
Identifying Genes Relevant to Specific Biological
Conditions in Time Course Microarray Experiments
Nitesh Kumar Singh1, Dirk Repsilber2, Volkmar Liebscher3, Leila Taher1*, Georg Fuellen1*

1 Institute for Biostatistics and Informatics in Medicine and Ageing Research, Department of Medicine, University of Rostock, Rostock, Germany, 2 Institute for Genetics

and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany, 3 Institute for Mathematics and Informatics, Ernst Moritz Arndt University of Greifswald,

Greifswald, Germany

Abstract

Microarrays have been useful in understanding various biological processes by allowing the simultaneous study of the
expression of thousands of genes. However, the analysis of microarray data is a challenging task. One of the key problems in
microarray analysis is the classification of unknown expression profiles. Specifically, the often large number of non-
informative genes on the microarray adversely affects the performance and efficiency of classification algorithms.
Furthermore, the skewed ratio of sample to variable poses a risk of overfitting. Thus, in this context, feature selection
methods become crucial to select relevant genes and, hence, improve classification accuracy. In this study, we investigated
feature selection methods based on gene expression profiles and protein interactions. We found that in our setup, the
addition of protein interaction information did not contribute to any significant improvement of the classification results.
Furthermore, we developed a novel feature selection method that relies exclusively on observed gene expression changes
in microarray experiments, which we call ‘‘relative Signal-to-Noise ratio’’ (rSNR). More precisely, the rSNR ranks genes based
on their specificity to an experimental condition, by comparing intrinsic variation, i.e. variation in gene expression within an
experimental condition, with extrinsic variation, i.e. variation in gene expression across experimental conditions. Genes with
low variation within an experimental condition of interest and high variation across experimental conditions are ranked
higher, and help in improving classification accuracy. We compared different feature selection methods on two time-series
microarray datasets and one static microarray dataset. We found that the rSNR performed generally better than the other
methods.
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Introduction

DNA microarrays can be classified into static experiments,

where a snapshot of gene expression in different samples is

measured, and time series experiments, where a temporal process

is measured over a period. While static experiments may reveal

genes that are expressed under specific conditions, time series

experiments may help in determining the temporal profiles of the

genes expressed under a specific condition, as well as interactions

between them [1].

An interesting problem in microarray analysis is the classifica-

tion of unknown expression profiles with the goal of assigning

them to one or many predefined classes. Such classes represent

various phenotypes, for example, diseases. Moreover, classifying

microarray data by cross-comparing microarray data from

different laboratories and phenotypes could be helpful not only

to identify unknown samples, but to reveal obscure associations

between complex phenotypes, such as shared pathogenic pathways

among different diseases. Such approaches have been made more

feasible in recent years with the availability of large database

repositories of high throughput gene expression data, such as the

Gene Expression Omnibus (GEO) [2]. However, classifying

microarray data is a challenging task, mainly because of the large

number of non-informative variables involved: a regular micro-

array dataset comprises from 6000 to 60,000 genes [3]. First, as for

any large-scale dataset, classification algorithms require substantial

computational resources. In this regard, the current affordability of

massive computer power and recent advent of cloud computing

have opened new possibilities. In particular, web-based work-

benches such as Galaxy [4], standalone, comprehensive collections

of data analysis and integration tools such as Chipster [5], and

large, active communities devoted to open source and open

development projects such as the Bioconductor [6] have made

data-intensive biology available to virtually all scientists. Second,

and more importantly, the performance of most classification

algorithms is affected by the relatively low signal-to-noise ratio of

such datasets. Furthermore, because often only a few dozens of

samples are available, most algorithms face the risk of overfitting

[7]. Reducing the number of genes using feature selection methods

not only results in a more efficient management of the

computational resources and a lower the risk of overfitting, but

also enables a better biological understanding of the data.

Many studies have shown that integrating microarray data with

additional biological information improves classification accuracy.

For example, Bar-Joseph et al. discuss how protein-DNA binding

data and protein interaction data can be used to constrain the
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number of hypotheses that can explain a specific expression

pattern [1]. More generally, protein interactions and their

dynamics are considered helpful, and even essential for under-

standing biological processes [8]. For instance, de la Fuente argues

for the importance of integrating gene expression data with

network information to identify dysfunctional regulatory networks

in disease [9], and, consistently, several studies suggest that

pathway dysregulation is a stronger biomarker for cancer

compared to the dysregulation of individual genes [10–12]. Also,

Ma et al. showed that an approach to identifying genes associated

with a given phenotype that combines expression and protein

interaction data outperforms other approaches that use either gene

expression or protein interaction [13]. Similarly, Wu et al. used

both gene expression and protein interaction data to prioritize

potential cancer-related genes for further investigation, with

encouraging results [14]. Additionally, gene combinations have

been shown to be more effective than individual genes in

classifying cancer versus healthy samples [15], and pluripotent

versus non-pluripotent cells [16]. Consequently, although the exact

contribution of protein interaction information is difficult to assess

[17], such information is potentially useful to identify features with

biological relevance to specific experimental conditions, and

improve microarray classification.

