconcelos et al., 2008 Bernardi et al., 2011

Inferior � Levitt et al., 2003

Superior Levitt et al., 2003

Right Oner et al., 2007

Inferior Levitt et al., 2003

Superior Levitt et al., 2003

Caudate Friedman et al., 2003 Doyle-Thomas et al.,

2014

Head Left Levitt et al., 2003

Right ⇈ Levitt et al., 2003

Body Levitt et al., 2003

BasGan Left � Horder et al., 2013

Callosum Friedman et al., 2003

Insula Friedman et al., 2003

Vermis Endo et al., 2007

Centsemi Left Fayed and Modrego,

2005

Striatum Left Vasconcelos et al., 2008

Brainstem Hisaoka et al., 2001

1.5T , 3T ; �, p < 0.001; ↓, p < 0.01; ⇈, p < 0.001; ↑, p < 0.01;
†
3–4 years; ‡6–7 years; #9–10 years; ACC, Anterior Cingulate Cortex; Ant, Anterior; BasGan , Basal

Ganglia; Cent Semi, Centrum Semiovale; Cr+PCr, Creatine+Phosphocreatine; DLPFC, Dorsolateral Prefrontal Cortex; GM, Gray Matter; HAC, Hippocampus-Amygdala Complex; IPS,

Intraparietal Suclus; MPF, Medial Prefrontal; MPL, Medial Parietal Lobe; MTL, Medial Temporal Lobe; Post, Posterior; STG, Superior Temporal Gyrus; TPJ, Temporo-parietal Junction;

WM, White Matter.

findings of choline+ that is reduced in children, but increased
in adults, with ASD (Table 7). Nonetheless, findings suggest
differences in neural membrane maturation between control and
ASD groups (O’Brien et al., 2010).

Alternatively, in adolescents and adults with ASD high
choline+ concentration (Table 7) might indicate the catabolism
of membrane phospholipids, or “active demyelination” (Murphy
et al., 2002; Gabis et al., 2008; Suzuki et al., 2010; Bertholdo
et al., 2013). However, as choline+ marks both synthesis and
degradation of membrane phospholipids, high choline+ levels
may also be an indication of increased cellular proliferation and
density, thus increased synthesis and metabolism (Murphy et al.,
2002; Sokol et al., 2002; Suzuki et al., 2010); for a review see
Baruth et al. (2013).

Thalamic choline+/Cr+PCr ratio has been shown to decrease
with increasing severity of communication deficits, and restricted
and repetitive behaviors in children with ASD (Doyle-Thomas
et al., 2014). In adults with ASD on the other hand, prefrontal and
HAC choline+ increases with communication deficits (Murphy
et al., 2002) and aggression(Suzuki et al., 2010). These data
suggest that communication deficits have different regional
and functional origins. Somewhat contradictory to the general
findings in children, is that MTL choline+ (Endo et al., 2007) and
HAC choline+/Cr+PCr (Sokol et al., 2002) increase with severity
of autistic symptoms, although medication (Sokol et al., 2002)
and Cr/PCr levels may be a mediating factor. For adults, there
was no relationship between symptom severity and choline+ level
(Page et al., 2006; Kleinhans et al., 2009).
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In sum, choline+ reduction in children with ASD, and increase
during adulthood, indicates widespread and lasting abnormalities
in cellular and myelin integrity. Cholinergic pathways have been
linked to social and behavioral abnormalities, particularly in
ASD symptom severity (Lam et al., 2006), and orientation of
attention and sensory processing through electrophysiological
change detection studies (Orekhova and Stroganova, 2014),
calling for further research into behavioral correlates of choline
containing compounds.

6. MYO-INOSITOL

myo-Inositol, a form of the simple sugar-alcohol Inositol, is
synthesized predominantly in the kidney, with a small proportion
ingested, entering the brain via a plasma membrane myo-
Inositol transporter. Some myo-Inositol is also synthesized in
the cytoplasm from glucose via glycolysis, as illustrated in
Figure 2 (Ross and Bluml, 2001; Rae, 2014). myo-Inositol is a
component of lipid biomembranes through phosphoglycerides
(phosphatidylinositol and phosphatidylinositol phosphate), and
is involved in the regulation of brain cell volume as an organic
osmolyte (Ross and Bluml, 2001; Rae, 2014). myo-Inositol is
thought to be a marker of astrocytes (Pouwels and Frahm, 1998;
Ross and Bluml, 2001; Kousi et al., 2013), and plays an important
role in the maintenance of metabolism (Ross and Bluml, 2001),
and in brain cell signaling as an intracellular post-receptor second
messenger system. This second messenger system is linked to
several receptors (including glutamate receptors) in the central
nervous system (Rae, 2014). myo-Inositol resonates at 3.56ppm
in 1H-MRS (Pouwels and Frahm, 1998; Ross and Bluml, 2001;
Kousi et al., 2013) with a concentration of between 3.1 and 8.1
mmol/kgww (Govindaraju et al., 2000), and tends to be greater in
gray than white matter. This is contradictory to speculation that
myo-Inositol is an index of myelin breakdown (Ross and Bluml,
2001; Rae, 2014).

