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ABSTRACT

G-rich oligonucleotides T30695 (or T30923), with the
sequence of (GGGT)4, and T40214, with the sequence
of (GGGC)4, have been reported to exhibit anti-HIV
and anticancer activity. Here we report on the struc-
ture of a dimeric G-quadruplex adopted by a deriva-
tive of these sequences in K+ solution. It comprises
two identical propeller-type parallel-stranded G-quad-
ruplex subunits each containing three G-tetrad
layers that are stacked via the 50-50 interface. We
demonstrated control over the stacking of the two
monomeric subunits by sequence modifications.
Our analysis of possible structures at the stacking
interface provides a general principle for stacking of
G-quadruplexes, which could have implications for
the assembly and recognition of higher-order
G-quadruplex structures.

INTRODUCTION

G-rich oligonucleotides are capable of forming four-
stranded helical structures called G-quadruplexes (1–6),
built from the stacking of multiple G�G�G�G tetrads
(or G-tetrads) (7). There is a diversity of G-quadruplex
structures with different G-tetrad cores and loop arrange-
ments (1–6). In particular, there are four types of G-tetrad
cores based on relative strand orientations [parallel-
stranded; (3+1); antiparallel-stranded up–up–down–
down; antiparallel-stranded up–down–up–down] and three
main types of loops (edgewise; diagonal; double-chain-
reversal) (6). This folding principle has been supported
by a number of reported high-resolution structures of
G-quadruplexes (1–6). The possibility of G-quadruplex
stacking (8–13) and interlocking (14–16) has been pro-
posed and could be an element of higher-order nucleic
acid structures (17,18). For instance, various stacking

modes (50–50, 30–30 and 30–50) have been proposed as a
means for higher-order packaging of parallel-stranded
G-quadruplexes in telomeric DNA and RNA (6).
However, to date, the details of G-quadruplex stacking
have not been fully understood.

Different experimental techniques may provide different
views on the formation and structure of G-quadruplexes.
For example, gel shift (19) and mass spectrometry (20–22)
give indications on the molecular sizes of G-quadruplexes,
while CD spectra are empirically used to speculate on
the relative orientation of the four strands constituting
the G-tetrad core. Parallel-stranded (characterized by a
positive peak at 260 nm) and antiparallel-stranded (char-
acterized by a positive peak at 290–295 nm) G-tetrad cores
provide distinct CD signatures (23–25). However, CD
alone might be insufficient to conclude on the folding
topology of G-quadruplexes, as loop residues could also
contribute to the CD signals (26,27). So far, only NMR
and X-ray crystallography can provide atomic-resolution
structures of G-quadruplexes. However, even these high-
resolution techniques could suffer incorrect structural in-
terpretations (28–30). Some X-ray crystallographic struc-
tures of G-quadruplexes were incorrectly interpreted at
low-resolution diffractions and have been later corrected
in the literature [see (28) and (29) for discussion]. For
NMR structural analysis of G-quadruplexes, unambigu-
ous and model-independent spectral assignment appro-
aches are required (31). There were examples where
model-dependent spectral assignments led to incorrect
conclusions about G-quadruplex topologies [as pointed
out and discussed in (30)].

A number of synthetic G-rich DNA oligonucleotides
have been reported to exhibit anticoagulant (32,33),
anti-HIV (34–40) and anticancer activities (14,41–44).
These include T30695 (or T30923), with the sequence of
(GGGT)4 (41,42) and T40214, with the sequence of
(GGGC)4 (43), which have been reported as inhibitors
of HIV integrase (IN), a viral enzyme responsible for the
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integration of viral DNA into the host-cell genome (45). In
addition, T40214 has also been reported to possess
anticancer properties through the inhibition of STAT3
(36). However, there remains ambiguity in the literature
regarding the structure adopted by these sequences. Jing
et al. (41) studied T30695 in K+ solution by NMR spec-
troscopy and reported an antiparallel-stranded G-quad-
ruplex, which consists of two G�G�G�G tetrads and a
G�T�G�T tetrad, where all three loops are edgewise.
However, spectral overlap could have hampered the struc-
tural interpretation, as the authors reported contrasting
CD spectra of T30695 with a positive peak at 260 nm
(41,42), which is a signature of parallel-stranded G-quad-
ruplexes (23–25). This structure was thought to be an
exception to the rules regarding CD spectra of G-quad-
ruplexes (46). A related G-rich oligomer HIV IN inhibitor
d(GGGGTGGGAGGAGGGT), named 93del, was later
revealed to consist of an interlocked dimeric G-quad-
ruplex with two parallel-stranded subunits (14), and
prompted questions on the stoichiometry and strand
orientations of T30695. Studies from different groups
have concurred that single-residue loop is most favorable
to adopt the double-chain-reversal configuration (47–51).
Moreover, mass spectrometry studies have detected dimer
formation for T30695 and similar oligonucleotides (12,52),
and a propeller-type parallel-stranded G-quadruplex of
T30695 was found to be stable in a recent molecular
dynamics simulations study (53).

