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Neuronal evidence for good-based economic
decisions under variable action costs

Xinying Cai?34 & Camillo Padoa-Schioppa® "°©

Previous work showed that economic decisions can be made independently of spatial con-
tingencies. However, when goods available for choice bear different action costs, the decision
necessarily reflects aspects of the action. One possibility is that “stimulus values” are
combined with the corresponding action costs in a motor representation, and decisions are
then made in actions space. Alternatively, action costs could be integrated with other
determinants of value in a non-spatial representation. If so, decisions under variable action
costs could take place in goods space. Here, we recorded from orbitofrontal cortex while
monkeys chose between different juices offered in variable amounts. We manipulated action
costs by varying the saccade amplitude, and we dissociated in time and space offer pre-
sentation from action planning. Neurons encoding the binary choice outcome did so well
before the presentation of saccade targets, indicating that decisions were made in goods
space.
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ccording to current views, economic choices involve the

computation and comparison of subjective values, sub-

jective values integrate multiple determinants relevant to
the decision (commodity, quantity, probability, etc.), and this
integration takes place in prefrontal regions including the orbi-
tofrontal cortex (OFC)!-3. The activity of neurons in the primate
OFC is known to be independent of the spatial contingencies of
the task, including the action performed by the subject?. Fur-
thermore, it is widely recognized that decisions between goods
take place in this non-spatial representation, whereas other types
of decisions are primarily or exclusively action-based®-8. How-
ever, it remains unclear exactly under what conditions a decision
should be conceptualized as “between goods”. In other words, it is
not clear what decisions take place in a spatial (action-based)
versus non-spatial (good-based) representation®. A particularly
interesting case is that of choices between goods that vary for
their action cost. In such conditions, the decision process
necessarily takes into account some aspect of the action. Thus,
two broad schemes have been put forth. One possibility is that the
brain first computes the “stimulus value” (i.e., the subjective value
minus the action cost) in a non-spatial representation, and then
combines the stimulus value with the corresponding action cost
in a spatial representation. In this scheme, decisions under vari-
able action costs would be action-based and take place in pre-
motor regions®10. Alternatively, action costs might be integrated
with other determinants of value in a non-spatial representation.
In this scheme, decisions under variable action costs could be
good-based?.

A closely related question pertains to the frames of reference in
which goods and values are represented. Neurons encoding the
subjective value were first observed in the OFC of monkeys
choosing between different juices offered in variable amounts.
Different groups of cells encoded the value of individual options,
the identity of the chosen option and the chosen value®!1. In that
representation, options were defined by the juice type. In other
words, neurons encoding the offer value were associated to a
specific juice, and their activity was linearly related to the quantity
offered on any given trial. We refer to this reference frame as
“commodity-based”. Notably, this reference frame was not
imposed by the choice task. An equally valid reference frame
would have been that in which cells encoding the offer value are
associated with a particular location. Subsequent studies sug-
gested that neurons in OFC are flexible, and that the reference
frame can adapt to the characteristics of the choice task. For
example, in the study of Tsujimoto et al., options were defined
uniquely by their spatial location. Some neurons in the OFC
encoded the identity of the chosen option in a way that was
indistinguishable from a spatial representation!?. Similar results
were also obtained by Abe and Lee!314. More recent data suggest
that, under proper circumstances, the reference frame in OFC can
be based on a specific trait of the offer such as its informative-
ness!? (see Discussion). Taken together, these results suggest that
the reference frame in which good identities and values are
encoded in OFC may be malleable and adapt to the characteristics
of the choice task.

The experiments described here were conducted to assess
whether economic decisions under variable action costs can take
place in a non-spatial representation (goods space). While design-
ing the choice task, we considered several issues.

First, it is generally difficult to ascertain whether a decision is
made in goods space or actions space based on behavior alone.
However, this issue may be addressed using neural measures.
Specifically, to establish that a decision is good-based, it is
necessary to dissociate in time and space the presentation of the
offers and the indication of the actions associated with each offer.
Previous studies that used this approach focused on decisions

under fixed action costs!®17. In these studies, subjects were pre-
sented two offers at the beginning of each trial; later in the trial,
subjects were shown two action targets associated with the two
offers. Neuronal activity encoding the choice outcome before
presentation of the action targets indicated that the decision was
made in goods space. Notably, the spatio-temporal dissociation
between the offers and the presentation of action targets was
crucial because it ensured that the neural activity encoding the
choice outcome did not reflect a computation taking place in
actions space. In the present experiments, we sought to undertake
a similar approach while manipulating the action costs.

Second, varying the action costs introduced a significant
challenge because the offer presentation had to instruct the
subject (a rhesus monkey) about the action cost while preventing
the animal from planning the action itself. We considered using a
task in which actions would be reaching movements and action
costs would be manipulated by resisting or assisting loads!®1°,
However, the biomechanics of the arm makes it difficult to dis-
sociate the action cost from the spatial components of the
movement. Specifically, two reaching movements of equal
amplitude towards different directions generally bear different
costs20, Thus, we designed a task in which animals chose between
two juices offered in variable amounts. Offers were associated
with radial eye movements in different directions, and different
saccade amplitudes imposed variable action costs. We reasoned
that if the initial fixation point is straight ahead of the subject, the
action cost associated with an eye movement is essentially inde-
pendent of the saccade direction (isotropic) and only depends on
the saccade amplitude.

Our experimental design made it possible to examine the
neuronal representation of goods and values in multiple frames of
reference (commodity-based, action-based, cost-based) and to
identify neuronal activity reflecting the action cost indepen-
dently of an action plan. We report three primary results. First, as
a population, neurons in OFC represent the identities and values
of goods available for choice in two reference frames, namely
commodity-based and cost-based. Second, we find neuronal
activity encoding the choice outcome before presentation of the
action targets, suggesting that decisions were made in goods
space. Third, a population of neurons encoding the offer value
reflects the integration of juice type, juice amount, and action
cost. These results generalize previous observations on good-
based decisions to choices under variable action costs, and
demonstrate a remarkable degree of adaptability in the neural
circuit underlying economic decisions.