Signal-to-noise (SNR) ratios have been extensively used in

various fields. In image processing, the SNR is defined as the mean

of the variable being measured divided by its standard deviation

[18]:

SNR~
m

s
:

In this case, the standard deviation represents noise and other

interference in comparison to the mean. The reciprocal of the

SNR is known as coefficient of variation (CV), which has been

widely applied as quality control and validation method for the

analysis of microarray assays, see, e.g., [19–21]. For instance,

Raman et al. used the CV to investigate differences in the

variability of expression levels with regards to quality control, and

found that the CV was greater for the microarrays that failed the

quality control inspection compared to those that did not [21].

The SNR has also been proposed and successfully employed as a

feature selection method for classification problems. For the sake

of clarity, we will refer to the Signal-to-Noise ratio used for

classification problems as SNR�. In the context of feature selection

for microarray classification, the SNR� measures the effectiveness

of a feature in discriminating between two classes and is defined as

[22–26]:

SNR�~
m1{m2

s1zs2
,

where, m1 and m2 are the mean expression value for class 1 and

class 2 respectively while s1 and s2 are the standard deviation for

class 1 and class 2 respectively.

The SNR� has been extensively used with some modifications

or in combination with other methods. For example, Lakshmi and

Mukherjee used a ‘‘maximized’’ SNR� that identifies features with

the aim of increasing the distance between the category profiles

[27]; Mishra and Sahu used SNR� in combination with various

clustering methods and classifiers [28]; and Goh et al. applied

multiple passes of feature selection using SNR� and Pearson

correlation coefficient [29].

Here, we show that identifying biologically relevant features

substantially improves microarray classification. First, we explore

the addition of protein interaction information as a means to select

features specific to particular experimental conditions and improve

microarray classification. We found that, in the form presented

here, the addition of protein interaction information resulted in no

improvement in classification. Second, we introduce a novel

feature selection method based on the SNR, which we call the

‘‘relative signal-to-noise ratio’’ (rSNR). Given a microarray dataset

comprising various experimental conditions, the rSNR is a feature

ranking method that ranks genes based on their specificity to a

given experimental condition, by comparing variation in gene

expression within that particular experimental condition, with

variation in gene expression across other experimental conditions.

Basically, the rSNR can be expressed as a quotient of SNRs or

CVs, and in practice, gives higher rank to genes with high

expression values and low standard deviations in the experimental

condition of interest. We tested this and other feature selection

methods on two time-series microarray datasets and one static

microarray dataset. The rSNR method performed generally better

than other feature selection methods, and its application substan-

tially improved classification accuracy. Our results also suggest

that the rSNR rank could be used to reduce the number of genes

representing a microarray experiment in a database, hence,

making searches across the entire database more efficient.

Methods

Classifying Gene Expression Time-course Data Using
Correlation Tests

To classify time course microarray experiments we adopted a

nearest neighbor approach based on Pearson correlation. Training

and test data consisted of gene expression profiles from two or

more different time points. When considering test datasets

comprising more than two time points, we first split the data into

test subsets consisting of pairs of consecutive time points. We then

evaluated the classification on each of these subsets, and decided

the final classification of the entire test data by majority voting.

With the goal of improving classification performance we

examined different data features. First, we evaluated different

manners in which gene expression profiles from two different time

points can be combined into what we call transition profiles. Then,

we incorporated protein interaction information from the

STRING database into the definition of such transition profiles.

Finally, we compared different feature selection approaches to

extract the genes that are the most relevant to specific biological

conditions.

Notation
In the following, we adopt notation by Hafemeister et al. [30].

Let

N i [ 1,:::,Nf g represent the experimental conditions/queries,

N g [ 1,:::,Gf g be the running index of the genes,

N t [ 1,:::,Tf g denote the time points,

N Oi,g,t [ : expression value of gene g of experiment i at time t,

N Oi,g,: [ T : expression time course of gene g of experiment i,

N Oi,:,t [
G : expression value of all genes at time t of

experiment i. This vector of expression values is also called

the expression profile at time t of experiment i,

N O:,g,: [ N|T : collection of all expression values of gene g for

all experiments i across all time points t,

Relevant Genes in Microarrays Experiments
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N Oi,:,: [ G|T : collection of all expression values for experiment

i for all genes g across all time points t.

Datasets
We trained and tested our method on the two time-series

microarray datasets used by Hafemeister et al. [30], consisting of

expression data describing Arabidopsis thaliana stress response

(‘‘AtGenExpress’’) [31] and the EDGE toxicology database

(‘‘EDGE’’) [32]. We further tested our method on a static

microarray dataset used by Engreitz et al. [33]. A brief description

of each of the three datasets follows.