In this work, we present a NMR structural study on the
G-quadruplex formed by T30695 and its derivative se-
quences in K+ solution. We could significantly improve
NMR spectra with a single guanine-to-inosine substitu-
tion. With unambiguous resonance assignments and stoi-
chiometry determination, we showed that this sequence
adopts a dimeric G-quadruplex, formed by the stacking
of two propeller-type parallel-stranded G-quadruplex
subunits at their 50-ends. We present an analysis of possible
structures at the stacking interface, as well as the condi-
tions controlling this stacking.

MATERIALS AND METHODS

Sample preparation

Unlabeled and site-specific labelled DNA oligonucleotides
were chemically prepared using products from Glen
Research and Cambridge Isotope Laboratories. Samples
were purified following Glen Research protocol and then
were dialyzed successively against KCl solution and water.
DNA oligonucleodites were dissolved in solution contain-
ing 70mM potassium chloride and 20mM potassium
phosphate (pH 7.0). DNA concentration was expressed
in strand molarity using a nearest-neighbor approxima-
tion for the absorption coefficients of the unfolded
species (54).

Gel electrophoresis

Molecular sizes of different G-quadruplexes were char-
acterized in electrophoresis experiments, performed at
120V on native gels containing 20% polyacrylamide
(Acrylamide:Bis–acrylamide=37.5:1) in TBE buffer

(89mM Tris–borate, 2mM EDTA, pH 8.3) supplemented
with 3mM KCl. Each sample contained 5 mg DNA. Gels
were viewed by UV shadowing.

Disintegration assay

The disintegration assay was performed essentially as
described previously (14,55). The reaction mixture con-
tained 20mM HEPES (pH 7.5), 10mM MnCl2, 30mM
NaCl, 10mM DTT, 0.05% Nonidet-P40, 600 nM HIV-1
integrase, 200 nM DB-Y1. The DNA substrate DB-Y1
(50-TGCTAGTTCTAGCAGGCCCTTGGGCCGGCGCTT
GCGCC) used in the reaction was labeled with 6-FAMTM

fluorescein at the 50-end (1st BASE, Singapore). After
incubating at 37�C in 2 h, the reaction mixture was
mixed with equal volume of 99.5% deionized formamide
(Sigma), 10mM EDTA (pH 8.0) and heated at 90�C for
3min. For inhibition test, the inhibitors were added into
the mixture and incubated in 30min before adding DB-Y1.
The reaction products were monitored by electrophoresis
on 20% polyacrylamide denaturing gels with 7M urea.

Circular dichroism

Circular dichroism CD spectra were recorded on a
Jasco-815 spectropolarimeter using 1-cm path-length
quartz cuvette in a reaction volume of 600 ml at 20�C.
Scans from 220 to 320 nm were performed with 200 nm/
min, 1-nm pitch and 1-nm bandwidth. DNA concentra-
tion was 6 mM.

NMR spectroscopy

NMR experiments were performed on 600 and 700MHz
NMR Bruker spectrometers equipped with a cryoprobe at
25�C, unless otherwise specified. Guanine resonances were
unambiguously assigned by using site-specific low-level 15N
labeling (56), site-specific 1H-to-2H substitutions (57), and
through-bond correlations at natural abundance (58).
Spectra assignments were completed by COSY, TOCSY,
HSQC and NOESY experiments. Interproton distances were
measured by NOESY experiments at various mixing times.