Results

Experimental design and choice patterns. Figure la illustrates
the experimental design. Notably, each offer provided informa-
tion about all the determinants of value (juice type, quantity, and
action cost), while preventing the animal from planning the
saccade necessary to obtain the offer. Behavioral evidence indi-
cated that the experimental manipulation was effective. Figure 1b
illustrates the choice pattern recorded in one representative ses-
sion. Trials were divided in two groups depending on whether
juice A was offered at low cost or at high cost. The gray sigmoid is
displaced to the right, indicating that the relative value of juice A
was higher when juice A was offered at low cost. This effect was
relatively modest, but it was consistent across sessions for both
monkeys. For a quantitative analysis of choice patterns, we con-
structed a logistic model that provided measures for the relative
value of the two juices (p), the difference in action cost (£), the
choice hysteresis related to the chosen juice (#) and to the chosen
cost (¢), and the spatial biases related to the offer position () and
to the target position (&) (see Methods, Eq. 1).
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Fig. 1 Experimental design and behavioral analysis. a At the beginning of the trial, the monkey fixated a center point on the monitor. After 1.5 s, two offers
appeared to the left and right of the fixation point. The offers were represented by sets of color symbols, with the color indicating the juice type, the number
of squares indicating juice amount and the shape of the symbols indicating the action cost associated with the offer (crosses, low cost; diamonds high
cost). The offers remained on the monitor for 1s, then disappeared. The monkey continued fixating the center point for another 1s. At the end of this delay,
two saccade targets (two color dots) appeared. The two saccade targets were located on two (invisible) concentric rings centered on the fixation point.
The monkey maintained fixation for a randomly variable delay (0.6-1.2 s) before the center fixation point was extinguished (go signal), at which point the
monkey indicated its choice with a saccade. Importantly, the association between the symbols (cross, diamond) and the saccade amplitudes (short, long)
was known to the monkey. b Choice patterns, one session. The percentage of B choices is plotted against the ratio #B:#A, where #A and #B are quantities
of juice A and B, respectively. Trials were separated in two groups depending on the action cost for juice A. The choice pattern obtained when juice A had a
high cost (black) was displaced to the left (lower indifference point) compared with the choice pattern obtained when juice A had a low cost (gray). The
regression lines were obtained with a simplified version of Eq. (1) in which terms as to a¢ were removed. The action cost can be measured as & = a,/ag
(Eqg. 1). ¢ Distribution of action costs measured across sessions for monkey B (79 sessions, median(&) = 0.174, p <1010, Wilcoxon signed-rank test) and

for monkey L (107 sessions, median(€) = 0.327, p <10~10, Wilcoxon signed-rank test). Red triangles indicate median values

Pooling data from two animals, our data set included 223
behavioral sessions. In some sessions, the animal presented a
significant bias in favor of saccade targets located in the left
hemifield. This effect was quantified by the normalized coefficient
e (Eq. 1), and the logistic analysis indicated that & was
significantly different from zero in 36 sessions (p <0.01). We
interpret this target-related spatial bias as owing to rightwards
saccades imposing an additional action cost to the animal. The
ultimate reasons of this effect are not clear. However, since the
location of the saccade targets was initially unknown to the
animal, this spatial bias, when present, prevented us from
addressing the question of interest in this study, namely whether
decisions under known and variable action costs can take place in
a non-spatial representation. Thus we excluded from the analysis
sessions in which the spatial bias was statistically significant.
Subsequent analyses focused on the remaining data set, which
included 186 sessions.

The difference in action cost was quantified by the normalized
coefficient £ (Eq. 1). We thus examined the distribution of &
across sessions. The difference in saccade amplitude had a
significant effect on choices in both animals (monkey B, median
(6) =0.174, p<10~1% monkey L, median(¢) = 0.327, p < 1071%;
Wilcoxon signed-rank test; Fig. 1c).

We previously observed that, other things equal, monkeys tend
to choose on any given trial the same juice chosen (and received)
in the previous trial'l. This phenomenon, termed choice
hysteresis, was quantified by the normalized coefficient #
(Eq. 1). Choice hysteresis was significantly present in our data
set (median(#) = 0.228, p < 10710 Wilcoxon signed-rank test). In
other words, the effect of choosing juice B in previous trials was
on average equivalent to adding 0.228 units to juice B in the

current trial. We also tested whether choices were affected by the
cost incurred in previous trial. This effect, quantified by the
normalized coefficient ¢ (Eq. 1), was not significant across
sessions (median(p) =2.5x 1074, p=0.64; Wilcoxon signed-
rank test). Finally, the normalized coefficient § quantified offer-
based spatial biases. Across sessions, this effect was statistically
significant but rather small (median(d) =0.022, p <0.01; Wil-
coxon signed-rank test).

Encoding of goods and values in multiple reference frames. We
recorded from 786 neurons in the central OFC of two monkeys
(B, 367 cells; L, 419 cells). Firing rates were analyzed in nine time
windows aligned with different behavioral events (see Methods).
A “neuronal response” was defined as the activity of one neuron
in one time window as a function of the trial type.

In principle, multiple frames of reference could be used to
represent good identities and values in the present task. In a
commodity-based reference frame, values would be attached to a
specific juice type (or, equivalently, to a specific color); in a
location-based reference frame, values would be attached to the
spatial location of the offer; in a cost-based reference frame,
values would be attached to the option with high or low cost (or,
equivalently, to a specific symbol). A qualitative inspection
indicated that neuronal responses typically did not depend on the
spatial locations of the offers. Conversely, a significant fraction of
neurons encoded the value of individual offers (offer value), the
choice outcome and the chosen value. Surprisingly, some neurons
appeared to encode these variables in a commodity-based
reference frame, whereas other neurons appeared to encode
these variables in a cost-based reference frame. Figure 2 illustrates
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Fig. 2 Encoding of decision variables in juice-based reference frame.

a Neuronal response encoding the variable offer value B (post-offer time
window). In the left panel, the x axis represents different offer types ranked
by the ratio #B:#A. Black and gray symbols represent the percentage of B
choices measured for A—:B + trials and A + :B— trials, respectively. Color
symbols represent the neuronal firing rate, with diamonds and circles,
indicating trials in which the monkey chose juice A and juice B, respectively.
Blue and orange indicate A + :B— trials and A—:B + trials, respectively.
Error bars indicate SEM. In the right panel, the same neuronal response is
plotted against the variable offer value B. The black line is derived from a
linear regression (R%2 =0.73). b Response encoding the chosen value (late-
delay time window). In the right panel, the response is plotted against the
variable chosen value expressed in units of juice B. The black line is derived
from a linear regression (R2=0.86). ¢ Response encoding the chosen juice
(post-offer time window). In the right panel, the black line is derived from a
linear regression (R2 = 0.85). All conventions in b and ¢ are as in a

a few examples. The response in Fig. 2a varied as a linear function
of the value of juice B (variable offer value B). Similarly, the
response in Fig. 2b varied as a linear function of the value chosen
(variable chosen value). Finally, the response in Fig. 2c was
roughly binary—high when the animal chose juice A and low
when the animal chose juice B (variable chosen juice). For these
three cells, the modulation due to the action costs appeared
negligible. In contrast, the two responses depicted in Fig. 3 were
primarily affected by the action cost. Specifically, the response in
Fig. 3a varied as a linear function of the value associated with the
high-cost offer (variable offer value —). The response in Fig. 3b
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Fig. 3 Encoding of decision variables in cost-based reference frame.

a Neuronal response encoding the variable offer value — (post-offer time
window). In the right panel, the neuronal response is plotted against the
variable offer value — expressed in units of juice B. The black line is derived
from a linear regression (R%2 = 0.69). b Response encoding the variable
chosen cost (pre-juice time window). In the right panel, the black line is
derived from a linear regression (R? = 0.88). All conventions are as in
Fig. 2a

was roughly binary—high when the animal chose the low-cost
option and low when the animal chose the high-cost option
(variable chosen cost). Thus, neuronal representations in two
reference frames seemed to coexist during this choice task.