AtGenExpress. We downloaded this dataset from the TAIR

database [http://www.arabidopsis.org/, [31]]. It consists of

microarray expression data from Arabidopsis thaliana when exposed

to various stress treatments. The dataset has 232 samples

comprising 9 stress treatments and 2 tissue types (root and shoot)

at 8 time points (T = 8), with 2 replicates at each time point. In

total, there are 18 unique combinations of stress treatments and

tissue types to which we will refer as experimental conditions

(N = 18). We will refer to the variables in the experiment, i.e., stress

treatment and tissue type, as ‘‘experimental factors’’. The original

dataset contained expression values for 22810 genes. Hafemeister

et al. reduced it to 2074 genes by applying a 2-fold-change filter

[30]. All our analyses are based on the reduced dataset of 2074

genes (G = 2074).

EDGE. We obtained this dataset directly from its original

author [32]. It contains gene expression values from mice when

treated with various toxins at different dosage levels. The dataset

has 216 samples comprising 7 toxin treatments at various dosage

levels at up to 12 time points, ranging from 2 to 192 hours

(T = 12), with replicates ranging from 1 to 40 at different time

points. In total, there are 11 unique combinations of toxin

treatments and dosage levels, to which we will refer as

experimental conditions. We will refer to the variables in the

experiment, i.e., toxin treatment and dosage level, as ‘‘experimen-

tal factors’’. The dataset contains expression values for 1600 genes

(G = 1600). Since our validation framework requires samples from

at least 4 time points, we discarded experimental conditions with

fewer than 4 time points. This resulted in a reduced EDGE dataset

with 6 unique experimental conditions (N = 6). All our analyses are

based on this reduced dataset.

Engreitz dataset. We obtained this dataset from Jesse M.

Engreitz [33]. It is a collection of 32 disease-associated microarray

experiments. These microarray experiments compared normal to

diseased tissue for Duchenne muscular dystrophy, breast cancer

and Huntington’s disease. Hence, these 32 microarray experi-

ments can be categorized into 3 experimental conditions (N = 3),

based on the associated diseases. Each microarray experiment

consists of arrays or expression profiles which can be categorized

in either ‘‘normal’’ or ‘‘diseased’’ (T = 2). Each microarray

experiment consisted of a unique set of genes. In order to create

a single dataset with around 3000 common genes, we excluded 5

microarray experiments. The reduced dataset contains 3378 genes

(G = 3378). The expression values in the reduced dataset were

quantile normalized.

STRING Database
We obtained protein interaction information from STRING, a

database of known and predicted protein-protein (and protein-

gene) interactions [http://string-db.org/, [34–39]]. The interac-

tions in STRING are derived from various sources and contain

both physical and functional associations. Each interaction in

STRING is associated with a confidence score, which is associated

with the probability that the interaction exists.

Gene Expression and Transition Profiles
As test/training data we used pairs of expression profiles from

two time points of the same experimental condition. We converted

each of these pairs of expression profiles into a vector of expression

values to which we refer as transition profile. We used two different

kinds of transition profiles:

N Differential transition profile (DTP). The DTP mea-

sures the change in expression value for all genes between two

time points tx and ty. The DTP of an experimental condition i

for a pair of time points tx and ty is calculated as:

DTPi,:, tx,tyð Þ~Oi,:,tx{Oi,:,ty :

where, Oi,:,tx and Oi,:,ty are vectors containing the expression

values of all genes under experimental condition i at time points tx
and ty respectively.

N Mean transition profile (MTP). The mean transition

profile is the mean expression value for all genes between two

time points. The MTP of an experimental condition i for a pair

of time points tx and ty is calculated as follows:

MTP
i,:, tx,tyð Þ~

Oi,:,txzOi,:,ty

2
:

where, Oi,:,tx and Oi,:,ty are defined as for the DTP.

To obtain a transition profile, two expression profiles are

combined into a single vector of expression values. Hence, we also

compared transition profiles with single gene expression profiles:

N Time point expression profile. Here, we based the

classification on individual gene expression profiles. To make

the comparison with the classification based on pairs of gene

expression profiles fair, the individual gene expression profiles

were taken from a set of two profiles (see subsection below).

We evaluated the performance of our method using the above-

mentioned expression and transition profiles on the AtGenExpress

and EDGE datasets.

Similarity Between Expression and Transition Profiles
We classified gene expression and transition profiles according

to the 1-nearest neighbor rule (1NN). Similarity between

expression or transition profiles was evaluated using the Pearson

correlation coefficient. Thus, for a given transition profile selected

as test data, we computed, pairwise, the Pearson correlation

coefficient between it and all the transition profiles in the training

data. Then, we examined the Pearson correlation coefficient of

each pair, and labeled the test data with the experimental

condition of the transition profile in the training data for which we

obtained the highest Pearson correlation coefficient. To make the

comparison between expression and transition profiles fair, in the

case of time point expression profiles, the test data consisted of two

expression profiles. We computed, pairwise, the Pearson correla-

tion coefficient between all the expression profiles in the test data

and all the expression profiles in the training data. Finally, the test
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data were labeled with the experimental condition of the

expression profile in the training data for which we obtained the

highest Pearson correlation coefficient.