Structure calculation

Inter-proton distances for J19 (Table 1) were classified
based on NOESY experiments performed in H2O
(mixing time, 200ms) and D2O (mixing times, 100, 200
and 300ms), and were duplicated for the two monomers.
In vacuum, models were generated using the XPLOR-
NIH program (59) in two general steps: (i) distance
geometry simulated annealing and (ii) distance-restrained
molecular dynamics refinement. Hydrogen-bond
restraints, inter-proton distance restraints, dihedral
restraints, planarity restraints, and non-crystallographic

Table 1. DNA sequences used for structural study

Name Sequence (50–30)

T30695 GGG T GGG T GGG T GGG T
J19 GIG T GGG T GGG T GGG T
T40214 GGG C GGG C GGG C GGG C
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symmetry restraints were imposed during structure calcu-
lations. Ten lowest-energy structures were then subjected
to distance-restrained molecular dynamics refinement in
explicit solvent using the AMBER program (60), in
which the dihedral, planarity and noncrystallographic
symmetry restraints were removed. Detailed procedures
are described in the Supplementary Data. Structures
were displayed using the PyMOL program (61).

Data deposition

The coordinates of ten lowest-energy d(GIGTGGGTGG
GTGGGT) (J19) dimeric G-quadruplex structures upon
distance-restrained molecular dynamics refinement in ex-
plicit solvent have been deposited in the Protein Data
Bank (accession code 2LE6).

RESULTS AND DISCUSSION

G-quadruplexes of T30695 and T40214 in K+ solution

NMR spectra including 1D spectra (Figure 1) and 2D
NOESY (Supplementary Figure S1 and Supplementary
Data) indicated that the T30695 and T40214 sequences
(Table 1) form similar G-quadruplex structures in K+

solution. In our hands, T30695 showed similar 1D imino
proton spectra to the previously reported ones by Jing
et al. (41), but very different 2D NOESY spectra. In par-
ticular, we did not observe strong intraresidue H8-H10

NOE cross-peaks for guanines, which would be indicative
of syn glycosidic conformations. T30695 and T40214
exhibit similar CD spectra with a positive band at
260 nm (Figure 2), a characteristic signature of parallel-
stranded G-quadruplexes (23).

A single guanine-to-inosine substitution improves NMR
spectra of T30695 in K+ solution

Proton resonances in the NMR spectra of T30695 were
heavily overlapped (Figure 1b; Supplementary Figure S1b
and Supplementary Data), presumably due to the quasi-
symmetry of the structure arising from the repetitive
nature of the sequence, which could have hampered
detailed structural analysis by NMR (41). We found that

a single guanine-to-inosine substitution at position 2
of T30695 greatly improved the spectral resolution
(Figure 1c; Supplementary Figure S1c and Supplementary
Data). This modification, resulting in the sequence
GIGT(GGGT)3 (henceforth designated J19), most likely
broke up some symmetry of the structure (see NMR data
and structure below) and, consequently, remove the
degeneracy of the NMR spectra.

NMR spectra of J19 in K+ solution (Figure 1c) showed
eleven sharp guanine imino protons at 10.8–11.6 ppm and
an inosine imino proton at 13.8 ppm, corresponding to
three G-tetrads. Similar spectral characteristics, including
chemical shifts and NOESY patterns (Figure 1b;
Supplementary Figure S1b and Supplementary Data),
indicated the same conformation for J19 and T30695
(and T40214). These were corroborated by their similar
CD spectra, which showed a positive band at 260 nm
(Figure 2), consistent with the formation of parallel-
stranded G-quadruplexes (23). The correspondence
between J19, T30695 and T40214 was also observed in
gel electrophoresis experiments (see below).

J19 forms a stacked dimeric G-quadruplex in K+ solution

Guanine imino protons of J19 were unambiguously as-
signed using site-specific 2% 15N-labeled samples (56)
(Figure 3a). The downfield-shifted peak at 13.8 ppm was
assigned to the imino proton of I2 (62). Guanine H8
protons were assigned by through-bond correlations to
the respective imino protons via 13C5 at natural abun-
dance (58) (Figure 3b). Some of these assignments were
independently confirmed by site-specific 2H substitutions
at the H8 position (57) (Supplementary Figure S2 and
Supplementary Data). Assignments of other protons
were assisted by through-bond (COSY, TOCSY and
HSQC), and through-space (NOESY) correlations (31).
The H8/H6-H10 sequential NOE connectivities could be
observed from G1 to G3, G5 to G7, G9 to G11 and G13
to T16, while interruptions were observed at T4, T8 and
T12 (Figure 4a), which adopt the double-chain-reversal
configurations (see structure below). The moderate inten-
sity of intraresidue H8/H6-H10 NOEs indicated that all
residues adopt anti glycosidic conformations.

