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Abstract

Background: Francisella tularensis causes severe pulmonary disease, and nasal vaccination could be the ideal measure to
effectively prevent it. Nevertheless, the efficacy of this type of vaccine is influenced by the lack of an effective mucosal
adjuvant.

Methodology/Principal Findings: Mice were immunized via the nasal route with lipopolysaccharide isolated from F.
tularensis and neisserial recombinant PorB as an adjuvant candidate. Then, mice were challenged via the same route with
the F. tularensis attenuated live vaccine strain (LVS). Mouse survival and analysis of a number of immune parameters were
conducted following intranasal challenge. Vaccination induced a systemic antibody response and 70% of mice were
protected from challenge as showed by their improved survival and weight regain. Lungs from mice recovering from
infection presented prominent lymphoid aggregates in peribronchial and perivascular areas, consistent with the location of
bronchus-associated lymphoid tissue (BALT). BALT areas contained proliferating B and T cells, germinal centers, T cell
infiltrates, dendritic cells (DCs). We also observed local production of antibody generating cells and homeostatic
chemokines in BALT areas.

Conclusions: These data indicate that PorB might be an optimal adjuvant candidate for improving the protective effect of F.
tularensis antigens. The presence of BALT induced after intranasal challenge in vaccinated mice might play a role in
regulation of local immunity and long-term protection, but more work is needed to elucidate mechanisms that lead to its
formation.
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Introduction

Francisella tularensis is a gram-negative bacterium, and the cause

of a severe pneumonic disease known as tularemia. Although the

number of cases of respiratory tularemia is relatively low

worldwide, the potential for using this organism as a biological

weapon has encouraged the search for an effective vaccine. Nasal

immunization is a promising alternative to classical parenteral

vaccination, because it is non-invasive and capable of eliciting both

systemic and local immune responses. In addition, this vaccination

route is known to be more immunogenic at the mucosal level than

the oral and vaginal routes [1,2]. Another advantage is that it

requires smaller amounts of antigen to induce an optimal immune

response [3,4]. Nevertheless, the development of mucosal vaccines

is generally limited by the lack of effective mucosal adjuvants [5,6].

With regard to intranasal vaccines against tularemia, live

organisms have mostly been tested via this route, conferring

variable levels of protection against challenge with virulent

Francisella. Examples of these immunogens are LVS, attenuated

Francisella novicida strains and mutants of the virulent SchuS4 strain

[7–10]. Although the live vaccine strain (LVS) of F. tularensis

derived from a virulent type B strain has been used for

vaccination, it is no longer approved for human use because the

basis for its attenuation still remain obscure [11]. Attractive and

safe alternatives to substitute live organisms are subunit vaccines,

though their use against tularemia has not been fully investigated.

Even more attractive could be the use of subunit vaccines for nasal

immunization, to induce mucosal protection against tularemia in a

safer and potentially more effective way, although this approach

has not been widely explored. Our group has previously shown

that lipopolysaccharide (LPS) from F. tularensis in combination with

porin B (PorB) purified from Neisseria meningitidis elicited 70%

protection from bacterial challenge, when given subcutaneously

[12]. Other groups have reported that mice immunized with F.
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tularensis LPS via several systemic routes were marginally protected

against intraperitoneal and intradermal challenge with type B

strains [13–17]. Several proteins, including a 17-kDa protein

(Tul4), a 43-kDa outer membrane protein and heat shock protein

60 have been tested for their efficacy in animal models, but they

conferred minimal protection after challenge with virulent strains

[18–20]. One group reported that immunization with native outer

membrane proteins (OMPs) induced 50% protection against

intranasal challenge with type A F. tularensis [21]. More recently, a

detoxified endotoxin (from Escherichia coli) vaccine non covalently

complexed with the outer membrane protein of N. meningitidis

group B was also found to be partially protective against LVS and

type A virulent strains [22].

Overall, research efforts to investigate novel mucosal adjuvants

that potentiate the response to F. tularensis antigens have been

minimal. One study reported the use of cholera toxin subunit B

(CTB) as a nasal adjuvant with inactivated LVS against both LVS

and virulent F. tularensis [23].

Bronchus-Associated Lymphoid Tissue (BALT) is a lymphoid

structure that can be found in peribronchial, perivascular and

interstitial areas of the lung. Its formation can be triggered in the

lungs of mice and humans by encounter with antigen, infection or

inflammation, but it is not normally present in healthy lungs of

these species [24]. BALT is composed of prominent lymphocyte

aggregates, often characterized by proliferating and germinal

center B cells, supported by a central follicular dendritic cell

network. Interfollicular T cells and dendritic cells lie underneath

the follicle associated epithelium (FAE) and are located around B

cell areas [25,26]. Other important constituents of this specialized

lymphoid tissue are lymphatics and high endothelial venules

(HEVs) expressing vascular cellular-adhesion molecule-1 (VCAM-1)

[27,28].

It has been reported that similar structures were formed as a

direct consequence of certain respiratory infectious diseases in

experimental animal models. The influenza virus triggered

formation of what is known as inducible BALT (iBALT) in mice

lacking conventional lymphoid organs. It was suggested that

iBALT may play an important role in protection [27,29]. Also,

lungs of several other animal species infected either naturally or

experimentally with a number of bacterial and viral pathogens also

developed areas of organized lymphoid follicles [30–33]. Lungs of

patients with pulmonary complications of Sjogren’s syndrome (SS)

and rheumatoid arthritis (RA) showed areas of organized

lymphoid areas, also referred to as iBALT [34]. Despite having

a critical role in the modulation of local inflammatory response in

mice inoculated with Influenza (JRM personal communication),

the specific function of iBALT in infection and immunity still

remains controversial, considering that this tissue only develops as

a consequence of certain infectious diseases but not others.