Leave-one-out Cross-validation
We evaluated the predictive power of our method for different

choices of parameters and features using leave-one-out cross-

validation. In the following, we assume that pairs of time-points

are sorted by time in ascending order.

N AtGenExpress and EDGE datasets. The test dataset was

generated by randomly selecting 2 time points from a given

experimental condition. For these 2 time points, we used one

of the replicates as test dataset, and excluded all other

replicates from the training and test datasets. The training

dataset consisted of all the remaining time points for this

experimental condition together with all the time points for

other experimental conditions. We generated ten such test/

training datasets for each experimental condition, and

repeated this random sub-sampling validation procedure 30

times for AtGenExpress, and 100 times for EDGE.

N Engreitz dataset. This dataset contains 27 microarray

experiments categorized into 3 experimental conditions. Each

microarray experiment has expression profiles in ‘‘normal’’

and ‘‘diseased’’ states. We treated ‘‘normal’’ as time point 0

and ‘‘diseased’’ as time point 1. For the cross validation, we

selected one microarray experiment (2 time points) as test data,

and the rest as training data. This process was repeated so that

each microarray experiment was selected as test data exactly

once.

Evaluation of the Classification
If the predicted experimental condition for the test data is the

same experimental condition from which the test data had been

taken, then, the classification is correct; otherwise, the classification

is incorrect. We used the accuracy to evaluate the classification

results for different methods, parameters, and features:

accuracy~
correct predictions

total predictions
:

For the Engreitz dataset, in addition to the accuracy we used

the area under the Receiver Operating Characteristic (ROC)

curve (AUC). Each of the 27 microarray experiments were used

to query the remaining 26 microarray experiments exactly once

in order to determine whether they correspond to the same

experimental condition (i.e., disease). Thus, given a query

microarray experiment, we computed 26 correlation coefficients.

Then, we defined a cut-off on those correlation coefficients. All

microarray experiments for which we obtained correlation

coefficients higher than the cut-off were classified as ‘‘positives’’.

Out of these positive microarray experiments, those that indeed

corresponded to the experimental condition of the query

microarray experiment were considered ‘‘true positives’’ (TP);

those corresponding to a different experimental condition were

considered ‘‘false positives’’ (FP). We then computed the true

positive rate (TPR) and false positive rate (FPR). The ROC

curve represents the TPR as a function of the FPR for different

cut-off values. The AUC reported is the average computed for

all 27 microarray experiments taken as query.

Generation of Linked Gene and Link Dataset
We also investigated the effect of adding protein interaction

information on microarray classification. We retrieved this

information from the protein interaction database STRING

[http://string-db.org/[34–39]], and refer hereafter to interactions

(both omnidirectional and directional) obtained from this source as

‘‘links’’. First, we created a dataset of genes for which we observe

at least one interaction in STRING. We decided on these

interactions using a range of STRING confidence score

thresholds. We call this dataset ‘‘linked gene dataset’’. Second,

we converted the ‘‘linked gene dataset’’, into a dataset describing

interactions, rather than genes. We call this dataset ‘‘link dataset’’.

Link datasets include exactly one link for each pair of genes in the

‘‘linked gene dataset’’ for which there exists an interaction in

STRING. Then, similarly to Warsow et al. [40], we define the

‘‘expression value’’ of a link as the mean expression value of the

two genes involved:

O:,l,:~
O:,gx,:zO:,gy,:

2
:

where link l implies a protein interaction between gene gx and gy.

and O.,l,. is a N6T matrix containing the link expression values of

the link l for all experiments and time points.

We compared the classification performance of classifiers

relying on gene, linked gene and link datasets.

Feature Selection Methods
Microarray experiments are intrinsically noisy in that they

involve a very large number of genes, most of which exhibit

irrelevant variation [41]. In this context, the aim of feature

selection methods is to identify and exclude such non-informative

genes. We evaluated different feature selection methods. First, we

used information from STRING to select biologically relevant

genes, and created a linked gene dataset and a link dataset

consisting of only these selected genes. Second, we developed the

rSNR, a novel feature selection method that identifies biologically

relevant genes based on their SNR. Finally, we compared our

classification results with those obtained by selecting genes

randomly. Except for the rSNR, which is explained in detail in

the following section, the remaining aforementioned methods are

outlined as follows:

1. STRING-based link selection. Our link datasets included

only those links representing interactions between genes

present on the microarray and with a confidence score in

STRING greater than a given cut-off, which was selected from

{0, 250, 500, 750, 900}.