For a statistical analysis, we proceeded in steps. First, we
submitted each neuronal response to two three-way ANOVAs
(factors (trial type x offer A location x target A location); factors
(trial type x chosen offer location x chosen target location); see
Methods and Table 1). We imposed a significance threshold p <
0.001. Responses that passed this criterion for at least one factor were
identified as “task-related” and included in subsequent analyses.
Confirming previous observations?, many more neurons were
modulated by the trial type (276 cells =35%) compared with offer
A location (35 cells=4.5%), target A location (40 cells =5.1%),
chosen offer location (36 cells =4.6%), or chosen target location
(63 cells = 8.0%). Overall, 774 responses from 317 cells (40.3%) were
modulated by at least one factor, and only these responses were
included in subsequent analyses.

Next, we defined a large number of variables potentially
encoded in OFC, and we used unbiased statistical procedures to
identify a small subset of variables that best explained the
neuronal data set. Previous work on decisions under fixed action
costs already excluded numerous candidate variables in favor of
variables offer value, chosen value, and chosen juice®?!. Building
on these observations, here we focused on variables defined by (or
disambiguated through) variable action costs. As noted above, the
experimental design afforded multiple reference frames. Thus, we
examined commodity-based variables offer value (juice) and
chosen juice, cost-based variables offer value (cost) and chosen
cost, location-based variables offer value (location) and chosen
location, and action-based variables offer value (target) and chosen
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Table 1 Task-related responses in different time windows
Trial type Offer A location Target A location Chosen offer location Chosen target location
Pre-offer 1 0 1 0 0
Post-offer 121 18 0 23 0
Late-delay 95 1 0 12 1
Mem-delay 55 8 0 7 1
Pre-target 37 4 1 1 0
Post-target 65 3 22 1 12
Pre-go 53 0 20 0 17
Pre-juice 129 1 6 1 36
Post-juice 103 1 1 0 18
At least 1 276 35 40 36 63
The table reports the results of two three-way ANOV As (factors (trial typexoffer A locationxtarget A location); factors (trial typexchosen offer locationxchosen target location). Each column represents
one factor, each row represents one time window, and numbers represent the number of cells significantly modulated by the corresponding factor (p < 0.001). The bottom row indicates, for each factor,
the number of cells that passed the criterion in at least one of the nine time windows. The factor trial type is common to the two ANOVAs

Table 2 Defined variables
Collapsed variable Variable Definition Reference frame
1 Offer value (juice) Offer value A P HA+E Suice A+ Commodity
2 Offer value B #B + & Sjuice B+ Commodity
3 Chosen juice 1 if juice B is chosen, O if juice A is chosen Commodity
4 Offer value (cost) Offer value — Offer value A if A is high-cost, offer value B if B is high-cost Cost
5 Offer value + Offer value A if A is low-cost, offer value B if B is low-cost Cost
6 Chosen cost 1 if low-cost offer is chosen, O if high-cost offer is chosen Cost
7 Offer value (location) Offer value L Value of the juice offered on the left Visual
8 Offer value R Value of the juice offered on the right Visual
9 Chosen location 1if left offer is chosen, O if right offer is chosen Visual
10 Offer value (target) Offer value target L Value of the juice associated with target in the left hemifield  Action
M Offer value target R Value of the juice associated with target in the right hemifield Action
12 Chosen target 1 if saccade to left hemifield, O if saccade to right hemifield Action
13 Cost of A 1if offer A is low-cost, O if offer A is high-cost
14 Offer A location 1if juice A is offered on left, O if juice A is offered on right
15 Target A location 1if target A is in left hemifield, O if target A is in right hemifield
16 Offer + location 1if low-cost offer is on the left, O if low-cost offer is on the right
17 Target + location 1if low-cost target is in the left hemifield, O otherwise
18 Spatial congruence 1if offers and targets are spatially congruent, O otherwise
19 Chosen value Offer value A if juice A chosen, offer value B if juice B chosen
In any given trial, #A and #B were, respectively, the quantities of juice A and juice B offered to the animal, p was the relative value of the two juices, and £ was the action cost. Parameters p and & were
obtained from the logistic regression (Eq. 1). The variable spatial congruence was set =1 (= 0) if the offer and the saccade target associated with a given juice were presented in the same (opposite)
hemifield

target. In addition, we defined variables that captured the
association between different reference frames including the
association between juice type and cost (cost of A), juice type and
offer location (offer A location), juice type and target location
(target A location), cost and offer location (offer + location), cost
and target location (target + location), and offer location and
target location (spatial congruence). Finally, we tested the variable
chosen value. All the variables included in the analysis are defined
in Table 2.

Each response that passed the analysis of variance criterion was
regressed on each variable. A variable was said to “explain” the
response if the regression slope differed significantly from zero (p <
0.05). Each linear regression also provided the R2. For variables that
did not explain the response, we set R* = 0. The variable with the
largest R? provided the “best fit” for the neuronal response. Figure 4
illustrates the results obtained for the population. Figure 4a
indicates the number of responses explained by each variable in
each time window. Notably, each response could be explained by
more than one variable and thus could contribute to multiple bins
in this panel. Figure 4b illustrates a complementary account. Here,
each response was assigned to the variable that provided the best fit.
In early time windows, the dominant variables were offer value

(juice), offer value (cost), and chosen value. In late time windows,
after target presentation and upon juice delivery, the dominant
variables were chosen value, chosen juice, and chosen cost. Two
procedures—stepwise and best-subset—were used to identify the
variables that best explained the neuronal data set (see Methods).
As in previous work!®, variables were selected separately for pre-
and post-target time windows. For early time windows, both
procedures selected variables offer value (juice), offer value (cost),
and chosen value. For late time windows, both procedures selected
variables chosen value, chosen juice, and chosen cost. Figure 5
illustrates the percentage of neurons encoding each of the selected
variables across different time windows.