The present study reports the potential use meningococcal

recombinant porin B (rPorB) as a putative mucosal adjuvant

candidate, when delivered with F. tularensis LPS. The formation of

highly organized BALT, following intranasal vaccination and

subsequent bacterial challenge is also described.

Results

Induction of systemic antigen specific antibodies after
vaccination

SDS-PAGE was used to detect purified rPorB, as shown by the

single band in the Coomassie gel (Figure 1A). Minimal endotoxin

levels, approximately 0.036 EU per microgram, were detected in

the protein preparation. After confirming the purity of rPorB, the

humoral response to intranasal vaccination with the LPS+rPorB

candidate was assessed. Blood was collected from all groups four

weeks after the third immunization dose and just before intranasal

challenge. Serum levels of antigen specific antibodies were

measured by ELISA. Overall, mice that had received LPS+rPorB

via the nasal route developed higher levels of LPS-specific

immunoglobulins than control groups (Figure 1B). Sera from

mice vaccinated with LPS+rPorB contained antigen specific IgG,

though levels of this immunoglobulin were shown to be variable,

with four mice responding more strongly than the other five

(Figure 1B). The variability in IgG response did not necessarily

reflect the outcome of survival following intranasal challenge. No

detectable levels of IgG were present in serum from mice in the

PBS, rPorB and LPS alone control groups. Levels of LPS-specific

IgM detected in the serum of mice vaccinated with LPS/rPorB

were overall higher than those observed in mice immunized with

control substances, with a significant difference when compared

with the PBS group (Figure 1B). As for IgG, mouse to mouse

variability in the IgM response was also observed. Analysis of

serum antigen-specific IgA, revealed that only two out of 10 mice

vaccinated with LPS+rPorB had increased antibody levels when

compared to the three control groups (data not shown).

Nasal delivery of rPorB improved the protective capacity
of LPS against F. tularensis challenge

To determine the protective capacity of F. tularensis LPS with

rPorB administered intranasally, we challenged groups of mice

with either 105 CFU (1006 LD50) or 106 CFU (10006 LD50) of

LVS via the same route. Vaccinated and control animals received

the bacterial inoculum four weeks after the third immunization

and their survival was monitored for 21 days. Sixty percent of the

mice (6 out of 10) immunized with the LPS+rPorB were protected

from challenge with 106 CFU of LVS, compared with the PBS

control group that succumbed to tularemia within 8 days post-

infection (Figure 2A). The poor protective capacity of LPS alone

was reflected in the accelerated death of mice (Figure 2A). After

infection with 105 CFU, 7 mice out of 9 (78%) of the LPS+rPorB

group survived for 19 days (Figure 2A). At day 20 one additional

mouse from the 105 CFU group died with a final survival rate of

67% (Figure 2A). In contrast, only 10% of inoculated with LPS

alone survived after challenge with 106 CFU, and 17% survived

after challenge with 105 CFU (Figure 2A). Progressive body weight

loss was detected during the first 8 days after infection, and a

subsequent regain, starting at day 9 post-infection, was associated

with improved survival of LPS+rPorB vaccinated mice (Figure 2B).

Mice that received LPS alone and survived challenge had a similar

body weight recovery, although the overall survival rate was

dramatically reduced compared to LPS+rPorB mice. Groups of

mice receiving PBS or rPorB showed poor survival rate and never

regained their initial weight. To further evaluate the efficacy of

intranasal vaccination, bacterial replication in the bloodstream

was analyzed. Mice (3 to 8 mice per group) immunized with

LPS+rPorB or one of the control substances (PBS, LPS or rPorB

alone) were bled 3 days after intranasal challenge with either 105

or 106 CFU of LVS. Figure 2C shows that mice immunized with

our vaccine candidate (LPS+rPorB) had numbers of bacteria in

their blood (,102 CFU per ml) approximately 100-fold lower than

mock-vaccinated mice (,104 CFU; P,0.001). Bacteremia detect-

ed in LPS-immunized mice was similar to that observed in the

LPS+rPorB-immunized group, while bacterial levels in the blood

of mice vaccinated with rPorB were closer to those found in PBS

control mice (Figure 2C). A similar pattern was observed in groups

of mice challenged intranasally with 105 CFU (Figure 2C). These

results describe the high potential of meningococcal porin as a

mucosal adjuvant. In a preliminary study we compared the

Tularemia Vaccination and BALT

PLoS ONE | www.plosone.org 2 June 2010 | Volume 5 | Issue 6 | e11156



immunogenic efficacy of this protein to that of the known mucosal

adjuvant CpG DNA. Results revealed that LPS-specific IgG and

IgM induced by PorB were respectively 3 and 2-fold higher when

compared with CpG DNA (data now shown).

Formation of BALT after vaccination and challenge
Thirty days after respiratory challenge, lungs from vaccinated mice

were dissected, fixed and processed for histopathological and

immunofluorescence analyses. To evaluate the inflammatory changes

in the infected lungs, paraffin sections were stained with hematoxylin

and eosin (H&E). The presence of lymphocyte clusters, indicative of

organized lymphoid follicles, was then evaluated by light microscopy.

Representative lung sections from untreated mice (Figure 3A) as well as

sections from lungs of mice vaccinated intranasally with LPS alone

(Figure 3B), LPS+rPorB (Figure 3, C and D) and LPS+rPorB without

LVS challenge (Figure 3E) are reported. Histopathological analysis of

sections revealed the presence of lymphoid follicles. Overall, no

inflammation (neutrophils, edema, fibrin) was detected in the lung

tissue. Lungs from unvaccinated and unchallenged control mice did

not contain any inflammatory cells or visible lymphocytes (Figure 3A).

Lungs from vaccinated mice that became moribund prior to day 8

post-infection did not contain any lymphoid areas (data not shown).