Table 8 illustrates reduced myo-Inositol concentration
across the childhood ASD brain. On the other hand, myo-
Inositol/Cr+PCr ratio in some regions is increased, which might
be due to the mediation of Cr+PCr (Gabis et al., 2008; Rae,
2014). It should also be noted, that regional differences were
measured at 1.5T and no differences were found at 3T, which
may reflect a limitation in scanner strength, and that standard
scanning protocols are suboptimal for the quantification of
myo-Inositol as a short T2 relaxation time requires a short TE
for peak isolation (Bertholdo et al., 2013; Kousi et al., 2013).
Reduced myo-inositol in adults with ASD is only reported in
the temporo-parietal junction at 3T (Bernardi et al., 2011).
myo-Inositol deficits indicate reduced glial cell proliferation and
brain signaling, while the converse is implied by increased myo-
Inositol. Altogether, regionally specific reduced myo-Inositol in
children with ASD suggests reduction in cell signaling and/or
volume regulation in those regions.

7. LACTATE

Lactate is synthesized via the enzyme lactate dehydrogenase from
pyruvate, which is synthesized from glucose from the capillary,

in both astrocytes and neurons, as illustrated in Figures 2, 3.
Lactate is then transported back to the capillaries via mono-
carboxylate transporters (Rae, 2014). Lactate is integral to many
cortical cellular metabolic processes and pathways, as well as
signaling, acting as a shuttle between and within cells that deliver
oxidative and gluconeogenic substrates (Gladden, 2004; Brooks,
2009). In 1H-MRS, lactate resonates at 1.33 ppm, however as a
major energy source for neurons the concentration is low at rest
and is contaminated by lipids and MMs making quantification
difficult (Friedman et al., 2006; Kousi et al., 2013; Rae, 2014). 1H-
MRS protocols with a long TE sequence can be used to optimize
lactate quantification (Friedman et al., 2003, 2006; Corrigan et al.,
2013).

ASD studies have reported lactate abnormalities throughout
the body; for a comprehensive review see Rossignol and
Frye (2012). However very few ASD 1H-MRS studies report
cortical concentrations of lactate and of these, quantification
is attempted using a 1.5T scanner, which is inadequate for
lactate quantification thus should be interpreted with caution
(Bertholdo et al., 2013; Kousi et al., 2013). As such, no differences
have been reported across the cortex (Hashimoto et al., 1997;
Chugani et al., 1999; Friedman et al., 2003, 2006; Corrigan et al.,
2013). One study of 15 ASD and 15 controls reported a lactate
signal in only one child with ASD (Chugani et al., 1999). To date,
no adult ASD 1H-MRS studies investigate lactate.

8. LIMITATIONS

8.1. 1H-MRS Research
Although several metabolic processes appear to differ
between ASD and control groups, Table 2 illustrates several
methodological differences between studies. Differences in
scanner strength, pulse sequence protocols, water suppression
techniques, the use of a “stable” metabolite reference, and
variable regions of interest contribute to inconsistent findings,
and will be discussed in turn.

Of the research presented in this review, 80% employ a 1.5T
MR scanner which has suboptimal spatial and spectral resolution
(Bertholdo et al., 2013), SNR (Kousi et al., 2013; Juchem and
Rothman, 2014) and more statistical variation (Marsman et al.,
2013) compared to those at 3T and above. 1.5T is also insufficient
to distinguish glutamate, glutamine, and GABA (Page et al., 2006;
Aoki et al., 2012; Juchem and Rothman, 2014); it is of concern
that two studies report isolated glutamate at 1.5T (Hardan et al.,
2008; Hassan et al., 2013). MMs are also a concern in the
quantification of glutamate, glutamine and GABA resonance
due to their invisibility in NMR (Ross and Bluml, 2001). To
combat these limitations, variations in TE can be used to
optimize metabolite isolation. A shorter TEs (30–40ms) provides
a larger signal, and more clearly resolve myo-Inositol, glutamate,
glutamine and lipids (Agzarian and Walls, 2011; Bertholdo et al.,
2013). A long TE (greater than 54ms) and spectral editing
techniques (e.g., MEGA-PRESS) are thought to be effective in
suppressing MM’s from the spectra (Agzarian and Walls, 2011),
and an 80 ms TE has been shown to resolve glutamate and
glutamine (Schubert et al., 2004). Long TEs (135–288ms) have
also been shown to reduce baseline noise (Agzarian and Walls,
2011). These techniques are not as effective with GABA isolation
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TABLE 8 | 1H-MRS quantified myo-Inositol (mI) differences for children and adults with ASD.