Figure 1. Imino proton NMR spectra of (a) T40214, (b) T30695 and
(c) J19 in K+ solution at 25�C.

Figure 2. CD spectra of T30695, J19, J19-Q2 and T40214 in K+

solution.
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Characteristic NOE patterns between imino and H8
protons pointed to the formation of three tetrads: G1�
G5�G9�G13, I2�G6�G10�G14 and G3�G7�G11�G15
(Figure 4b and c). These tetrad alignments, combined
with other data (see below), indicated that J19 forms a
stacked dimeric G-quadruplex, in which each half of the
structure is a propeller-type parallel-stranded G-quad-
ruplex with three tetrad layers and three double-
chain-reversal loops (Figure 4d). Data supporting the
50-end stacking and dimeric nature of J19 include: (i) gel
electrophoresis showing the migration rate of J19 to be
similar to that of the interlocked dimeric G-quadruplex
93del and slower than that of J19-Q2, a monomeric
propeller-type G-quadruplex containing three tetrad layers
(see below); (ii) solvent-exchange data showing that the

imino protons of guanines in the G1�G5�G9�G13 tetrad
at the stacking interface are protected from the exchange
with D2O (Supplementary Figure S3); (iii) the observations
of several NOE cross-peaks across the interface between
two monomeric subunits (see below); and (iv) the disrup-
tion of stacking interaction when additional bases were
extended from the 50-end of J19 (see below).
The solution structure of J19 was calculated on the

basis of NMR restraints (Table 2), including NOEs at
the interface between the two subunits (discussed below),
which were imposed as ambiguous distance restraints. Ten
lowest-energy structures after distance-restrained molecu-
lar dynamics refinement in explicit solvent were super-
imposed and presented in Figure 5. The core of the
G-quadruplex is well converged and there is tight packing
across the interface. The hydrogen-bond directionalities of
the tetrads are the same within each subunit, but opposite
between the two subunits. The thymine bases T4, T8 and
T12 project outwards of the core, typical of single-
nucleotide double-chain-reversal loops (14).

Structure of the stacking interface

Stacking between G-quadruplexes has been proposed
(8–13), but so far there have been limited discussions re-
garding the structural details at the stacking interface. For
a pair of G-quadruplex monomers that stack through
planar tetrads, we can envisage a range of isomers,
wherein the two subunits are rotated with respect to
each other about the common helical axis. We might
suppose that certain orientations of the two subunits are
most favorable, corresponding to states of lowest energies,
which will be determined by many factors, including van
der Waals contacts, orbital overlap, ion coordination and
steric hindrance. For the current case involving two
parallel-stranded G-quadruplexes, one major mode of
stacking was observed: the two monomers stack in a
50–50 manner, with G1, G5, G9, and G13 from one subunit
directly above G9*, G5*, G1* and G13*, respectively,
from the other subunit (Figure 5; Supplementary
Figure S4 and Supplementary Data). The sugars from
the two tetrads are immediately adjacent to one another
(with the faces containing the H10 and H40 atoms facing
each other), the backbones of the two subunits align in a
staggered manner, and the five- and six-membered rings of
the guanines display partial overlap across the interface
(Supplementary Figure S5iii, iii0 and Supplementary
Data). This dimeric arrangement was supported by the
observation of NOEs among base and sugar protons of
the G1�G5�G9�G13 tetrad, including those between
imino-H8 of G5–G5* and G13–G13*, as well as reciprocal
NOEs between H8–H10, H10–H10 and H10–H30 of G1 and
G9* (or G9 and G1*). Some of these NOEs were unam-
biguously confirmed in samples where G(H8) were
site-specifically substituted by deuterium (Figure 6, see fig-
ure legend; Supplementary Figure S6 and Supplementary
Data). In principle, there are three other possible arrange-
ments which would produce almost identical stacking
pattern, each being related to this major mode by succes-
sive 90� rotation(s) of one subunit. Due to spectral overlap,
evidence for their existence or absence is limited, and it