2. STRING-based gene selection. Our linked genes datasets

included only those genes present on the microarray and for

which there is an interaction in STRING with a confidence

score greater than a given cut-off. As for the STRING-based

link selection, cut-off scores were selected from {0, 250, 500,

750, 900}. It follows that for each cut-off score, the link and

linked genes datasets included information of exactly the same

genes.

3. Random Selection. Randomly selected genes were used as

controls. For each STRING cut-off score, we counted the

number of genes present in the linked genes dataset, and

randomly selected the same number of genes to create a

control dataset. Leave-one-out cross-validation was performed

on this control dataset. The process of creating a dataset from

Relevant Genes in Microarrays Experiments
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randomly selected genes was repeated 25 times for each

STRING cut-off score.

Relative Signal-to-Noise Ratio (rSNR)
The rSNR ranks genes according to their association with a

given experimental condition. In regards to our classification

problem, this means that when the transition profile of a test data

is compared with the transition profile of an experimental

condition in the training data, only those genes that were found

to be relevant for that experimental condition will be used to assess

the similarity between the two profiles. In a cross-validation

framework, the rSNR gene rank is computed based exclusively on

the training data. Hence, the sets of relevant genes are also based

exclusively on the training data, and will be different for each

cross-validation fold. In order to rank the genes based on their

rSNR, for each experimental condition we first define a positive

and a negative set in the training data. Basically, the positive set is

the training data for the experimental condition of interest, while

the negative set comprises the remaining training data not

involving any of the experimental factors defining the positive

set. For example, let us assume that we are computing the rSNR

for the experimental condition involving the experimental factors

cold and root (‘‘cold-root’’) in the AtGenExpress dataset. In this

case, the positive set is the training data for the experimental

condition of interest (‘‘cold-root’’), while the negative set is the

training data involving neither ‘‘cold’’ nor ‘‘root’’. Other

experimental conditions sharing experimental factors with the

positive set are excluded from the rSNR calculation. The

definition of the positive and the negative set is exemplified in

Figure 1A. Next, for all genes we calculate the signal-to-noise ratio

in the positive set (SNRz) and in the negative set (SNR{)

separately. For the experimental condition k, the SNRz for gene g

is given by:

SNRz
k,g~

mz
k,g

sz
k,g

where, mz
k,g and sz

k,g are the mean and the standard deviation

respectively of the expression values for gene g in the positive set.

And the SNR{ is given by:

SNR{
k,g~

PN{
i~1

mi,g
N{ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN{

i~1
mi,g{mgð Þ2

N{

r ~
m(m1,:::,mN{

),g

s(m1,:::,mN ),g

where, mi,g is the mean expression value of gene g under

experimental condition i, mg is the mean of the mean expression

value of gene g across all experimental conditions in the negative

set, and m m1,:::,mN{ð Þ,g and s m1,:::,mN{ð Þ,g are, respectively, the

mean and standard deviation of the expression value of gene g

across all experimental conditions in the negative set. i[ 1,:::,N{f g
is the set of experimental conditions in the negative set and N{ is

the total number of experimental conditions in the negative set.

Figure 1B illustrates the calculation of the mean and standard

deviation for the positive and the negative set.

Finally, we define the rSNR for experimental condition k and

gene g as:

rSNRk,g~
SNRz

k,g

SNR{
k,g

:

The rSNR can be also be interpreted as the ratio between two

coefficients of variation:

rSNRk,g~

s
m1,:::,mN{ð Þ,g

m
m1,:::,mN{ð Þ,g

sz
k,g

mz
k,g

~
CV{

CVz

where, CVz and CV{ are the coefficients of variation of the

positive and negative set respectively. The CV describes the

normalized dispersion of the expression level of a gene, i.e., the

variability of its expression value with respect to its mean. In

microarray experiments, the variability in gene expression levels

originates from two sources, technical and biological. Technical

variability is primarily controlled using pre-processing, normali-

zation and replication [42–45]. Additional technical variability can

be assumed to be approximately constant across experimental

conditions. In the case of the positive set, most of the biological

variability arises from the effect of the experimental factors

involved in the experimental condition of interest across time

points. Thus, CVz quantifies the biological variability within a

particular experimental condition, i.e., ‘‘intrinsic noise’’. In the

case of the negative set, most of the biological variability is due to

differences in the effect of the experimental factors considered

under the various experimental conditions represented in the

dataset. Thus, CV{ quantifies the biological variability between

experimental conditions, i.e., ‘‘extrinsic noise’’. With regards to the

rSNR, this implies that genes that show little variation within the

experimental condition of interest but whose expression levels vary

across experimental conditions will tend to exhibit high rSNR

scores. For the AtGenExpress dataset, we found that genes with

high rSNR scores tend to be highly expressed in the positive set,

and show little variation across time points, consistent with the

expression pattern of fast-response genes to the interventions

applied there (data not shown).