To summarize, neurons in OFC encoded the values of
individual offers, the chosen value and the binary choice
outcome. Remarkably, some neurons encoded the offer value
(juice), whereas other neurons encoded the offer value (cost).
Similarly, some neurons encoded the chosen juice, whereas other
neurons encoded the chosen cost. Thus the offer value and
the binary choice outcome were simultaneously represented in
two reference frames (commodity-based and cost-based). This
result demonstrates a high degree of flexibility in the decision
circuit.
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Fig. 4 Population summary of linear regressions (all time windows). a Explained responses. Row and columns represent time windows and variables,
respectively. In each location, the number indicates the number of responses explained by the corresponding variable in that time window. For example, in
the post-offer time window, the variable offer value (juice) explained 100 responses. The same numbers are also represented in gray scale. Note that each
response could be explained by more than one variable and thus could contribute to multiple bins in this panel. b Best fit. In each location, the number
indicates the number of responses for which the corresponding variable provided the best fit (highest R2). For example, in the post-offer time window, the
variable offer value (juice) provided the best fit for 42 responses. The numerical values are also represented in gray scale. In this plot, each response
contributes to at most one bin. Qualitatively, offer value (juice), and chosen value seem to be the dominant variables in early time windows. Conversely,
chosen juice and chosen cost seem to be the dominant variables in late time windows. The variable chosen value is present througout the trial

Good-based economic decisions under variable action costs.
We next examined whether decisions in our task were made
before target presentation and thus in goods space. As described
above, two groups of neurons—namely chosen juice and chosen
cost—reflected the binary choice outcome. Both variables were
most prominent late in the trial, before, and after juice delivery.
However, both variables also provided the best fit for a sizeable
number of cells in early time windows, shortly after the offer
(Fig. 4). Thus, the critical question was whether the decision of
the animal could be reliably predicted from the neuronal activity
recorded before target presentation. We examined these two
signals in turn.

First, we identified chosen juice cells (largest sum(R?) across all
time windows; 108 cells)!!. We thus examined the activity of
these neurons in early time windows. For each cell, we refer to the
juice eliciting higher firing rates as the “encoded” juice (juice E),
and to the juice eliciting lower firing rates as the “other” juice
(juice O). We divided trials depending on the chosen juice and we

6

examined the activity profile for the population (Fig. 6a). The two
traces were clearly separated starting ~ 250 ms after the offer and
throughout the delay, indicating that decisions were completed
long before action planning.

Choices in our experiments reliably depended on the saccade
amplitude, but the behavioral effect was relatively small (Fig. 1c).
Thus, it is conceivable that upon easy decisions, when one value
clearly dominated, monkeys effectively ignored the difference in
action cost. One concern was whether the effect illustrated in
Fig. 6a was driven by trials in which animals ignored the action
cost. To address this issue, we defined “cost-overt” offer types as
those in which the animal chose the low-cost offer more
frequently (>10%) than the high-cost offer, conditioned on the
animal choosing each option at least twice (e.g., Fig. 1b, 1B:1 A).
Conversely, “cost-covert” offer types were those in which the
animal consistently chose the same option independently of the
action cost (e.g., Fig. 1b, 1B:4A). We divided trials in four groups
depending on the chosen juice (E or O) and on whether the effect
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Fig. 5 Time course of encoded variables. In total, 317 cells were task-related
(see Methods and Table 1). The y axis in this figure represents the
percentage of these neurons encoding the corresponding variable in each
time window

of action costs was overt (o) or covert (c). For each group, we
averaged the activity profiles across trials and across cells. Visual
inspection of Fig. 6b indicates that the two traces for covert action
costs—Ec and Oc trials—were clearly separated. Crucially, the
two traces for overt action costs—Eo and Oo trials—were also
separated. We quantified this separation using a receiver
operating characteristic (ROC) analysis, which returned the area
under the curve (AUC; see Methods). For each cell, AUC > 0.5
(<0.5) indicated higher (lower) firing rates when the animal
chose the juice encoded by the cell (Eo trials). For example, for
the cell in Fig. 2c, AUC = 0.79. In other words, the activity of this
neuron recorded prior to target presentation reliably revealed the
eventual choice outcome. Across the population of chosen juice
cells, the distribution of AUC was significantly displaced
compared with chance level in each of three non-overlapping
time windows (Fig. 6¢), confirming that cost-affected decisions
were made prior to target presentation.

We conducted a similar analysis on the population of neurons
encoding the chosen cost (62 cells). Again, we identified these
neurons based on their activity across all time windows and we
analyzed the activity preceding target presentation. We first
considered all the trials, and divided them depending on whether
the animal chose the high-cost or the low-cost offer. In this
analysis, the two traces separated starting ~ 250 ms after the offer
(not shown). We then focused on cost-overt offer types and we
conducted an ROC analysis. Across the population, the distribu-
tion of AUC was significantly above chance level in two of three
non-overlapping time windows (Fig. 6d).

In summary, both chosen juice and chosen cost neurons
revealed the binary choice outcome well before target presenta-
tion, indicating that decisions were made in goods space.

Integration of action costs and other determinants of value.
Thus far, we have shown (1) that decisions were informed by the
action cost, (2) that decisions were good-based, and (3) that three
groups of neurons encoded variables offer value (juice), offer value

(cost), and chosen value cells. Next we examined whether these
value-encoding cells integrated all three determinants affecting
choices (i.e., juice type, quantity, and action cost).

First, we examined neurons encoding the offer value (juice).
These cells were associated to a juice type and their firing rates
varied as a function of the juice quantity. The question is whether
firing rates also varied as a function of the action cost. In
principle, this issue could be addressed by defining two variants of
each offer value (juice) variable—one cost-affected and one cost-
independent. Both variants could be included in the variable
selection analysis and the variant with the higher explanatory
power would be selected. However, because the difference in
action cost was relatively modest in our task, the two variants
were quantitatively close and the variable selection analysis did
not disambiguate between them. We thus proceeded as follows.

The variable selection analysis described in the previous section
was performed using cost-affected variables (Table 2). However,
we repeated the analysis using cost-independent variables and we
obtained identical results (same selected variables). For each
response, we computed the difference between the R? (AR2)
obtained with the two variables (cost-affected and cost-indepen-
dent; see Methods). Across the population, the distribution of
AR? was tendentially displaced toward negative values (mean
(AR2) = —0.0065, p=0.055; Fig. 7a). In other words, neurons
encoding the offer value (juice) did not seem to integrate action
costs with the other determinants of value. To further quantify
the effects of action cost, we regressed each offer value (juice)
response against the offer value using an analysis of covariance
(ANCOVA, parallel model) and grouping data by the action cost.
Although the factor action cost was statistically significant for
25% of responses, there was no consistent correlation between the
slope of the encoding and the sign of this effect (Supplementary
Fig. 1a). Thus, we did not find a systematic effect of the action
cost for this population.