Lung sections from all vaccinated mice presented lymphoid aggregates

(Figure B–E). Nevertheless, standard hematoxylin and eosin staining

did not show the extent of the organization of the follicles, thus

immunofluorescence was used for this purpose. Lung sections from the

group vaccinated with LPS/rPorB and challenged with LVS contained

visibly organized BALT as demonstrated by B (B220+) and T cell

(CD3+) infiltration (Figure 4, D and E), B220+ B cell follicles with

proliferating B cell (PCNA+) (Figure 5, D and E) and B220+ B cell

Figure 1. Recombinant PorB and evaluation of antibody response against F.tularensis LPS. (A) The band of rPorB detected by Coomassie
gel stain is indicated by the arrow. (B) Serum was collected four weeks after vaccination, just before i.n. challenge. Antibody production was analyzed
by ELISA and results are presented as nanograms (ng) of LPS-specific IgG and IgM per milliliter (ml) of serum. Black dots indicate individual mice,
while bars represent mean values. Lower antibody concentrations include values between 286 and 436 ng/ml as opposed to those that were not
detected (ND) in control groups. Significant differences were calculated by Mann Whitney test and are indicated by *** (P,0.001) for LPS+rPorB
compared with PBS.
doi:10.1371/journal.pone.0011156.g001
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clusters with peanut agglutinin-positive (PNA+) germinal center B cells

(Figure 6, D and E). The lymphoid clusters detected in lungs from

LPS+LVS challenged group and the LPS+rPorB unchallenged group

were confirmed to be composed of disorganized B cells and some

scattered T cells (Figures 4–6, C and F). Mediastinal lymph nodes were

included in the study as positive staining controls (Figures 4–6, B).

BALT was also detected in LPS+rPorB vaccinated at 120 days post-

infection (data not shown). No viable organisms were detected in the

lung, spleen and liver tissue with evident BALT at days 30 and 120

post-infection (data not shown), suggesting the formation of these

structures may prevent dissemination of the infection.

Morphometric analysis of lymphoid follicles and
identification of dendritic cells, antibody producing cells
and homeostatic chemokines in lungs

To highlight differences in the inflammatory responses induced

in the lung tissue of vaccinated/challenged mice and vaccinated/

Figure 2. Survival, morbidity and bacterial dissemination following intranasal challenge. (A) Protection was monitored for 21 days in
challenged groups after inoculation with 106 and 105 CFU of LVS. (B) Morbidity associated with bacterial infection was determined by analyzing
changes in body weight. The weight regain curve for the LPS-vaccinated group includes the only mouse that survived intranasal challenge (filled grey
squares). (C) Bacterial loads in blood of challenged mice. Black dots represent individual mice, while bars represent mean values. ** (P,0.01);
*** (P,0.001).
doi:10.1371/journal.pone.0011156.g002
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unchallenged mice 30 days after infection, morphometric analysis

of lymphoid structures was conducted by calculating the average

size of individual follicles, or the entire area occupied by multiple

follicles. The average size of whole lymphoid follicles was

significantly larger in lungs of mice vaccinated with LPS+rPorB

and subsequently challenged (,50,000 mm2), than in mice that

were only vaccinated (,13,000 mm2); differences were significant

with a P value,0.01 (Figure 7A). B cell follicles were also slightly

bigger in the vaccinated/challenged group (,13,800 mm2) com-

pared with mice that only received the vaccine (,10,800 mm2),

though this difference was not significant (Figure 7A). The total

area occupied by lymphoid follicles was larger in the LPS+rPorB/

challenged group (,2,000,000 mm2) as compared to total area in

LPS+rPorB/unchallenged group (,207,000 mm2), although these

differences were not statistically significant (Figure 7B). A similar

pattern was observed for the average area occupied by B cell

lymphoid aggregates that was increased in vaccinated/challenged

mice (,354,000 mm2) than in mice that were vaccinated but not

challenged (,33,800 mm2) (Figure 7B). Morphometric analysis for

PBS- and rPorB-vaccinated groups was not conducted because all

challenged mice had died by day 30, and no lymphoid aggregates

were found in their lungs at the moribund stage. Results for the

LPS-vaccinated group are also not shown because only one mouse

per group survived bacterial challenge, and thus could not be

included in the statistical analysis of the morphometric study. At

day 30, dendritic cells (DCs) were found within the BALT follicles

from mice vaccinated with LPS+PorB and challenged, as shown in

figure 7C. Cells stained with either CD11b, CD11c, or a

combination of both cell markers, were found and confirmed to

be DCs by their typical appearance characterized by cytoplasmic

prolongations (Figure 7C, yellow arrows). We were also able to

identify CD11c+ high macrophages, featuring a rounder and more

defined shape (Figure 7C, white arrow). We analyzed antibody

generating plasma cells in lungs of challenged mice that had

previously been vaccinated and euthanized at day 30. IgG+, IgA+
and IgM+ cells were detected in areas of BALT, and outside the

lymphoid structures (data not shown). IgG+ plasma cells were

more abundant than IgM+ and IgA+ plasma cells and some were

proliferating (red nucleus stained by PCNA and green cytoplasm

stained for IgG, indicated by the arrows in the upper left panel of

figure 8A). IgM+B cells were also present, as shown by the signal

localized exclusively on the surface (upper middle panel, figure 8A).

No proliferating T cells were detected, but clusters of PCNA+ cells

(red nuclei) indicating germinal centers (GC) and individual T cells

(red surface) were found in the tissue (upper panels, figure 8A).