Figure 3. Proton resonance assignments of J19 in K+ solution. (a)
Imino protons were assigned by 2% 15N-labeling at the indicated pos-
itions. (b) H8 proton were assigned by through-bond correlations
between imino and H8 protons via 13C5 at natural abundance, using
long-range J couplings.
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will be prudent not to preclude them entirely. In a recent
RNA G-quadruplex structure consisting of a dimer of
dimers, a major mode of stacking was also observed
(11). We note that in these two examples, the terminal
50-OH groups of the component strands are positioned
furthest away from each other in the major conformation
(Supplementary Figure S7 and Supplementary Data),
which might explain why this isomer is more stable than
the rest.

Patterns of overlap at the interface for different stacking
orientations

Various patterns of overlap of the guanine bases at the
interface have been observed across a number of G-quad-
ruplex structures involving a pair of tetrads with opposing
hydrogen-bond directionalities: (i) maximum overlap of
the five-membered rings of guanines (9,14,63,64); (ii) max-
imum overlap of the six-membered rings of guanines

(65,66); and (iii) partial overlap of the five- and six-
membered rings of guanines (67–69). Comparing against
the current case, i.e. pattern (iii) (Supplementary Figure S5
and Supplementary Data), (i) is related by a �25� clock-
wise rotation of the bottom subunit with respect to the
top, while (ii) is related by a �15� anticlockwise rotation
of the bottom subunit with respect to the top. Pattern
(i) was observed at the interface of the interlocked dimeric
G-quadruplex 93del (14), and is typically observed within
an antiparallel G-quadruplex. Pattern (ii) was seen in
crystal structures of tetrameric quadruplex assemblies
where the interface involves the intersection of eight
strands, with octad formation at the sandwiching layers
immediately adjacent to the interface (65,66). Pattern
(iii) was observed across a number of dimeric structures
that involve stacking of intramolecular G-quadruplexes
(67–69), including the present case of J19. It is interesting
to note that regardless if J19 is twisted into orientation

Figure 4. Determination of G-quadruplex folding topology of J19 in K+ solution. (a) H8/H6-H10 region of NOESY spectrum (mixing time, 300ms)
at 25�C. The assignments and NOE sequential connectivities are shown. (b) Imino-H8 region of NOESY spectrum (mixing time, 400ms) at 25�C.
The characteristic guanine imino-H8 cross-peaks for G-tetrads are framed and labeled with the imino proton assignment in the first position and that
of the H8 proton in the second position. (c) Specific imino-H8 connectivity pattern around a G-tetrad (Ga�Gb�Gg�Gd) indicated with arrows
(connectivity between Gd and Ga implied). The connectivities observed for G1�G5�G9�G13 (purple), I2�G6�G10�G14 (red) and G3�G7�G11�G15
(green) tetrads are shown below. (d) The schematic structure of J19 dimeric parallel-stranded G-quadruplex.
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(i) or (ii), it reverted to (iii) upon unrestrained molecular
dynamics simulations in explicit solvent (data not shown).

Control of stacking between G-quadruplexes

Gel electrophoresis, which can provide information on the
molecular sizes of G-quadruplexes, was used to examine
the possibility of stacking of parallel-stranded
G-quadruplex blocks to form dimeric structures.
Sequences beginning with G at the 50-end, such as
T30695 and J19, were found to favor stacking of
G-quadruplexes at this end. The migration of these
stacked dimeric G-quadruplexes is comparable to that of
the reference interlocked dimeric G-quadruplex 93del (14)
(Figure 7), which also consists of six G-tetrad layers. It is
conceivable that the addition of terminal non-G residue(s)
would reduce the stacking propensity of these
G-quadruplexes (8,10,11). Indeed, the extension of two
thymines at the 50-end of J19 (giving J19-Q2; Table 3)
led to the sequence migrating faster than 93del (Figure
7). We have shown that this sequence forms in a similar
condition a propeller-type G-quadruplex with three
G-tetrad layers (unpublished results). The extension of
three thymines instead of two only marginally increased
the mobility of the structure (Supplementary Figure S8
and Supplementary Data). On the other hand, sequences
with only one additional T at the 50-end migrated faster
than the original sequences (T30695 and J19), but slower