We conducted a similar analysis on neurons encoding the offer
value (cost). In this case, each response was associated to a cost
level and firing rates varied as a function of the juice quantity.
Thus, we examined whether firing rates also varied as a function
of the juice type. Again, we defined two variants of the variable—
one commodity-affected and one commodity-independent—and
we confirmed that the variable selection analysis yielded the same
results for both variants. For each response, we computed the
difference between the two R? obtained with the two variables
(AR?). Across the population, AR? was significantly >0 (mean
(AR?) =0.017, p < 0.05; Fig. 7b). Hence, these neurons encoded a
value variable integrating juice type and quantity in a cost-based
representation. An ANCOVA confirmed this finding (see
Methods; Supplementary Fig. 1b).

Finally, we examined chosen value cells. Their activity
depended on both the juice type and the juice quantity; we
assessed whether it also reflected the action cost. We defined two
variants of the variable and we confirmed that the variable
selection analysis yielded the same results. For each response, we
computed the difference in R2. Interestingly, we found a
dissociation between early and late time windows. In the post-
offer time window, the distribution of AR? was significantly <0
(mean(AR?) = —0.013, p < 0.01; Fig. 7c). Conversely, in the post-
target time window, the distribution of AR? was tendentially > 0
(mean(AR?) = 0.0089, p = 0.058; Fig. 7c). The difference across
time windows was statistically significant (mean A(AR%) = 0.022,
p <0.001; Fig. 7c). Thus, chosen value responses progressed from
integrating only juice type and quantity to integrating all three
determinants. An ANCOVA confirmed these observations
(Supplementary Fig. 1c, d). Of note, chosen value responses in
different time windows often came from different cells (chi-
square test, p =0.14).
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Fig. 6 Population activity profiles and ROC analysis for cells encoding the choice outcome. a Chosen juice cells (N =108). Neurons were classified across all
time windows. Activity profiles were aligned at offer on (left panel), target on (center panel), and juice delivery (right panel). Trials were divided depending
on whether the animal chose the juice encoded by the cell (E) or the other juice (O). The two traces clearly separated within 250 ms after the offer.
b Chosen juice cells (N=97). Trials were divided depending on whether the animal chose the juice encoded by the cell (E) or the other juice (O) and on
whether the effect of different action costs was covert (c) or overt (o). Average traces shown here are from the cells for which we could compute all four
traces (> 2 trials per trace). Notably, the activity profile in Eo trials is elevated compared with that in Oo trials. ¢ ROC analysis for 97 chosen juice cells in
cost-overt trials (same population as in b). Each horizontal gray line represents one neuronal response. Each orange diamond represents the mean AUC,
which was significantly > 0.5 in each of three non-overlapping time windows before target presentation (post-offer 1, mean(AUC) = 0.521, p < 0.02; post-
offer 2, mean(AUC) = 0.537, p < 0.0005; post-offer 3, mean(AUC) = 0.532, p < 0.0005; t test; see Methods). d ROC analysis for 51 chosen cost cells in
cost-overt trials. Same convention as in €. Across the population, mean(AUC) was significantly p > 0.5 in two of three time windows before target
presentation (post-offer 2 (mean(AUC) = 0.522, p < 0.05); post-offer 3 (mean(AUC) = 0.534, p < 0.002; t test). c and d, an asterisk (*) indicates p < 0.02,
t test. AUC area under the curve, ROC receiver operating characteristic

Discussion a group of cells encoded values as an integrated quantity reflecting

In the experiments described here, options varied along three
dimensions—juice type, quantity, and action cost. Importantly, the
task design dissociated in time and space offer presentation from
action planning. We reported three primary results. First, the
neuronal population represented good identities and values in two
reference frames, namely commodity-based and cost-based. Second,

all the dimensions relevant to the decision. Third, neuronal activity
encoding the choice outcome before presentation of the saccade
target indicated that decisions (i.e., value comparisons) were made
in goods space. We discuss these findings in reverse order.
Current views hold that decisions between goods take place in a
non-spatial representation®®. Conversely, decisions underlying
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mean(AR?) = 0.017 (p < 0.05, Wilcoxon signed-rank test). ¢ Chosen value responses. The x axis represents the difference AR2. In this case, we examined
separately early time windows (top, N = 45 responses) and late time windows (bottom, N = 25 responses). In early time windows, mean(AR?) = —0.013
(p < 0.01, Wilcoxon signed-rank test). In late time windows, mean(AR2) = 0.0089 (p = 0.058, Wilcoxon signed-rank test). The difference between the
two measures was statistically significant (p < 0.001, Wilcoxon ranksum test)

action selection involve motor systems. Inspired by this observa-
tion, several authors argued that some value-based decisions take
place in an action-based representation®-8. According to a unifying
proposal, decisions generally emerge from multiple competitions
taking place in parallel within and across brain regions and neu-
ronal representations. In this view, good-based decisions and
action-based decisions are particular cases of distributed-consensus
mechanisms®22-24, Critically, the distributed-consensus frame-
work does not specify under what conditions a decision can be
conceptualized as a decision between goods. In this respect, a
particularly interesting case is that of choices between options that
differ for their action cost. According to one proposal, these
decisions are necessarily action-based®!?. Alternatively, action
costs could be integrated with other determinants of value in a
non-spatial representation. If so, decisions under variable action
costs may in fact be good-based>.

To establish whether a decision is good-based, one must dis-
sociate offer presentation from action planning. If this condition
is met, neural signals encoding the choice outcome prior to action
planning reveal that the decision took place in goods space.
Previous work used this approach to show that decisions between
edible goods under fixed action cost are indeed good-based!®17.
The present study extends earlier results to choices under variable
action costs. In other words, our results indicate that decisions
can be good-based even when the value of each good depends on

the effort necessary to obtain that good. Importantly, our findings
are not inconsistent with the idea that motor regions play a
primary role in the calculation of action costs. For example,
previous work suggested a specific role of the anterior cingulate
cortex (ACC) in choice under variable action cost>>=27. Signals
from ACC and/or other motor regions could provide an input for
the computation of subjective values in OFC. Furthermore, our
results do not exclude that in different conditions—e.g., when
offer presentation and action planning are not dissociated—
motor systems may participate in value comparison®%28,
Previous studies argued that motor regions can represent
multiple action plans at once?®30. Thus, one concern might be
whether our animals made a decision early in the trial in actions
space. Several considerations diffuse this concern. First, evidence
for the simultaneous representation of multiple action plans is not
conclusive. Indeed, responses that seem bimodal when averaged
across trials might really be unimodal on any given trial>l. One
study that recorded from many cells simultaneously and con-
ducted single-trial analyses concluded that neurons in premotor
cortex process only one action plan at the time3!. Furthermore,
“bimodal” neurons were found in rostral F2 and in F7293233,
However, F7 is a prefrontal (not a motor) area®3°> and neurons
in rostral F2 are often associated with eye movements rather than
arm movements3®37. Looking forward, it will be interesting to
record from motor regions using our task, and to compare the
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time course of neural activity across areas. For now, it seems safe
to assume that action-based decisions in our task would neces-
sarily take place after target presentation.