The production of homeostatic chemokines, concomitant to the

development of BALT in lungs of vaccinated mice, was analyzed

locally by immunofluorescence and measured in serum and

supernatants from lung homogenates, 30 days post-challenge. We

were able to detect a CXCL13 signal that co-localized with

follicular dendritic cells (detected by CD21, CD35 and FDCM-1

markers- lower left panel, figure 8A), and CCL21 signal in a

structure presenting the characteristic morphology of a high

endothelial venule, located in the middle of the B cell follicle (lower

middle panel, figure 8A). CCL21 was also detected in cells with an

oval morphology compatible with endothelial cells or lymphatic

precursors (lower right panel, figure 8A). By ELISA assay, the

levels of CCL21 in lung lysates and serum were elevated above

baseline in the group vaccinated with LPS+rPorB and then

challenged with LVS, as compared with unvaccinated unchal-

Figure 3. Lymphoid aggregates in lungs of vaccinated mice were detected at 30 days post-challenge (arrows). (A) Representative lung
from naı̈ve mouse was used as a negative control; (B) Lung from LPS vaccinated/challenged; (C and D) Lung from LPS+rPorB vaccinated/challenged
mouse and (E) Lung from LPS+rPorB vaccinated/unchallenged mouse. Formalin fixed, paraffin embedded sections were stained with H&E and
representative pictures were taken with a 106 objective.
doi:10.1371/journal.pone.0011156.g003
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lenged mice. A significant increase in CCL21 concentration in

lung lysates from vaccinated mice was found (Figure 8B). Analysis

of CXCL13 production in lung lysates and serum did not reveal

any noteworthy differences between naı̈ve and vaccinated mice

(data not shown). Chemokine analysis is not reported for the LPS-

vaccinated mice because only one mouse survived in the group,

and data analyzed at day 30 could not be included in the study.

Discussion

The present work reports the use of meningococcal PorB as a

potential mucosal adjuvant when delivered with F. tularensis LPS, a

poorly immunogenic antigen. A high percentage of mice

vaccinated with LPS and PorB were significantly protected against

lethal respiratory LVS infection when compared with the control

groups, and presented well-organized bronchus-associated lym-

phoid tissue (BALT) in peribronchial and perivascular areas of

their lungs. The vaccine candidate was administered via the

intranasal route, an attractive alternative to conventional paren-

teral formulations against respiratory pathogens. We are aware

that LVS is an attenuated strain of F. tularensis, and that challenge

should ideally also be conducted with virulent type A and B

strains. Nevertheless, it should be noted that very few studies have

been able to show effective protection against virulent F. tularensis

strains after administration of LPS-based or other subunit

vaccines. Poor protection is associated with the rapid induction

of fatal disease in mice challenged with extremely low infection

doses. In addition to this experimental difficulty, virulent strains of

F.tularensis cause fulminant systemic disease in the mouse, which

does not optimally mimic human tularemia. Overall, the selection

of a vaccine candidate able to confer successful protection against

virulent F. tularensis has proven to be difficult over the years, and is

beyond the purpose of the present work, which mostly shows the

potential of a bacterial porin protein as a mucosal candidate and

its ability to enhance BALT development.

Following intranasal immunization of mice, meningococcal

recombinant PorB significantly improved the protective capacity

of Ft-LPS, as shown by the increased survival rate of C57BL/6

mice (67% and 60%) challenged intranasally with 105 (1006
LD50) and 106 CFU (10006 LD50) of LVS, respectively. LPS

administered alone conferred less than 20% protection from

respiratory challenge, confirming the results we previously

obtained in a subcutaneous (s.c.) vaccination model [12]. In the

s.c. model, LPS+PorB induced slightly higher protection (70%)

than that observed in our i.n. model, but it should be noted that

BALB/c mice were used instead of the current C57BL/6 strain

[12], and that genetic background can have an impact on vaccine

efficacy and disease outcome. The reason for selecting C57BL/6

for this study is based on our interest in elucidating the role of Toll-

like receptors (TLR) in the innate immune response against

Francisella and vaccine candidates against tularemia, as most TLR

knock-out mouse strains are available in this genetic background.

The high level of protection observed was associated with

progressive weight recovery and a pronounced decrease in

bacteremia (10 to 100-fold) in the LPS+rPorB group. This result

contrasted with control groups, in particular mice that were mock-

vaccinated with PBS that exhibited considerable disseminated

disease. Interestingly, mice vaccinated with LPS alone also showed

Figure 4. Detection of B and T cell infiltrates in lungs of vaccinated mice 30 days post-challenge. (A) Representative lung from naı̈ve
mouse as a negative control; (B) Mediastinal lymph node from LPS+rPorB/challenged mouse as an internal positive control; (C) Lung from LPS
vaccinated/challenged mouse; (D, E) Lung from LPS/rPorB vaccinated/challenged mouse and (F) lung from LPS+PorB vaccinated/unchallenged
mouse. Cell surface markers used were B220 for B cells (green- Alexa 488) and CD3 epsilon for visualizing T cells (red- Alexa 549). Cell nuclei were
stained with 49-6-Diamino-2-phenylindole (DAPI-blue). Representative pictures were taken with a 206 objective.
doi:10.1371/journal.pone.0011156.g004

Tularemia Vaccination and BALT

PLoS ONE | www.plosone.org 6 June 2010 | Volume 5 | Issue 6 | e11156



decreased levels of bacteremia. One plausible explanation for this

phenomenon is that other mechanisms other than bacterial

clearance, including lung inflammation or injury, might be

contributing to the difference in survival but not in bacterial loads

between LPS- and LPS+rPorB-vaccinated mice. Serum from mice

vaccinated with LPS+rPorB showed an overall increased produc-

tion of antigen-specific antibodies, compared with antibody levels

in sera from the LPS-, rPorB- and PBS-immunized groups, which

presented low levels of class switched, LPS-specific immunoglo-

blulins. For both antigen specific IgG and IgM we observed that

some mice were more responsive than others, indicating variability

in the humoral response to LPS administered in combination with

rPorB. Nasal vaccination is known to induce serum IgG due to the

capacity of mucosal immune cells (e.g. DCs, B cells) to activate and

effectively mediate contact with systemic immune sites [35]. In our

model, mice presented variable levels of antigen specific antibodies

and the higher amounts did not necessarily correlate with

protection from challenge. One plausible explanation is that

despite the low levels detected, these antibodies may still have a

higher affinity for our antigen, and this may potentially be

associated with the protective immune response observed. Relative

affinity assays will be conducted in future studies. Another

possibility is that antibodies are produced and rapidly consumed

locally, explaining the containment of the infection in the lung.