Figure 5. Stereoviews of the dimeric parallel-stranded G-quadruplex structure of J19 in K+ solution. (a) Ten superimposed structures after
distance-restrained molecular dynamics refinement in explicit solvent. (b) Ribbon view of a representative structure. Bases from the top monomer
are colored blue while those from the bottom monomer are colored red. Backbone and sugar atoms are colored gray, with O40 atoms in yellow and
phosphorus atoms in red.

Table 2. Statistics of the computed structures of the dimeric

parallel-stranded G-quadruplex J19a

NMR restraintsb

Distance restraints D2O H2O
Intra-residue distance restraints 574 20
Sequential (i, i+1) distance restraints 322 36
Long-range (i,� i+2) distance restraints 22 92
Inter-subunit distance restraintsc 16 4

Other restraints
Hydrogen-bond restraints 92
Dihedral restraints 64

Structure statistics for 10 molecules following
distance-restrained molecular dynamics refinement
in explicit solvent
NOE violations
Number (>0.2 Å) 0.100±0.300
Maximum violation (Å) 0.156±0.031
RMSD of violations (Å) 0.014±0.001

Deviations from the ideal covalent geometry
Bond lengths (Å) 0.002±0.000
Bond angles (�) 0.603±0.010
Impropers (�) 0.795±0.078

Pairwise all heavy atom RMSD values (Å)
All heavy atoms except T4, T8, T12 and T16 0.87±0.12
All heavy atoms 1.50±0.25

aPDB ID: 2LE6.
bRestraints were duplicated for the two monomers, and include those
within each subunit, as well as those at the interface between the two
subunits.
cThese distance restraints were imposed as ambiguous restraints and
specified with the sum-averaging option.
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than those containing two thymines (Figure 7). There
could be equilibrium between the monomeric and
stacked dimeric forms, resulting in the intermediate migra-
tion rate. In contrast to the 50-end, there could be minimal
stacking over the 30-end surfaces: each additional T at the
30-end only slightly increased the mobility of the parent
sequences (Figure 7; Supplementary Figure S8 and
Supplementary Data). Similar NMR (Supplementary
Figures S1 and S9; Supplementary Data) and gel electro-
phoresis (Supplementary Figure S10) results were
obtained for T40214, consistent with the formation of a
similar stacked dimeric G-quadruplex for this sequence.

HIV-1 IN inhibition activity of various G-rich sequences

In order to probe if the various G-rich oligonucleotides
retain anti-HIV IN activity, we performed assays on the
reverse ‘disintegration’ reaction by HIV-1 IN (14,55). The
results are presented in Figure 8. T30695, J19 and their
derivative sequences with thymines at the 30-end exhibited
comparable inhibition activity as 93del, whereas derivative
sequences containing thymines at the 50-end were
somewhat less active, which might be attributed to their
lower potentials to form stacked dimeric structures.
Combined with other studies (14,70), this work suggested
dimeric parallel-stranded G-quadruplexes comprising a
total of six G-tetrad layers as potential HIV-1 IN inhibi-
tors. Note however that the conclusion from the assay
would be more qualitative than quantitative, as the con-
centrations here are in the micromolar range, which are
around two orders of magnitude larger than the reported

IC50 for the inhibition activity of T30695 against HIV-1
IN (71).

CONCLUSION

A DNA sequence derived from the oligonucleotides
T30695 and T40214 was shown to adopt a dimeric
G-quadruplex, formed by the stacking of two identical
propeller-type parallel-stranded G-quadruplex subunits
at their 50-ends. The structure of the stacking interface
was analyzed in detail. We showed that stacking inter-
action between the two subunits was disfavored by exten-
sion of non-G residues from the terminals.

Figure 6. Determination of the stacking pattern of two J19 subunits. Imino-H8 proton region of NOESY spectra (mixing time, 400ms) of (a) J19
and (b–d) modified sequences with site-specific 2H substitution at position H8 of (b) G9, (c) G13 and (d) both G9/G13 are shown. The peaks
involving substituted guanines (framed) are missing for modified sequences. The inter-subunit NOE, whose intensity is significantly decreased for the
G13-substituted sequence (marked with asterisk on the projection), is framed in red.