Region Children Adult

myo-Inositol mI/Cr myo-Inositol mI/Cr+PCr

GM Corrigan et al., 2013†‡#

� Friedman et al., 2006

Frontal DeVito et al., 2007

Occipital DeVito et al., 2007

Temporal DeVito et al., 2007

WM Corrigan et al., 2013†‡#

↓ Friedman et al., 2006

DeVito et al., 2007

Frontal Left Friedman et al., 2003

Right ↓ Friedman et al., 2003

Parietal Left � Friedman et al., 2003

Right Friedman et al., 2003

Frontal Kubas et al., 2012

Left Vasconcelos et al., 2008

DLPFC Left Horder et al., 2013

Parietal Left Horder et al., 2013

Right Page et al., 2006 Page et al., 2006

IPS Bernardi et al., 2011

Temporal MTL Friedman et al., 2003

Auditory Brown et al., 2013

TPJ � Bernardi et al., 2011

STG Friedman et al., 2003

Occipital � Friedman et al., 2003

HAC ⇈ Gabis et al., 2008 Kleinhans et al., 2009 Kleinhans et al., 2009

Right O’Brien et al., 2010 O’Brien et al., 2010

Page et al., 2006 Page et al., 2006

Thalamus Friedman et al., 2003 Doyle-Thomas et al., 2014 Bernardi et al., 2011

Hardan et al., 2008

Cerebellum DeVito et al., 2007 ⇈ Gabis et al., 2008

Left Vasconcelos et al., 2008 Tebartz van Elst et al.,

2014

Cingulate Friedman et al., 2003

Putamen Friedman et al., 2003 Doyle-Thomas et al., 2014

ACC Bejjani et al., 2012 ⇈ Vasconcelos et al., 2008 Tebartz van Elst et al.,

2014

Bernardi et al., 2011

Caudate Doyle-Thomas et al., 2014

� Friedman et al., 2003

CallosumAnterior � Friedman et al., 2003

Post Friedman et al., 2003

Insula Left ↓ Friedman et al., 2003

Right � Friedman et al., 2003

Centsemi Left Fayed and Modrego, 2005

Striatum Left ⇈ Vasconcelos et al., 2008

BasGan Left Horder et al., 2013

1.5T , 3T ; �, p < 0.001; ↓, p < 0.01; ⇈, p < 0.001; ↑, p < 0.01;
†
3–4 years; ‡6–7 years; #9–10 years; ACC, Anterior Cingulate Cortex; Ant, Anterior; BasGan, Basal

Ganglia; Cent Semi, Centrum Semiovale; Cr+PCr, Creatine+Phosphocreatine; DLPFC, Dorsolateral Prefrontal Cortex; GM, Gray Matter; HAC, Hippocampus-Amygdala Complex; IPS,

Intraparietal Suclus; MTL, Medial Temporal Lobe; Post, Posterior; STG, Superior Temporal Gyrus; TPJ, Temporo-parietal Junction; WM, White Matter.
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and quantification, so MMs are a known limitation of GABA
quantification (Ganji et al., 2012; Mullins et al., 2014).

Cortical water masks metabolite peaks and therefore must
be suppressed to expose metabolite levels (Kousi et al., 2013).
Suppression is achieved by frequency-selective pulse-sequences
such as chemical shift selective water suppression (CHESS) and
relaxation time manipulations (Bertholdo et al., 2013; Kousi
et al., 2013; Juchem and Rothman, 2014). 1H-MRS statistical
analysis software, such as LCModel, can also account for cortical
water variation (Provencher, 2001). Insufficient and variable
water suppression methods therefore contribute to variation in
quantified metabolite levels across studies.

Forty percent of ASD 1H-MRS studies report metabolite levels
as a ratio to a reference signal, such as Cr+PCr, which are
subject to variation between experimental groups (Levitt et al.,
2003; Harada et al., 2011; Rojas et al., 2011; Doyle-Thomas et al.,
2014). In fact, Endo et al. (2007) suggest that their finding of
low NAA/Cr+PCr may be a reflection of high Cr+PCr. These
inconsistencies across studies impact the interpretability of the
literature at large and should be taken into account.