Other factors, like cellular immunity, might also be playing a

crucial role in conferring protection against respiratory challenge.

We were able to detect dendritic cells (DCs), follicular dendritic

cells (FDCs) and macrophages within the lymphoid structures of

the murine lungs, suggesting a role for this cell type in cell

mediated immunity in response to our intranasal vaccine and

challenge regimen. Recently, another study reported a role for

DCs in iBALT homeostasis and induction of antibody responses

[36].

In this study we report the development of organized lymphoid

structures forming in peribronchial and perivascular areas of lungs

following intranasal vaccination and challenge in a murine model

of experimental tularemia. In a previous report, organized

lymphoid areas defined as inducible BALT (iBALT) developed

in the lungs of C57BL/6 mice following infection with the

Influenza virus [27]. Lymphoid aggregates were also observed in

various other animal species after infection with Mycobacterium

tuberculosis, Pseudomonas aeruginosa and Mycoplasma spp. [30–32]. In

human lungs, organized lymphoid areas have been described in

patients with pulmonary complications of autoimmune diseases

including rheumatoid arthritis and Sjogren syndrome [34], or

other chronic lung conditions like hypersensitivity bronchiolitis

and pan-bronchiolitis [37,38]. In Francisella tularensis infection

studies, one group found that LVS administered via the aerosol

route induced medium sized lymphoid aggregates in murine lungs

[39]. The authors hypothesized that these clusters might either be

residual inflammatory foci, or Francisella-specific T cells to be

recalled upon re-infection [39]. Similarly, our group described the

appearance of peribronchial lymphoid aggregates in mice that

spontaneously recovered from experimentally induced tularemia

50 days after intranasal infection with 104 CFU (106 LD50) of

LVS [40]. In the present model, we observed that lungs of mice

Figure 5. Detection of proliferating B cells within BALT of vaccinated mice 30 days post-challenge. (A) Lung from naı̈ve mouse as a
negative control; (B) mediastinal lymph node from LPS+rPorB/challenged mouse as an internal positive control; (C) Lung from LPS vaccinated/
challenged mouse; (D, E) Lung from LPS+rPorB vaccinated/challenged mouse and (F) lung from LPS+PorB vaccinated/unchallenged mice. B cells were
detected with B220 (green- Alexa 488) and PCNA was used to identify proliferating cells (red- Alexa 549). Areas of mixed color overlap indicate
proliferation of B cells (see arrows). Cell nuclei were stained with 49-6-Diamino-2-phenylindole (DAPI-blue). Representative pictures were taken with a
206objective.
doi:10.1371/journal.pone.0011156.g005
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vaccinated intranasally with LPS+rPorB candidate presented

accumulations of lymphoid cells around the bronchi and vessels

of the lung parenchyma. For simplicity we will refer to these

structures as BALT, although they are clearly distinct from the

follicles constitutively present in the lungs of certain animal species.

Immunofluorescence analysis of the follicles revealed highly

organized structures in the lungs of the mice immunized with

the LPS+rPorB mice and challenged with LVS. The presence of

dense B cell areas containing proliferating B cells and germinal

center B cells, surrounded by less dense T cell infiltrates, in

vaccinated/challenged survivors, were indicative of BALT forma-

tion. In contrast, scattered and disorganized B and T cell clusters

were detected in lung tissue of control groups. Additional

immunological factors induced by nasal vaccination and bacterial

challenge were analyzed in BALT areas. Lung sections were

stained for local antibody production and we found that IgG, IgA

and IgM producing plasma cells were contained within BALT

structures. IgG antibody producing plasma cells were more

abundant than IgM+ and IgA+ cells. Given that some of them

were positive for the cell proliferation marker PCNA, this may

indicate that they are being directly stimulated by antigen.

Considering that DCs were also present in BALT structures, it is

also possible that these immune cells can induce factors like B cell-

activating factor (BAFF), a proliferating inducing ligand (APRIL)

