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Self-supported electrodes represent a novel architecture for better performing lithium

ion batteries. However, lower areal capacity restricts their commercial application. Here,

we explore a facial strategy to increase the areal capacity without sacrificing the lithium

storage performance. A hierarchical CuO–Ge hybrid film electrode will not only provide

high areal capacity but also outstanding lithium storage performance for lithium ion

battery anode. Benefiting from the favorable structural advance as well as the synergic

effect of the Ge film and CuO NWs array, the hybrid electrode exhibits a high areal

capacity up to 3.81mA h cm−2, good cycling stability (a capacity retention of 90.5%

after 150 cycles), and superior rate performance (77.4% capacity remains even when

the current density increased to 10 times higher).

Keywords: self-supported electrode, lithium ion battery, CuO, Ge, areal capacity

INTRODUCTION

Rechargeable lithium ion batteries (LIBs) are identified as the ideal sources of power for wide
applications ranging from portable electronic devices to large-scale products on account of their
long-life span and high energy density (Liu et al., 2018b; Xu et al., 2018; Zhang et al., 2018; Yan
et al., 2019). However, the specific capacity of the electrodes severely restricts their energy density.
As a solution to this problem, different anode materials with higher specific capacities have been
investigated to take the place of the present commercial graphite (Kim et al., 2017). To date,
Ge and CuO have aroused increasing interest as the novel anodes for new generation LIBs due
to their high theoretical capacities. Compared with commercial graphite (theoretical gravimetric
capacity is 372mA h g−1), Ge has a high theoretical capacity of 1,624mA h g−1, while CuO has a
capacity of 674mA h g−1. Ge has been widely studied because of its high ionic conductivity and
low lithiation potential and CuO, as one of the transition metal oxides, has demonstrated to be a
promising material for the substitute anodes in LIBs for its earth abundance, commercial benefit,
and environmental friendly (Chan et al., 2008; Xiaojun et al., 2012; Huang et al., 2015; Susantyoko
et al., 2015; Mironovich et al., 2017).

However, the considerable capacities of Ge and CuO are generally accompanied by drastic
volume change upon Li intercalation and deintercalation, thus causing the poor cycling
performance (Liu et al., 2015; So et al., 2018). Great efforts have beenmade to solve the pulverization
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problem during the Li insertion and extraction process using
nanomaterials such as nanoparticles (Hyojin et al., 2005; Mi-
Hee et al., 2010; Yang et al., 2010), nanowires (Chan et al.,
2008; Chockla et al., 2012; Yuan et al., 2012; Mullane et al.,
2013), nanotubes (Chen et al., 2009; Cao et al., 2015; Liu
et al., 2018a; Sun et al., 2018), and so on. For example, Li
et al. synthesized mesoporous and hollow Ge@C nanostructures
via carbon coating and reduced the hollow ellipsoidal GeO2

precursor into Ge. A stable cycling performance (capacity
retention remained 100% at 0.2 C rate for 200 cycles) and high
rate capability (805mA h g−1 at 20◦C) is finally obtained (Li
et al., 2013).Wang et al. fabricated self-supported CuOnanowires
(NWs) on Cu foam (CF). The obtained electrodes delivered a
specific capacity of 461.5mA h g−1 after 100 cycles at a current
density of 100mA g−1, and a capacity of 150.6mA h g−1 even at
a high rate of 1,000mA g−1 (Wang et al., 2018).

Although these nanoengineering strategies have effectively
improved the Li+ ions storage performance of these high-
capacity electrodes (Sun et al., 2018), most of these nanoscale
metal oxides/group-IV elements and corresponding composites
are mixed with organic binders and conductive carbon and then
fabricate into electrode, which complicate the fabrication process
(Wang et al., 2012). The bonding force between traditionally
used binders and high-capacity active materials is too weak
to maintain a stable performance after long-term cycling
(Chang et al., 2019).

Recently, self-supported active nanomaterials which is in
situ grown on current collectors without any inactive materials
represent an unique architecture, which can offer many
advantages for LIBs such as large contact area with electrolyte,
great electrical conductivity, fast Li-ion transportation, and better
performance for the electrodes (Wang et al., 2016). Susantyoko
et al. fabricated amorphous Ge on the multiwall carbon nanotube
arrays (MWCNT/a-Ge) by the combination of facial chemical
vapor deposition and a physical sputtering method, which
could give a specific areal capacity of 0.405mA h cm−2 at
the rate of 0.1 C after 100 cycles (Susantyoko et al., 2014).
Kim et al. synthesized nano-Ge/C composite via electrochemical