Economic choices depend on a variety of determinants
(dimensions) along which goods may vary, and numerous studies
found that neurons in the OFC integrate multiple determinants of
value®21,38 Most relevant here, Kennerley et al.3¥ found neurons
whose activity was modulated by the juice quantity, the prob-
ability and the action cost. The fraction of neurons presenting all
three modulations at once was relatively small, but Kennerley’s
analysis was conservative and likely underestimated the degree of
integration (owing to type II errors). In another study, Morrison
and Salzman?® showed that the same OFC neurons responded
both to positive reinforcers (drops of juice) and negative rein-
forcers (air puffs). More recently, Hirokawa et al.#! found in the
rodent OFC neurons integrating reward quantity and decision
confidence in a value signal. Last but not least, numerous studies
found evidence for integration in the BOLD signal using a variety
of behavioral manipulations*>43. Hence, the observation that
offer value cells integrate juice type, juice quantity, and action
costs is in line with established concepts. As for chosen value cells,
we found evidence for full integration in late but not in early time
windows. In general, the role played by these neurons in the
decision process remains unclear. Future work should further
examine this important issue in the light of current observations.

In spite of the robust evidence for dimensional integration in
OFC, two previous reports reached different conclusions. In one
study, the choice task varied juice quantity and action cost, or
juice quantity, and time delay#4. The authors found only few OFC
neurons that integrated determinants in a value signal. However,
their statistical procedures effectively fractionated the population
of value-encoding cells, which likely impeded the identification of
these neurons?!. More recently, Blanchard et al. used a choice
task varying juice quantity and the time at which information
about the trial outcome was made available. Although both
dimensions affected choice, the authors failed to find evidence for
dimensional integration in OFC!°. As discussed below, this result
might reflect the failure to consider alternative reference frames.

Choice tasks often afford multiple reference frames. For
example, in experiments that involve multiple commodities4>-46,
goods and values may be represented in a commodity-based
frame. Conversely, in tasks that involve a single commodity*447,
goods and values are necessarily represented in some other
reference frame. In choice tasks where options differ by a parti-
cular determinant—probability?!, delay*$, cost, etc.—a valid
reference frame may be that defined by that determinant. In
general, any characteristics of the choice task can provide a valid
reference frame. For example, tasks in which options are pre-
sented sequentially!>4%°0 afford an order-based reference frame;
tasks in which options are defined by the outcome of the previous
triall>°! afford the corresponding reference frame; etc. In our
experiment, valid frames included that defined by the commodity,
the action cost, the spatial location of the offer and the saccade
targets. Interestingly, different groups of cells represented goods
and values in different frames. This result indicates that the
representation of goods and values is highly malleable, and sug-
gests that this neural circuit can reconfigure itself depending on
the demands of the choice task. Of course, such malleability is a
hallmark of prefrontal regions>2.

The fact that goods and values may be represented in multiple
reference frames has far-reaching implications. To dissect the
neural circuit of economic decisions, and specifically to establish
what variables are encoded or not-encoded in a particular brain
region during a choice task, it is generally necessary to examine
multiple reference frames and to identify the reference frame that
best accounts for the neuronal data. Conversely, failure to

consider a valid reference frame may explain some otherwise
puzzling results. For example, in the study by Blanchard et al,
monkeys chose between two options. Each option was a gamble
with fixed probability, and the two options varied for the juice
quantity and the informativeness!®. Valid reference frames
included that defined by the temporal order (order-based) and
that defined by the informativeness (information-based). Neu-
ronal recordings were performed in OFC. Focusing on the time
window following the first offer, the authors regressed firing rates
against the juice quantity and, separately, against the informa-
tiveness of the first offer. For each regressor, a sizeable fraction of
cells had a significant effect, indicating that both determinants of
value were represented in OFC. However, there was no correla-
tion between the regression coefficients obtained for the two
variables. The authors concluded that the neuronal population
did not encode an integrated value. Of note, this claim was based
on a negative result. Thus any source of noise—poor isolation,
low cell count, etc.—effectively worked in favor of the conclusion.
Most relevant here, the analysis assumed an order-based repre-
sentation. In such reference frame, cells encoding the offer value
of the first option would integrate the quantity and the infor-
mativeness of that option, and the two regression coefficients
should indeed be correlated. However, this prediction does not
hold in a different reference frame. In particular, if the repre-
sentation was information-based, one group of cells would be
associated with the informative option and another group of cells
would be associated with the non-informative option. The
regression coefficients obtained for quantity and informativeness
might still be related in any given cell. However, once different
groups of cells (including cells with positive and negative
encoding) had been pooled together, there would be no sys-
tematic relation between regression coefficients. Importantly,
other results of the Blanchard study seem inconsistent with an
order-based representation (their Fig. 4a, b) and suggest an
information-based representation (their Fig. 5a, b). Additional
analyses®> did not address this issue.

To conclude, assessing what reference frame(s) the brain
adopts in any given condition is critical to understand the neu-
ronal computations underlying the decision process. Together
with other studies, our current findings indicate that the neural
circuit underlying good-based decisions can reconfigure itself
depending on the demands of the choice task. This reconfigura-
tion may be conceptualized as a discrete form of context adap-
tation®. Importantly, the rules governing such adaptation and
dictating the reference frame adopted on a given context are
unclear and should be examined in future research.

Methods

Experimental procedures. All experimental procedures conformed to the NIH
Guide for the Care and Use of Laboratory Animals and were approved by the
Institutional Animal Care and Use Committee (IACUC) at Washington University.
Two rhesus monkeys (B, male, 9.0 kg; L, female, 6.5 kg) took part in the experi-
ments. Before training, a head-restraining device and an oval recording chamber
were implanted on the skull under general anesthesia, as previously described!®.
The behavioral task was controlled through a custom-written software based on
Matlab (MathWorks) and freely available at http://www.monkeylogic.net/. In each
session, an animal chose between two juices offered in different amounts and at
variable action cost. Figure 1 illustrates the task design. At the beginning of each
trial, the monkey fixated a point in the center of the monitor, within a tolerance
window of 2° (in a subset of sessions the tolerance window was 3°). After 1.5 s, two
offers appeared to the left and right of the fixation point. The offers were repre-
sented by sets of color symbols, with the color indicating the juice type, the number
of symbols indicating juice amount, and the shape of the symbols indicating the
action cost (cross for low cost; diamond for high cost). Different sets of juices were
used across sessions. The offers remained on the monitor for 1s. The monkey
continued fixating for another 1s, after which two saccade targets appeared. The
two saccade targets, represented by two color dots corresponding to the color of the
two juices, were located on two concentric rings centered on the fixation point. The
radius for low-cost targets was 3.5°-4° the radius for high-cost targets was 10°-16°.
In each trial, one of the saccade targets was placed on the low-cost (small radius)
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ring, whereas the other saccade target was placed on high-cost (large radius) ring.
The two targets were always placed on opposite sides of the center fixation. The
angle defining their position was selected on every trial among four possible values,
corresponding to 22.5° 157.5° 202.5° and 337.5° from azimuth. Thus, for each
juice there were eight possible saccade target positions (two distances x four
angles). The monkey maintained center fixation for a randomly variable delay
(0.6-1.2s), at the end of which the fixation point was extinguished (go signal). At
that point the animal was allowed to indicate its choice with a saccade. The animal
had to maintain peripheral fixation for an additional 0.75 s, at the end of which the
chosen juice was delivered. In each session, the two juice quantities varied pseudo-
randomly from trial to trial. The spatial positions of the offers, the action costs and
the angle of the saccade targets varied pseudo-randomly and were counter-
balanced across trials.