The rSNR calculation described above is repeated for all

experimental conditions in the training data. Hence, for each

experimental condition, we obtain a list of genes with their

corresponding rSNR scores, which is then used to select relevant

genes. After feature selection, each experimental condition in the

training data is represented by a separate list of relevant genes and

their corresponding expression values. Subsequently, when test

data are compared with a given experimental condition (e.g.

‘‘cold-root’’), only the genes that were found to be relevant to that

particular experimental condition (‘‘cold-root’’) are used for

similarity score calculation. This process is repeated for each

combination of test data and experimental condition in the

training data. For a fair comparison with the results based on the

link and linked genes datasets, we selected the same number of

genes based on their rSNR scores, as obtained for each STRING

cut-off score (see previous subsection).

Comparison with Standard Feature Selection Methods
We compared the performance of the rSNR with two standard

feature selection methods. Like the rSNR, these feature selection

methods rank genes and select genes based on a ranking:

Relevant Genes in Microarrays Experiments
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1. SNR�: As previously described, SNR� has been extensively

used as feature selection method. In particular, it is often used

to measure the effectiveness of a feature in discriminating

between two classes, and defined as:

SNR�~
m1{m2

s1zs2

where, m1 and m2 are the mean expression value for class 1 and

class 2 respectively while s1 and s2 are the standard deviation

for class 1 and class 2 respectively.

2. Welch’s t-test: Welch’s t-test is an adaptation of Student’s t-

test to be used on two samples with unequal variance:

Welch0s t{score~
m1{m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1
z

s2
2

n2

s

where, mi, si and ni are the mean, standard deviation and sample

size, respectively.

It is noteworthy that SNR� and Welch’s t-test differ only in their

estimation of the variance.

Figure 1. Example showing the calculation of the rSNR for the experimental condition ‘‘cold-root’’ in the AtGenExpress dataset. A)
Division of the training dataset into positive and negative sets. The positive set corresponds to the experimental condition of interest (i.e., ‘‘cold-root’’,
in red). Only some of the remaining experimental conditions in the training set, namely those not involving any of the experimental factors that
define the experimental condition of interest, are used to build the negative set (in dark gray). B) Calculation of the mean and standard deviation for
the positive and negative sets.T1 to T6 are time points. Numbers inside the boxes represent the number of replicates for an experimental condition at
a given time point. m and s represents the mean and standard deviation respectively. For the positive set, we compute a mean and a standard
deviation at each time point. For the negative set, we compute a mean at each time point. We then compute the mean and the standard deviation of
the negative set as the mean and the standard deviation of the means computed at each time point respectively.
doi:10.1371/journal.pone.0076561.g001
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Selecting Optimal Parameters for the Nearest-neighbor
Classification

We began by evaluating the performance of our 1NN classifier

on the entire AtGenExpress (2074 genes) and EDGE (1600 gene)

datasets. These datasets had been previously investigated by

Hafemeister et al in the context of time-series microarray

classification [30]. Hafemeister et al. suggested to use piecewise

constant functions to model time courses, and implemented them

as Hidden Markov Models. Parameter estimation and inference

was achieved using a Bayesian approach. Since this is a state-of-

the-art method, we considered their results as benchmark for

comparison with our preliminary analysis. We also used their

results as a baseline to improve with our feature selection

approach. Since we modified these datasets from the original

ones (4 experimental conditions were removed from EDGE

dataset, see subsection on datasets), here we report the accuracy

obtained by running the Python package available from

Hafemeister et al. [30] on the modified datasets. We were also

able to reproduce the results reported by Hafemeister et al. on the

original dataset (data not shown). Additionally, to make our results

comparable, we considered two different scenarios: 1) including

replicates of the test data in the training data (as presented by

Hafemeister et al.), and 2) excluding replicates of the test data

from the training data (see Figure 2). The test data comprised at

least 2 time points in scenario 1, and exactly 2 time points in

scenario 2. In scenario 1, the test data were defined by randomly

selecting 1) the number of time points, 2) the particular time

points, and 3) the replicates used. The rest of the data were used as

training data. The selected time points were sorted in ascending

order according to time, and pairs of consecutive time points were

used to generate transition profiles. Then, we compared each

transition profile against all possible transition profiles of the

training data, and computed the similarity value (Pearson

correlation coefficient) between them. Each transition profile in

the test data was labeled with the experimental condition for which

we obtained the highest similarity value. Finally, the test data were

labeled with an experimental condition using majority voting, or

highest sum of similarity scores in case of tie. Under scenario 2,

replicates of the test data were excluded from the training data;

otherwise, we followed the same setup. Note that, if the number of

time points selected for the test data equaled the total number of

time points available for a particular experimental condition,

including one replicate for each time point in the test data and

excluding all other replicates from the training data would result in

an empty training data for that experimental condition (see Figure

S1). To avoid such a situation, under scenario 2 we limited the size

of the test data to only 2 time points.