Finally, region of interest varies significantly across studies
(Sokol et al., 2002; Harada et al., 2011) and small sample
size leads to low statistical power(Bernardi et al., 2011) that
affects generalizability. Although there are benefits in reporting
metabolite levels across a the cortex, it is difficult to draw
inferences regarding their regionally specific role due to the lack
of study replications. Furthermore, within regions of interest is a
variation in tissue composition that affects the overall metabolite
level. For example, white and gray matter contains substantially
different amounts of neurons and oligodendrocytes, and white
matter astrocytes differ to those in gray matter (Amaral et al.,
2013). The level of Cr+PCr, glutamate, glutamine, NAA and
myo-Inositol is higher in gray matter, which comprise cell bodies
and glia. Choline+ level is highest in white matter, comprising
mostly axons and glia (Pouwels and Frahm, 1998). Furthermore,
energy consumption also differs between tissues with gray matter
generally requiring more energy than white matter (Amaral et al.,
2013).

Altogether, it is clear that 1H-MRS research should take into
account the variation in methodologies when developing studies
and making inferences regarding the literature at large. Efforts
should be made to replicate methods and cortical regions of
interest to establish generalisability. This is essential for the use
of 1H-MRS to inform the theoretical framework of metabolic
behavior within the healthy and diseased brain.

8.2. ASD Research
In addition to 1H-MRS methodology inconsistencies,
experimental groups themselves vary in diagnosis, age,
intelligence, trait behaviors and phenotypes, medications,
and family history as illustrated in Table 1. These are discussed
in turn below.

In terms of the ASD diagnosis itself, research suggests that the
triad of phenotypes is genetically heterogeneous (Happé et al.,
2006; Ronald et al., 2006; Robinson et al., 2012). Furthermore,
certain metabolites have been related to specific symptoms,
such as communication and empathy with glutamate (Horder

et al., 2013; Tebartz van Elst et al., 2014), communication and
restricted and repetitive behaviors with choline+ (Doyle-Thomas
et al., 2014), and social responsiveness with NAA(Murphy et al.,
2002; Brown et al., 2013). These symptoms manifest as trait
phenotypes in non-clinical control groups (Baron-Cohen et al.,
2001). However, information regarding ASD trait phenotypes
within control groups is seldom reported, questioning the
integrity of group comparisons and the relationship between
metabolite levels and phenotypes. Thus, it is possible that the
largely inconsistent results reported in this review are a product
of non-specific group membership (Kleinhans et al., 2007).
Furthermore, ASD phenotypes are comorbid with psychosis
(Stahlberg et al., 2004; Bakken et al., 2007; Solomon et al.,
2011), schizophrenia (Stahlberg et al., 2004; Rapoport et al., 2009;
Solomon et al., 2011), schizoid personality disorder (Coolidge
et al., 2013; Dinsdale et al., 2013; Ford and Crewther, 2014),
schizotypal traits (Dinsdale et al., 2013; Ford and Crewther,
2014), epilepsy andmental retardation (Aoki et al., 2012), ADHD
(Stahlberg et al., 2004; Brieber et al., 2007), bipolar disorder
(Stahlberg et al., 2004), and anxiety (Stahlberg et al., 2004). It
is therefore important that ASD and other multi-dimensional
neurological disorder research focus on biological markers of
specific symptom phenotypes, rather than psychiatric disorders
as a whole.

The role of metabolite levels in intelligence remains relatively
unknown, although performance IQ has been related to increased
right HAC NAA/Cr+PCr and myo-Inositol/Cr+PCr in ASD,
while HAC myo-Inositol/Cr+PCr has been inversely related
to performance IQ for controls (Gabis et al., 2008). Although
many find no relationship between intelligence and metabolites
discussed in this review(Page et al., 2006; Hardan et al., 2008;
Fujii et al., 2010; Suzuki et al., 2010; Bernardi et al., 2011; Rojas
et al., 2011; Brown et al., 2013; Gaetz et al., 2014), Table 1
illustrates that several 1H-MRS studies do not match intelligence
between experimental groups (Levitt et al., 2003; Endo et al.,
2007; Kleinhans et al., 2007; Gabis et al., 2008; Hardan et al., 2008;
O’Brien et al., 2010; Rojas et al., 2011; Bejjani et al., 2012; Brown
et al., 2013).