Neuronal recordings. Procedures for surgery, neuronal recordings, and spike
sorting were similar to those described previously!®. In brief, the recording
chamber (main axes, 50 X 30 mm) was centered on stereotaxic coordinates (A30,
L0), with the longer axis parallel to the coronal plane. During the experiments,
animals sat in an electrically insulated enclosure (Crist Instruments) with their
head restrained. The eye position was monitored with an infrared video camera
(Eyelink; SR Research). Neuronal recordings were guided by structural MRI
obtained for each animal before and after the implant, and focused on a region
roughly corresponding to area 13 m>%. In monkey B, we recorded from both
hemispheres and recording locations ranged A36-A39 in the anterior-posterior
direction (with the corpus callosum extending anteriorly to A36). In monkey L, we
recorded from the left hemisphere and recording locations ranged A31-A36 in the
anterior—posterior direction (with the corpus callosum extending anteriorly to
A31). Tungsten electrodes (125 um diameter, FHC) were advanced using custom-
built motorized micro-drives, with a 2.5 um resolution. We typically used four
electrodes in each session. Electrical signals were amplified and band-passed fil-
tered (high pass: 300 Hz, low pass: 6 kHz; Lynx 8, Neuralynx, Inc.). Action
potentials were detected on-line and waveforms were saved to disk (25 kHz sam-
pling rate; Power 1401, Spike 2; Cambridge Electronic Design). Spike sorting was
conducted off-line (Spike 2; Cambridge Electronic Design) and only cells that
appeared well isolated and stable throughout the session were included in the
analysis.

Analysis of choice patterns. All analyses were conducted in Matlab (Math-
Works). On any given trial, one “offer” was defined by a juice type, its quantity and
its action cost (e.g., 3B—). An “offer type” was defined by two offers (e.g., [1 A
+:3B—]). In this notation, “—* indicates high action cost (long saccade) and “ +
indicates low action cost (short saccade). A “trial type” was defined by two offers
and a choice (e.g,, [1 A+ :3B—, A]). Of note, the position of each saccade target
was defined by a distance (two possible values) and an angle (four possible values).
For the purpose of all the analyses, we turned the angle into a binary variable
corresponding to whether the target associated to juice A or the chosen target was
placed in the left hemisphere or in the right hemisphere.

In the behavioral analysis, we examined several factors that could affect choices,
including the juice quantity, the action cost, the outcome of the previous trial
(choice hysteresis), a term capturing a visual side bias, and a term capturing a
saccade side bias. We thus constructed the following logistic model:

choiceB=1/(1 +¢7¥)
X =a,#B—a;#A+a, <6julceB.+ - 6juiceA.+>
+a; <8n—1,B - 6n—1,A>+ (1)
+ay (5cosmf3.cosm71 - 8costofA.costn—l)

+as ((SofferB.]eﬂ - 50fferA.1e&) + a6 (5targetn,leﬂ - targetA‘left)

where choice B = 1 if the animal chose juice B and 0 otherwise; #J was the quantity
of juice J offered (with ] = A, B); &jyice j, + = 1 if juice ] was offered at low cost and 0
otherwise; 8,_;, y=1 if in the previous trial the animal had chosen and received
juice J and 0 otherwise; Scost of J, cost n—1 = 1 if the cost of ] is the same as that
chosen in the previous trial and 0 otherwise; dofrer J, 1t = 1 if the offer of juice J was
placed to the left of the center fixation and 0 otherwise; and Syarget 5, 1ert = 1 if the
saccade target associated with juice ] was placed in the left hemisphere and 0
otherwise. For each session, the logistic regression provided a measure for the
relative value of the two juices (p = a,/a), for the difference in action cost (£ = a,/
ay), for the choice hysteresis related to the chosen juice (7 = as/a,) and to the
chosen cost (¢ = ay/ay), and for the spatial biases related to the offer position (§ =
as/ag) and to the target position (¢ = ag/ay). In this formulation, each factor (action
cost, hysteresis, spatial biases) is quantified as a value term, and all values are
expressed in units of juice B. The relative value (p) is essentially the quantity of
juice B that, when offered against 1 A, makes the animal indifferent between the
two juices. The factor a; can be thought of as an inverse temperature capturing the
steepness of the sigmoid once all the effects included in the logistic regression are
accounted for.

Task-related responses. The neuronal analysis focused on sessions with no sig-
nificant spatial bias (see Results). Each cell was analyzed in relation to the choice
pattern recorded in the same session. In each trial, the neuronal activity was
analyzed in nine time windows aligned with different behavioral events: pre-offer
(0.5 s before the offer), post-offer (0.5 s after offer on), late-delay (0.5-1.0 s after
offer on), mem-delay (0-0.5s after offer off), pre-target (0.5 s before target on),
post-target (0.5 s after target on), pre-go (0.5 s before the ‘go’), pre-juice (0.5
before the juice), and post-juice (0.5 s after the juice).

To identify task-related responses, each neuronal response was submitted to
two three-way ANOV As (factors [trial type x offer A location x target A location];
factors [trial type x chosen offer location x chosen target location]). We imposed a
significance threshold p < 0.001. Responses that passed this criterion for at least one
factor were identified as “task-related” and included in subsequent analyses.

Variable selection analysis. We conducted a series of analyses to identify the
variables encoded by the neuronal population adopting the same general approach
used in previous work#>>. We defined a large number of variables that neurons in
the OFC might conceivably encode, and we applied procedures for variable
selection to identify a small subset of variables that best explained the neuronal data
set. Previous studies on decisions under fixed action costs already examined a large
number of variables*. The results indicated that neurons in OFC encoded variables
offer value, chosen value, and chosen juice. In contrast, the marginal explanatory
power of other tested variables—including total value, other value, value difference,
etc.—was very low. These results were replicated several times!®%. Thus, in the
present study we focused on variables that were not already excluded in previous
work, and in particular on variables defined by (or disambiguated through) variable
action costs.