Results and Discussion

We set out to improve the classification of microarray time

series by various means. We evaluated how gene expression

profiles from two different time points can be combined, yielding

transition profiles. We incorporated protein interaction informa-

tion into the definition of such transition profiles, and selected

genes based on the same information. Finally, we compared

different feature selection approaches, and developed the rSNR

(relative Signal-to-Noise Ratio) method to extract the genes that

are the most relevant to a specific biological condition.

The Mean Transition Profile (MTP) Performed Best among
our Profile Generation Methods

We evaluated our method on the AtGenExpress and the EDGE

datasets using leave-one-out cross-validation. First, we applied our

method to the entire datasets. We compared the performance of

the method using different gene expression and transition profiles,

as well as with previous work. Figure 3A represents scenario 1, in

which replicates of the test data are included in the training data

(for better comparability with the results by Hafemeister et al),

while Figure 3B represents scenario 2, in which replicates of the

test data are excluded from the training data. Among the three

expression and transition profiles, MTP performed best in most

cases. This suggests that the mean expression value of the genes,

rather than their change in expression, is specific to the

experimental condition. Moreover, MTP performed better than

single time point expression profiles, indicating, as expected, that

two time points considered together contain more information

than two single time points considered separately for the

classification task. Also, MTP performs comparably to the method

by Hafemeister et al. Hence, MTP was chosen as the transition

profile formula for further evaluations. In addition, all further

evaluations exclude the replicates from the training data.

The rSNR Performed Best among All Evaluated Feature
Selection Methods

Next, we evaluated different feature selection methods with the

aim of improving classification performance. We compared the

performance of gene and link-based methods, using randomly

selected genes as controls (see Methods). To render all feature

selection methods comparable, the classification decision was

always based on the same number of genes, independently of the

feature selection method. The results are shown in Figures 4A and

4B. The accuracy of the classifier based on randomly selected

genes decreased with the amount of information available for the

classification. The decrease in accuracy is gradual, but drops

significantly at the end for both AtGenExpress and EDGE

datasets, suggesting the existence of a necessary and sufficient

number of genes to describe experimental conditions. Both

STRING-based feature selection methods failed to perform better

than the random selection for AtGenExpress. Only the method

based on the linked genes dataset performed better than random

for EDGE. Additionally, we observed that the performance of the

classifier based on the link dataset was generally not better than

that of the linked genes dataset. There are some plausible

explanations for the poor performance of STRING-based feature

selection methods, and more specifically, the link-based feature

selection method:

N The STRING database is not a process-specific protein

interaction database. A process-specific database, e.g., a

database of interactions involved in stress response of

Arabidopsis, would probably help in selecting interactions

specific to each experimental condition in AtGenExpress.

N Some genes that might be relevant for the experimental

conditions under study are not present in STRING, and,

hence, information provided by these genes is lost.

N It is disputable whether genes with more links in STRING are

more important, or simply more extensively studied.

The rSNR feature selection method exhibited the best overall

performance, achieving higher accuracy values compared to

randomly selected genes for both datasets. Additionally, applying

the rSNR feature selection method generally resulted in a

significantly higher accuracy as compared to the other feature

selection methods. A detailed analysis of the rSNR method based

on the AtGenExpress dataset is presented in the following section.
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Figure 2. Framework for the evaluation of the performance for methods classifying time-course expression data. In this example, T1
to T6 represent time points. Numbers inside the boxes indicate the number of replicates for each experimental condition at each time point. Test
data consists of two time points, T1 and T3, and is taken from the experimental condition 1. In scenario 1, the replicates of the test data are part of the
training data, while in scenario 2, the replicates of the test data have been excluded from the training data.
doi:10.1371/journal.pone.0076561.g002

Figure 3. Accuracy of cross-validations using different param-
eters. A) Accuracy computed under scenario 1 (see Methods). B)
Accuracy computed under scenario 2 (see Methods). Error bars indicate
1 standard deviation away from the mean.
doi:10.1371/journal.pone.0076561.g003

Figure 4. Effect of feature selection methods on the classifica-
tion of time-course expression data. Accuracy was calculated
based on the A) AtGenExpress and B) EDGE datasets. Error bars indicate
1 standard deviation away from the mean.
doi:10.1371/journal.pone.0076561.g004
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rSNR Performed Distinctly Better than Random Gene
Selection

To better understand the rSNR method, we systematically

decreased the number of features in the dataset by uniformly

removing 200 genes in a step-wise fashion, and compared the

performance of the rSNR with control datasets containing the

same number of randomly selected genes (Figure 5A). The rSNR

performed significantly better than the controls. However, as

observed for different STRING cut-off scores (Figure 4A), with a

small number of genes, the accuracy obtained using the rSNR

becomes similar to random, suggesting, as expected, that there is a

minimum number of genes required to distinguish between

experimental conditions.