Sex differences in metabolite levels are also relatively
unknown, although girls are reported to have reduced
choline+/Cr+PCr ratio in the thalamus (Doyle-Thomas
et al., 2014) and increased choline+ in the right caudate (Levitt
et al., 2003). Metabolite level differences across age have been
reported extensively (Hisaoka et al., 2001; DeVito et al., 2007;
Zeegers et al., 2007; O’Brien et al., 2010; Aoki et al., 2012; Kubas
et al., 2012; Corrigan et al., 2013; Doyle-Thomas et al., 2014),
particularly the level of frontal NAA (DeVito et al., 2007; Zeegers
et al., 2007; Aoki et al., 2012; Kubas et al., 2012) and Cr+PCr
(Zeegers et al., 2007), temporal NAA (Hisaoka et al., 2001;
DeVito et al., 2007), HAC NAA (O’Brien et al., 2010) and Glx
(DeVito et al., 2007; Doyle-Thomas et al., 2014), and motor and
visual GABA/Cr+PCr (Gaetz et al., 2014). These studies suggest
that NAA, Cr+PCr, choline+ and myo-Inositol abnormalities
in childhood may normalize through adolescence to adulthood
for those with ASD. Clinical symptoms related to NAA and
choline+ may reflect developmental abnormalities rather than
state-specific social deficits (Kleinhans et al., 2009). Furthermore,
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age related changes appear to differ between ASD and typically
developing groups (DeVito et al., 2007; Corrigan et al., 2013).

A major implication for studies of this nature concerns
the administration of pharmacological interventions, whether
for sedation or patient medication. Due to the role of
psychotropic medications on neurotransmitter systems such as
the serotonergic, dopaminergic and glutamatergic, metabolite
levels may be affected (Lam et al., 2006; Joshi et al., 2013).

However these medications often do not account for
differences in metabolic processes (Sokol et al., 2002; Vasconcelos
et al., 2008; Rojas et al., 2011; Joshi et al., 2013; Gaetz et al.,
2014), and no differences between medicated and unmedicated
participants are reported (DeVito et al., 2007; Bejjani et al., 2012;
Tebartz van Elst et al., 2014). Sample size is often too small
to draw meaningful conclusions however Oner et al. (2007)
and Sokol et al. (2002) suggest that medications may have
an indirect effect in ASD, with symptom severity significantly
associated with choline+/Cr+PCr increase for all ASD children,
but not unmedicated children alone. Levitt et al. (2003) report
lower Cr+PCr level in the right caudate head of medicated vs.
unmedicated children, concluding that therapeutic drugs may
normalize Cr+PCr. Sedatives were administered in the majority
of child 1H-MRS studies, particularly to the ASD group. The
effect of the sedative triclofos is unclear, although it may promote
GABA levels through increased GABA transaminase (Harada
et al., 2011). The sedative midazlolam appears to have no effect
(18 sedated, eight un-sedated) on NAA and Glx level for children
with ASD (DeVito et al., 2007). Control participants are rarely
sedated so it cannot be determined whether sedatives affect
metabolic processes in typically developing children (DeVito
et al., 2007). In sum, the effects of pharmacological interventions
should be analyzed and reported, failing this the results should be
interpreted with caution.

9. CONCLUSION

Future research should recognize the limitations of the current
literature, both in 1H-MRS protocols and participant selection.
Specifically, it is important that studies record and report ASD

phenotypes across all experimental groups. This practice is
beneficial two-fold as it ensures the control group is not affecting
differences between the groups, and will provide greater insight
into the neurochemical role in the broader phenotype of ASD.
Collecting trait level data need not be specific to ASD studies
however, all research investigating spectrum disorders would
benefit from such a practice.

We summarize the extensive and intricate network of
metabolic activity specific to ASD symptoms, while highlighting
current ASD research shortcomings, namely; inconsistent 1H-
MRS protocols, limited phenotype data, ASD heterogeneity, and
clinical and control samples variability. These ultimately limit the
development of ASD theory as it is difficult to draw a meaningful
conclusion from the literature at large. Nevertheless, reduced
absolute levels of sub-cortical NAA and Cr+PCr, cortical white
matter Cr+PCr, Glx, NAA and myo-Inositol, and gray matter
Cr+PCr, Glx, NAA, and choline+ are somewhat consistent in
children with ASD. Inconsistent results in adult studies however,
may reflect the aforementioned limitations. Clinical and trait
ASD phenotypes are largely understudied and should be used
to identify abnormalities in the metabolic pathway from which
pervasive symptoms arise. Ultimately, phenotype-specific studies
will advance what is known of the underpinnings of ASD, and
the detection, diagnosis and treatment of ASD and other multi-
dimensional psychiatric disorders.
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