and interleukin-6 (IL-6) that may promote expansion and survival

of plasma cells [41,42]. According to the location of the PCNA

clusters, it is likely that plasma cells are being generated in

germinal centers (GCs) of BALT areas, and may play an important

role in preventing dissemination of infection and promoting

accelerated local bacterial clearance. The observation that GC-like

structures were not present in draining lymph nodes (data not

shown) may suggest that immunity is initiated and maintained

more efficiently in the lung. We also observed the local production

of homeostatic chemokines that play a pivotal role in the

architectural maintenance of tertiary lymphoid structures

(CXCL13 and CCL21) inside BALT structures. CXCL13 is

thought to be mainly involved in the recruitment of CXCR+ B

cells and critical for maintaining B cell follicle organization. In

contrast, CCL21 attracts CCR7+ T cells and dendritic cells at the

infection site. Attraction of naı̈ve CCR7+ cells, CCR7+ dendritic

cells and central memory T cells could contribute to accelerated T

cell priming and fast activation of memory T cells, enhancing the

cellular immune response in the lung of vaccinated mice, and

promoting faster bacterial clearance. CCL21 was also detected by

ELISA in lung lysates and serum from mice euthanized at day 30

post-challenge. Increased chemokine levels were detected in the

LPS+rPorB vaccinated/challenged group, similarly to previously

reported studies on chronic tuberculosis infection and autoimmu-

nity [30,43]. Overall our findings may suggest that local antibody

production and cell mediated immunity, activated by vaccination

with LPS+rPorB and further stimulated by LVS challenge,

triggered the formation of BALT in an attempt to clear bacterial

infection in the lung. As mentioned above, infection with LVS

alone also induced accumulation of lymphocytes around bronchi

[40], but after IF staining we observed a lower cellular

organization of the areas (data not shown). This indicates that

Figure 6. Germinal center B cells are exclusively found within BALT from LPS+rPorB vaccinated/LVS challenged mice. (A)
Representative lung from naı̈ve negative control; (B) mediastinal lymph node from LPS+rPorB/challenged mouse as an internal positive control; (C)
Lung from LPS vaccinated/challenged; (D, E) Lung from LPS+rPorB vaccinated/challenged mouse and (F) lung from LPS+PorB vaccinated/
unchallenged mouse. Cells markers are B220 for B cells (red- Alexa 549) and PNA to detect germinal center B cells (green- Alexa 488). Areas of color
overlap indicate germinal centers (see arrows). Cell nuclei were stained with 49-6-Diamino-2-phenylindole (DAPI-blue). Representative pictures were
taken with a 206 objective.
doi:10.1371/journal.pone.0011156.g006
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repetitive intranasal stimulation (vaccination) followed by chal-

lenge with LVS contributed to an increased organization of the

follicles facilitating local activation of cells from the innate

(macrophages, dendritic cells) and adaptive immune system (B

cells and T cells). Our results support a potential beneficial role of

BALT in the host infected with F. tularensis. In humans the role of

BALT is unknown, and it is still unclear whether newly induced

organized lymphoid follicles are either beneficial or detrimental for

the host [44]. Most adult healthy human lungs present little

evidence of these structures [24], but similar areas have been

previously found in patients with pulmonary conditions, infectious

diseases like tuberculosis and complications of autoimmune

disease, where iBALT plays a role in lung immunopathology

[34,37,45]. Since the structures we find in the current study

appear in mice surviving infection when bacteria are cleared from

the target organs, the direct translational significance of our

findings into human immunity is presently difficult to define.

Interesting future studies that could support our findings in the

mouse model may include analysis of BALT in lung tissue from

patients who have recovered versus those who have died from

Figure 7. Morphometric analysis of follicles and pulmonary dendritic cells at 30 days post-challenge. Data are expressed as average size
of (A) and area occupied by (B) lymphoid and B cell follicles (mm2). (C) Dendritic cells (DCs) are shown from one representative mouse immunized with
LPS+PorB and challenged with LVS (the two panels show different fields of the same lung where cells were detected). DCs were detected within
follicles by CD11b (green), CD11c (red) or both (color overlap) and characterized by cytoplasmic prolongations. DCs are indicated by the yellow
arrows. The white arrow on the left panel indicates a macrophage, characterized by a rounded shape. ** (P,0.01). Sections were viewed with a 206
objective.
doi:10.1371/journal.pone.0011156.g007
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respiratory tularemia. Overall, it is important to keep in mind the

diversity of lung lymphoid structures (classic BALT versus iBALT)

in different physiological and pathological settings, including

autoimmunity, long lasting antigenic stimulation and chronic

bacterial disease [46], as well as the different animal species they

are detected in, for a better understanding of their role in the

induction of local protective immunity.

One additional interesting finding was the high stability of

BALT that was detected at late time points after intranasal

challenge in survivor mice, contrasting with the absence of

lymphoid aggregates in lungs from moribund mice (data not

shown). Although we showed pictures of BALT taken at 30 days

post-infection, these organized structures were still found at 120

days after infection. Bacterial cultures of lung lysates were negative

at these late time points, suggesting that factors other than chronic

infection must play a role in BALT persistence. Similarly, another

study reported that iBALT persisted in murine lungs even after the

Influenza virus had apparently been cleared [47]. One explanation

for this phenomenon is that protein and peptide antigens could

remain in these areas for extended periods, continuously

Figure 8. Antibody producing cells and homeostatic chemokines in BALT areas at 30 days post-challenge. (A) Representative lungs
from mouse vaccinated with LPS+rPorB and challenged with LVS. The PCNA-CD3 combined stain was conducted to differentiate between nuclear
(PCNA+) and surface (CD3+) staining. The upper left panel shows GC (cluster is outlined by the white dashed line) shown by the presence of cells with
large PCNA+ nuclei (red nucleus staining). IgG producing proliferating plasma cells (indicated by the yellow arrows-main panel and insert) are
detected with an anti-mouse IgG antibody (green cytoplasm) and PCNA (red nuclei), and few CD3+ cells (red surface) were identified in the same
location. The upper middle panel shows IgM producing proliferating plasma cells (indicated by the yellow arrows-main panel and insert), identified
by PCNA+ stain (red nuclei) and a dense IgM+ antibody signal (green cytoplasm). IgM+ B cells had a distinctive signal localized exclusively on the
surface (green surface), and some CD3+ cells (red surface) were also detected. In the upper right panel, few IgA producing plasma cells (green
cytoplasm) are present, but no proliferation is evident. Several CD3+ cells (red surface) were identified in the same area. In the lower left panel, some
CXCL13 signal (red surface) co-localizes with the FDC network (combination of CD21, CD35 and FDCM1 markers-green) in the BALT area. The lower
middle panel shows B cell clusters (green surface) and a CCL21+ high endothelial venule like structure (HEV) (red surface) as indicated by the yellow
arrowhead. In the lower right panel, CCL21+ cells (red surface), resembling lymphatics or endothelial cells are shown by the white arrows. All sections
were viewed with a 206objective, and a 406objective for the inserts in the first two upper panels. (B) Levels of CCL21 in lung lysate and serum are
expressed as picograms (pg) per milliliter (ml) of lung lysate or serum. * (P,0.05).
doi:10.1371/journal.pone.0011156.g008
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stimulating B and T cells, sustaining local antibodies for prolonged

periods of time [48,49]. Spleens and livers from immunized and

subsequently challenged mice also did not contain any viable F.

tularensis. This may suggest that immune responses initiated in the

lungs are also able to control disseminated infection, leading to

bacterial clearance from peripheral tissues. It should be noted that

the studies we mentioned above addressed potential BALT

persistence in viral infection, while in the case of bacteria

lymphoid structures have mainly been associated with chronic

disease, as in the case of M. tuberculosis and P. aeruginosa [30,32]. In

our F. tularensis vaccine/challenge model it is difficult to exactly

conclude what contributes to BALT maintenance over time,

though its development in lungs of mice surviving tularemia

suggests that it may play a role in the induction of local immunity

and protection in our model of experimental tularemia.