Relevant Genes Scored High on the rSNR-based Gene
Rank

For each experimental condition in the training dataset, we

created a gene list, sorted in ascending order (from bottom to top)

according to their rSNR scores. For the rSNR to constitute a

reliable feature selection method in the context of microarray

classification, the genes on the top of the list should be relevant to

the specific experimental condition of interest. On the other hand,

the bottom of the list should contain genes considered to be noise.

To verify that this is indeed the case, we selected 200 genes from

different sections of the rSNR-based sorted gene list, and

performed cross-validation, reporting average accuracy values.

As control, we used 200 randomly selected genes. As shown in

Figure 5B, the accuracy of the classifier is minimum when 200

genes are selected from the bottom of the rSNR-based sorted gene

list. Accuracy increases gradually as we select genes from higher in

the list, until it reaches a plateau. The graph shows that genes at

the top of the rSNR-based sorted gene list are more important for

the classification than genes at the bottom, suggesting that the

rSNR indeed identifies relevant genes for the experimental

condition under study.

Comparing the rSNR with Similar Feature Selection
Methods

We compared the performance of the rSNR with SNR� and

Welch’s t-test. As shown in Figure 6 and Text S1, the rSNR

performs significantly better than the other two feature selection

methods.

Testing Methods on Non-time Series Microarray Data
In addition to testing our methods on time-series datasets, we

applied them to the static microarray dataset from Engreitz et al.

Figure 5. Evaluation of the effect of the rSNR-based rank on the classification of experiments from the AtGenExpress dataset. A)
Accuracy was calculated based on gene sets of uniformly decreasing size, selected based on rSNR ranking. B) Accuracy was calculated based on gene
sets belonging to different rSNR-based rank sections. Error bars indicate 1 standard deviation away from the mean.
doi:10.1371/journal.pone.0076561.g005
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Engreitz et al. classified microarray experiments into three disease

types, achieving an area under the ROC curve (AUC) of 0.729. As

discussed in the Methods section, the application of our method

required the modification of the original dataset. Hence, direct

comparison with the results of Engreitz et al. is not appropriate.

Even randomly selected genes perform extremely well at

classifying these data (Figure 7A), an observation reminiscent of

results reported by Venet et al. [46]. Here, the rSNR results in a

slightly lower accuracy than other methods, but shows a superior

performance in terms of the AUC (Figure 7B). A higher AUC

indicates a better predictive ability of the rSNR. Thus, in a

database search setup, where it is not necessarily the best

candidate which is of interest, but rather a set of highly scoring

candidates, a high rSNR is a useful feature for improving

classification results.

Conclusions

We first showed that the nearest neighbor method performs

comparably to the method developed by Hafemeister et al. We

found that for the purpose of classification, mean expression

profiles describe time-series transitions based on microarray

experiments better than differential expression profiles and single

time point expression profiles.

We used biological information as a feature selection criterion

wherein a selected feature is known to involve a protein

interaction. The source of this biological information was protein

interaction information from the STRING database. We investi-

gated the performance of different methods for reducing the high

dimensionality of microarray data based on such information. We

found that, compared to simple expression profiles, the addition of

information on interactions does not provide a clear advantage in

the classification of microarray experiments. Moreover, the

application of feature selection methods relying on interactions

resulted in performances comparable to those obtained with

randomly selected genes. Alternative forms of including such

information, or the use of interactions from more specific

databases, describing the process of interest, might be of

advantage.

Finally, we proposed a novel method for feature selection that

we called the relative Signal to Noise Ratio (rSNR). The rSNR

gives a score to each gene based on its relevance for each

experimental condition. This score can then be used to select

relevant genes. We showed that the performance of classifiers

Figure 6. Cross-validation results of the comparison between rSNR and other feature selection methods on the AtGenExpress
dataset. Error bars indicate 1 standard deviation away from the mean.
doi:10.1371/journal.pone.0076561.g006

Figure 7. Effect of feature selection methods on the classifica-
tion of the Engreitz dataset. A) Accuracy. B) Area under the ROC
curve (AUC).
doi:10.1371/journal.pone.0076561.g007
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based on genes with low rSNR scores is substantially worse than

that of classifiers based on genes with high rSNR scores. This

result indicates that the genes relevant for classification of the

experimental condition of interest rank high, in contrast to

irrelevant genes, which may be considered noise. Due to its

simplicity, our method is particularly attractive for database

searches. In a preprocessing step, the microarray datasets for

different experimental conditions in the database can be summa-

rized using only the most relevant genes. Hence, when a query

microarray is searched against the entire database, instead of

comparing the expression profiles of all genes, only the expression

profiles of genes relevant to an experimental condition need to be

compared. Both in terms of memory and performance, such a

procedure would demand relatively few computational resources.

Supporting Information

Figure S1 Example of cross-validation when all time
points of an experimental condition are selected as test
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Text S1 Results of comparison between rSNR and
Significance Analysis of Microarray (SAM).
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