We were particularly interested in contrasting variables defined in different
reference frames, and specifically variables defined by the juice type (commodity),
the action cost, the spatial configuration of the offers and the spatial component of
the action. For all reference frames, we expressed values in units of juice B (see above
and Eq. 1). For the commodity-based frame, we defined offer value variables offer
value A = p #A + & 8juice A+ and offer value B=#B + & 8juice .+ Where Gjuice 1.+ = 1
if juice J is low-cost and 0 otherwise, and ] = A, B. Notably, each of these variables
was associated with a specific juice type, and both variables reflected value as an
integrated quantity: offer value A reflected the juice quantity (#A), the relative value
of the two juices (p), and the action cost (£); offer value B reflected the juice quantity
(#B) and the action cost (). As in previous studies, we also defined the “collapsed”
variable offer value (juice), to which we assigned the higher of the two R? obtained
for offer value A and offer value B. Similarly, for each of the other reference frames,
we defined two offer value variables that reflected value as an integrated quantity. For
example, the variable offer value + was associated to the low-cost offer and reflected
the juice type, the juice quantity, and the relative value of the two juices (see Table 2).
For each reference frame, we defined a collapsed offer value variable and a variable
capturing the binary choice outcome. In addition, we defined variables that captured
the association between different reference frames (see Results) and the variable
chosen value. All the variables included in the analysis are defined in Table 2.

For details on the procedures used in the variable selection analysis, we refer to
previous reports®1°. In brief, we examined collapsed offer value variables. As the
task transitioned from choice to action at the time of target presentation, we
performed the variable selection analyses separately for pre- and post-target time
windows. Two procedures—stepwise and best-subset—identified a small number of
variables that best explained the neuronal data set. In the stepwise procedure, we
selected at each step the variable that provided the highest number of best fits
within any time window. We then removed from the data set all the responses
explained by this variable and we repeated the procedure on the residual data. The
procedure was repeated until when the marginal explanatory power of any
additional variable fell <5%. In the best-subset procedure, we identified for n=1,
2, 3,... the subset of 7 variables that collectively provided the highest explanatory
power. Importantly, the best-subset procedure warrants optimality and the two
procedures applied to our data set provided identical results.

Activity profiles and ROC analysis. Several analyses were conducted dividing
trials in four groups, depending on the choice of the animal and on whether the
offer type was cost-overt or cost-covert. For neurons encoding the chosen juice,
trials were divided depending on whether the animal chose the juice encoded by
the cell (juice E, defined as that which elicited higher activity) or the other juice
(juice O). For neurons encoding the chosen cost, trials were divided depending on
whether the animal chose the high-cost or the low-cost offer. In all cases, “cost-
overt” offer types were those in which the animal chose the low-cost offer more
frequently (>10%) than the high-cost offer, conditioned on the animal choosing
each option at least twice; “cost-covert” offer types were those in which the animal
consistently chose the same option independently of the action cost. To calculate
the activity profile (i.e., the spike density function), trials were separately aligned at
offer presentation, at target presentation and at juice delivery. For each alignment
and each trial, spike times, expressed in 1 ms resolution, were convolved with a
Gaussian kernel of 40 ms width. To normalize activity profiles, we first subtracted
the mean activity in the pre-offer time window and then divided by the mean
activity averaged across the other eight time windows.
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All ROC analyses were performed on raw spike counts, without time averaging
or baseline correction. To identify choice-related signals (Fig. 6¢, d), we defined
three time windows following offer presentation: post-offer 1 (0-250 ms), post-
offer 2 (250 500 ms), and post-offer 3 (500 750 ms). For Fig. 6¢, we first identified
“cost-overt” offer types then we divided trials in two groups depending on the
chosen juice (preferred or non-preferred). The two groups were compared with an
ROC, from which we measured the AUC. This AUC is the probability with which
an ideal observer would correctly infer the choice of the animal from the activity of
one chosen juice cell and is thus equivalent to the measure of choice probability
defined for perceptual decisions®”-*%. To obtain a single AUC for each neuron, we
averaged the AUC across offer types®. For Fig. 6d, we divided trials in two groups
depending on the chosen cost (high or low). We computed the AUC for each cost-
overt offer type and we averaged across offer types.

Dimensional integration in value signals. We examined the integration of
multiple determinants into a single value signals for offer value (juice) responses.
To do so, we defined two variants of the variable offer value (juice)—one cost-
affected and one cost-independent. We sought to assess which variant better fit
neuronal responses. For each response, we considered the two R? and we computed
the difference AR? = R affected—R%cost-independent and we examined the distribu-
tion for AR? across the population. We did not want to bias the results in favor of
either variant. Thus, for this analysis we identified neuronal responses encoding the
offer value (juice) as follows. For each response and each value variable, we con-
sidered the two R? obtained from the two variants, and we assigned the maximum
R? to the response. We then assigned each response to one of the selected variables
accordingly. To further quantify the effects of action cost on this population, each
response was fitted against the offer value using an ANCOVA (parallel model) and
grouping data by the action cost. As any neuron could be tuned in multiple time
windows, we conservatively focused only on the post-offer time window, when
offer value (juice) responses were most prevalent.

We conducted similar analyses on responses encoding the offer value (cost).
Specifically, we examined whether firing rates varied as a function of the juice type.
We defined two variants of the variable offer value (cost)—one commodity-affected
and one commodity-independent. The variable selection analysis provided the
same results for both variants. We identified neuronal responses encoding the offer
value (cost) in an unbiased way based on the maximum of the two R%. Focusing on
the time window immediately following the offer, we computed the difference
AR2 = chommodi&y-affcctcd7R2commodi(y-independem and we examined the distribution
for AR? across the population. To further quantify the effects of juice type on this
population, each response was regressed against the variable offer value (cost) using
an ANCOVA (parallel model) and grouping data by the juice type. We
conservatively focused only on the post-offer time window, when offer value (cost)
responses were most prevalent.

Finally, we examined responses encoding the chosen value. We defined two
variants of chosen value—one cost-affected and one cost-independent—and we
verified that the variable selection analysis provided the same results. We then
identified chosen value responses in an unbiased way based on the maximum R2.
For each response, computed the difference in R2, and we examined the
distribution for AR? across the population in the post-offer time window. Chosen
value responses were further analyzed with an ANCOVA (parallel model). For each
response, data were grouped by the action cost and firing rates were regressed a
against the variable chosen value.

Code availability. The code used for data analysis is available upon reasonable
request.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available upon reasonable
request.
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