In the present work, we demonstrate the efficacy of F. tularensis

LPS, combined with meningococcal PorB against experimental

tularemia. For future studies it would be optimal to test the

adjuvanticity of this protein when combined with other promising

antigen candidates, and test their efficacy against LVS and virulent

strains of F. tularensis. We also report the association of lung BALT

structures with mouse survival following vaccination and subse-

quent respiratory infection. Additional studies are required to

reveal the mechanisms involved in BALT formation and its active

role in the induction of local and systemic protection against

pulmonary Francisella infection.

Materials and Methods

Bacterial strains and growth conditions
F. tularensis subsp. holarctica live vaccine strain (LVS- ATCC

29684) was obtained from the CDC, Fort Collins, CO. For mouse

challenge, LVS was grown on chocolate agar for 72 hours and

bacterial suspensions were prepared by resuspending colonies in

PBS at an OD600 of 0.3 [12,40].

Purification methods
Lipopolysaccharide (LPS) was isolated from the LVS strain

using the hot phenol method as previously described [12].

Purification of recombinant PorB (rPorB) was performed based

on a well established protocol [50]. E. coli BL21(lDE3) DompA,

obtained from Dr. Milan Blake at the Rockefeller University, was

grown on a LB agar plate containing 50 mg/ml kanamycin and

incubated overnight at 37uC. Colonies from the plate were

inoculated into 10 ml of liquid medium consisting of supplement-

ed M9 minimal media grown overnight at 37uC. Subsequent

growth was induced with IPTG for 3 hours at 37uC. After

centrifugation the bacterial pellet was resuspended in 3 ml TEN

buffer. PMSF and lysozyme were added, followed by deoxycholate

and the suspension was then placed in a 37uC water bath. DNase I

was then added to the mixture. The lysate was centrifuged at

10,0006g for 20 min at 4uC. The pellet was resuspended in 5 ml

TEN buffer and then sonicated. Zwittergent (10%, wt/vol) was

added to the mixture, sonicated for 10 min and loaded onto

Sephacryl S-300 gel filtration columns previously equilibrated with

100 mM Tris, 200 mM NaCl, 10 mM EDTA, pH 8.0. The flow

rate of the column was set at 0.8 ml/min and 10 ml fractions were

collected. Fractions containing protein as determined by measure-

ment of OD280 were analyzed by SDS-PAGE.

Preparation of proteosomes and SDS-PAGE
Recombinant PorB proteosomes were prepared as previously

described [51]. Briefly, fractions containing porin were pooled and

precipitated with 80% (v/v) ethanol and held at 220uC overnight.

The precipitate was centrifuged at 15,0006g for 20 min, the pellet

was resuspended in 10 ml 10 mM Hepes buffer containing 10%

D-octyl-glucoside (DOG), pH 7.2 and dialyzed extensively against

PBS containing 0.02% sodium azide [51]. The protein concen-

tration was determined using a BCA protein assay kit (Pierce) and

tested for endotoxin by Pyrotell (Associates of Cape Cod, East

Falmouth, MA) with a sensitivity of 0.06 endotoxin units per

milliliter (EU/ml). Fractions containing protein as determined by

measurement of OD280 were analyzed by SDS-PAGE. PreciseTM

Protein Gels 4%–20% were used in Tris-HEPES-SDS buffer

(Pierce Biotechnology, Inc.) and were stained with standard

Coomassie (Bio-Rad, Inc. Hercules, CA).

Mice
Seven week old female C57BL/6 mice were obtained from

Jackson Laboratories (Bar Harbor, ME) and maintained within the

Laboratory Animal Science Center (LASC) at Boston University.

All experimental procedures were in accordance with institutional

animal care and use committee.

Intranasal vaccination and challenge
Groups of five to ten mice were immunized by the intranasal

(i.n.) route three times at two-week intervals. Mice were

anesthetized via the i.p. route with ketamine HCl (Fort Dodge

Animal Health, Fort Dodge, IA) and xylazine (Lloyd Laboratories,

Shenandoah, IA), and vaccinated with LVS-LPS, LVS-LPS with

neisserial rPorB, rPorB alone, or PBS in a total volume of 20 ml (a

quantity of 10 mg for each substance). Three to ten mice per

group, were bled by the submandibular vein after the last

vaccination, to detect the production of LPS-specific immuno-

globulins. Four weeks after the last immunization, mice were

challenged intranasally with either 105 or 106 CFU of LVS as

described before [12]. All animals were closely observed until

completely awake from anesthesia. Survival and changes in body

weight were recorded for up to 21 days after infection. For lung

tissue analysis, survivors were humanely euthanized 30 days post-

challenge. Data reported in this study are representative of three

independent experiments.

Antibody and chemokine assays
Mouse serum and lungs were processed for the detection of immune

markers. Analysis of LPS-specific serum IgG, IgM and IgA was

performed in pre-challenge serum by enzyme-linked immunosorbent

assay (ELISA) as previously reported [12,40]. Briefly, plate wells were

coated with LPS from F. tularensis LVS (0.25 mg/ml), incubated at 37uC
and stored overnight at 4uC. Sera were diluted starting from 1:50,

added to the previously coated wells, and incubated at 37uC. Alkaline

phosphatase-conjugated anti-mouse IgG, IgM or IgA (Sigma, St.