Figure 7. Breaking of the stacked dimer. Gel electrophoresis experi-
ments showing the effect of adding T residues at the 30 and 50-ends
on the formation of higher-order structures for T30695 and J19. The
interlocked dimeric G-quadruplex 93del was used as a reference.
Sequence name is labeled on the top of each lane.
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31. Phan,A.T., Guéron,M. and Leroy,J.L. (2001) Investigation of
unusual DNA motifs. Methods Enzymol., 338, 341–371.

32. Bock,L.C., Griffin,L.C., Latham,J.A., Vermaas,E.H. and
Toole,J.J. (1992) Selection of single-stranded-DNA molecules that
bind and inhibit human thrombin. Nature, 355, 564–566.

33. Schultze,P., Macaya,R.F. and Feigon,J. (1994) Three-dimensional
solution structure of the thrombin-binding DNA aptamer d(GGT
TGGTGTGGTTGG). J. Mol. Biol., 235, 1532–1547.

34. Bates,P.J., Kahlon,J.B., Thomas,S.D., Trent,J.O. and Miller,D.M.
(1999) Antiproliferative activity of G-rich oligonucleotides
correlates with protein binding. J. Biol. Chem., 274, 26369–26377.

35. Simonsson,T. and Henriksson,M. (2002) c-myc suppression in
Burkitt’s lymphoma cells. Biochem. Biophys. Res. Commun., 290,
11–15.

36. Jing,N., Li,Y., Xiong,W., Sha,W., Jing,L. and Tweardy,D.J.
(2004) G-quartet oligonucleotides: a new class of signal
transducer and activator of transcription 3 inhibitors that
suppresses growth of prostate and breast tumors through
induction of apoptosis. Cancer Res., 64, 6603–6609.

37. Qi,H., Lin,C.-P., Fu,X., Wood,L.M., Liu,A.A., Tsai,Y.-C.,
Chen,Y., Barbieri,C.M., Pilch,D.S. and Liu,L.F. (2006)

G-quadruplexes induce apoptosis in tumor cells. Cancer Res., 66,
11808–11816.

38. Choi,E.W., Nayak,L.V. and Bates,P.J. (2010) Cancer-selective
antiproliferative activity is a general property of some G-rich
oligodeoxynucleotides. Nucleic Acids Res., 38, 1623–1635.

39. Wyatt,J.R., Vickers,T.A., Roberson,J.L., Buckheit,R.W. Jr,
Klimkait,T., DeBaets,E., Davis,P.W., Rayner,B., Imbach,J.L. and
Ecker,D.J. (1994) Combinatorially selected guanosine-quartet
structure is a potent inhibitor of human immunodeficiency virus
envelope-mediated cell fusion. Proc. Natl Acad. Sci. USA, 91,
1356–1360.

40. Rando,R.F., Ojwang,J., Elbaggari,A., Reyes,G.R., Tinder,R.,
Mcgrath,M.S. and Hogan,M.E. (1995) Suppression of
human-immunodeficiency-virus type-1 activity in-vitro by
oligonucleotides which form intramolecular tetrads.
J. Biol. Chem., 270, 1754–1760.

41. Jing,N., Gao,X., Rando,R.F. and Hogan,M.E. (1997)
Potassium-induced loop conformational transition of a
potent anti-HIV oligonucleotide. J. Biomol. Struct. Dyn., 15,
573–585.

42. Jing,N.J., Marchand,C., Liu,J., Mitra,R., Hogan,M.E. and
Pommier,Y. (2000) Mechanism of inhibition of HIV-1 integrase
by G-tetrad-forming oligonucleotides in vitro. J. Biol. Chem., 275,
21460–21467.

43. Jing,N., Xiong,W., Guan,Y., Pallansch,L. and Wang,S. (2002)
Potassium-dependent folding: a key to intracellular delivery of
G-quartet oligonucleotides as HIV inhibitors. Biochemistry, 41,
5397–5403.

44. de Soultrait,V.R., Lozach,P.Y., Altmeyer,R., Tarrago-Litvak,L.,
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