Louis, MO) were added. After washing, the color was developed with

one-step p-nitrophenyl phosphate (Pierce, Rockford, IL) and the optical

density at 405 nm was measured on an ELx800 reader (Bio-Tek

Instruments, Inc., Winooski, VT). Colorimetric values were converted

to nanograms/milliliter, according to the standard curves generated for

IgG, IgM and IgA. Levels of the CCL21 chemokine were measured in

both serum and lung lysates of vaccinated/challenged mice by ELISA

using the DuoSet Development System kit specific for CCL21/6Ckine

(R&D Systems, Minneapolis, MN).

Histopathological and morphometric analyses of
lymphocytic infiltration

All histopathological procedures were conducted as previously

described [40]. Briefly, lungs were removed aseptically 30 days

post challenge, and inflated with 10% buffered formalin through
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the trachea. Tissue was fixed in formalin, embedded in paraffin,

and sections were stained with standard hematoxylin and eosin

(H&E). Lymphocytic infiltration was analyzed by researchers

‘blinded’ to sample identity, and morphometry was determined

using a tool of an Axioplan microscope (Zeiss). The lymphoid

areas were defined by the squared micron value for each cluster of

lymphocytes encountered in the lung parenchyma. Total area

covered by lymphoid follicles was calculated by adding the

individual areas occupied by all the lymphoid follicles present in

the whole lung section and expressed in squared microns (mm2).

Immunofluorescence and morphometric analysis of BALT
Formation of germinal centers, B cell interaction with T cells,

and B cell proliferation were evaluated with a combination of

commercial antibodies. B cells were detected with biotinylated

antibodies against B220 (clone: RA3-6B2; BD Pharmingen, San

Diego, CA) followed by the addition of Streptavidin-Alexa Fluor

488 (Molecular probes, Eugene, OR) or Streptavidin-Alexa fluor

594 (Molecular probes, Eugene, OR). For detecting T cells (CD3-

epsilon, clone: M-20; Santa Cruz Biotechnology, Santa Cruz, CA)

and proliferating cell nuclear antigen (PCNA, clone C-20; Santa

Cruz Biotechnology, Santa Cruz, CA) slides were first incubated

with purified goat-anti mouse CD3 and goat anti PCNA. In a

second step, CD3 and PCNA were visualized with donkey anti-

goat, conjugated to Alexa Fluor 594 (Molecular probes, Eugene,

OR). Germinal center B cells were detected by incubating slides

with peanut agglutinin-FITC (PNA-FITC) (SIGMA, St. Louis,

MO), followed by rabbit anti-FITC, conjugated to Alexa Fluor

488 (Molecular probes, Eugene, OR). Dendritic cells were

detected with a combination of hamster-anti mouse CD11c-PE

(clone HL3, BD Pharmingen, San Diego, CA) and rat-biotin anti

mouse CD11b (M1/70, BD Pharmingen, San Diego, CA),

followed by incubation with rabbit anti-PE (Rockland Immuno-

chemicals for Research Inc, Gilbertsville, PA) and Streptavidin

FITC (BD Pharmingen, San Diego, CA) and finally PE was

detected with anti-rabbit Cy-3 (Jackson Immunoresearch, West

Grove, PA). For detecting immunoglobulin producing cells, lung

sections were stained with a combination of antibodies directed

against goat anti PCNA (Santa Cruz Biotechnology, clone C-20),

biotin, rat anti IgM (BD Pharmingen), rat anti-IgA (BD

Pharmingen, clone C-10) or FITC-donkey anti-mouse IgG

(Jackson Immunoresearch). For T cells we used goat anti CD3

(Santa Cruz Biotechnology, clone M20), and we combined it with

anti-PCNA antibody for the identification of proliferating T cells.

Anti-PCNA specifically stains nuclei (red), while anti-CD3 stains

the cell surface (red), allowing the distinction between the two

signals. Goat antibodies were detected with donkey anti-goat,

Alexa fluor 568 (Invitrogen) and rat antibodies were detected with

donkey anti-rat, Alexa fluor 488 and streptavidin-alexa fluor 488

(Invitrogen). FITC signal was amplified with rabbit anti-FITC,

alexa fluor 488. Homeostatic chemokines were detected with goat

anti mouse CXCL13 and goat anti mouse CCL21. Follicular

dendritic cell (FDC) networks were detected with antibodies

against FDCM-1 (BD Pharmingen) and biotin- rat anti mouse

CD21-CD35 antibodies. B cells were stained with APC-rat anti

CD45R (BD Pharmingen). To visualize chemokines and cells,

slides were incubated with donkey anti-goat, conjugated to alexa

fluor 568 and with donkey anti-rat, alexa fluor 488 and

streptavidin-alexa fluor 488 (Invitrogen). Slow fade gold antifade

with DAPI (Molecular probes, Eugene, OR) was used to

counterstain tissues and to detect nuclei. Images were obtained

with a Zeiss Axioplan 2 microscope and recorded with a Zeiss

AxioCam digital camera. Whole lungs from four mice per group

underwent morphometric analysis in a blinded manner using the

morphometric tool of Zeiss Axioplan microscope (Zeiss), which

determines the area defined by the squared pixel value for each B

cell follicle. Total area occupied by B cell follicles was calculated as

mentioned above.

Statistical analysis
Differences between experimental groups were determined by

the Mann-Whitney U nonparametric test by using GraphPad

Prism software version 4.02 (San Diego, CA). P values #0.05 were

considered significant, while P values #0.01 were considered

highly significant.

Acknowledgments

We are grateful to Dr Milan Blake for kindly providing the E. coli strain

expressing meningococcal PorB, and to Dr Paola Massari for valuable

scientific advice regarding the use of this protein and discussion on data

analysis. We also thank Drs Adalberto Pessoa Júnior and Marco Antônio
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