FIGURE 1 | Schematic illustration of the fabrication processes of the CuO–Ge hybrid film on Cu foam (CF).

deposition method; the obtained electrode exhibits a capacity
of 1mA h cm−2 at 0.1 C over 50 cycles (Kim et al., 2017). Ji
et al. fabricated binder-free electrodes, which is composed of
3D graphene network and octahedral CuO, the obtained 3D
GN/CuO composites, yielding an areal capacity of 0.39mA h
cm−2 at 0.095mA cm−2 (Dong et al., 2016). Xu et al. synthesized
CuO mesocrystal entangled with MWCNT composites through
a combination of precipitation and an oriented aggregation
process. The CuO-MWCNT composites could deliver an areal
capacity of 1.11mA h cm−2 after 400 cycles at the current
density of 0.39mA cm−2 (Xu et al., 2016). Great progress for
CuO- and Ge-based self-supporting electrodes has been achieved
by the above-mentioned effects. Areal capacity is one of the
important parameters for practical LIB application. Especially for
self-supporting electrodes, it is very important and hard to obtain
both high areal capacity and good electrochemical performance.
However, the areal capacities of the most obtained electrodes
are <2mA h cm−2, which is lower than the commercial
specification of 3–4mA h cm−2 (Cong et al., 2017). Normally,
larger mass loading of active materials will make contribution to
higher areal capacities but meanwhile sacrificing electrochemical
performance (Chang et al., 2019). There is an increasing concern
about fabricating self-supporting electrodes with high areal
capacity as well as good electrochemical performance.

Usually, the self-supporting electrodes cannot maintain good
electrochemical performance at very high areal capacity. Herein,
we report a hierarchical CuO–Ge hybrid film on CF as a
self-supporting electrode with ultrahigh areal capacity for LIB
application. As shown in Figure 1, the integrated film was
formed by physical vapor deposition of Ge film on CuO NWs
array, which were grown directly on the CF via a facial and
scalable solution approach. CuO NWs array with well-defined
nanostructure serves as both the active materials and conductive
connection for Ge film. The porous feature will not only
alleviate the drastic volume change during the Li insertion and
extraction process but also facilitate the diffusion of electrolyte
into the electrode. Benefiting from the favorable nanostructures
as well as the synergic effect of the Ge film and CuO NWs
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array, the integrated electrode delivers ultrahigh areal capacity,
extraordinary rate capability, and stable cycling performance.
Moreover, this is the first time that CuO NWs combined with Ge
film hybrid anode achieved a high areal capacity. It could deliver
an ultrahigh charge areal capacity up to 3.45mA h cm−2 after
150 cycles at a current density of 0.8mA cm−2 and a capacity
∼2.98mA h cm−2 at a current density as high as 4 mA cm−2.

EXPERIMENTAL

Fabrication Procedure
Fabrication of CuO NWs Array
Typically, the growth of CuONWs array on CF is fabricated from
a simple and scalable method. The CF with dimension of 2 ×

2 cm2 (1mm, 100 PPI) was first degreased in 1.0mol L−1 HCl
for 15min and then washed in ethanol, acetone, and deionized
water by ultrasonication for 15min, respectively. The rinsed CF
was then submerged in the mixed solution, which was prepared
by adding 8ml of freshly obtained 10M NaOH into (NH4)2S2O8

solution [0.913 g (NH4)2S2O8 added into 22ml of deionized
water] with magnetically stirring. After 15min reaction time, the
light blue CF can be obtained, which means the formation of
Cu(OH)2 NWs. After rinsing with deionized water for several
times, the light blue CF was dried under N2 gas flow and annealed
at 180◦C in air at a ramp rate of 2◦Cmin−1 for 2 h. Then, the final
product CuO NWs array was obtained with dark brown color.
The principal of CuO NWs array in situ grown on CF could be
described as following reactions (Cheng et al., 2016):

Cu+ 4OH− + (NH4)2 S2O8 → Cu (OH)2 + 2SO2−
4

+ 2NH3 ↑ + 2H2O (1)

Cu(OH)2 → CuO+H2O (2)

Fabrication of Hierarchical CuO–Ge Hybrid Film
The CuO NWs array on CF was placed into an radio frequency
(RF) sputtering system (Verios G4 UC, Shenyang Lining Co.)
using 99.999% pure Ge target. The base pressure was 7.8 ×

10−4 Pa. Then, argon flowed at 50 sccm, and pressure remained
at 2.2 Pa. The RF power was 100W, and the deposition time
was 400min. The mass loading of CuO NWs supported Ge
(typically ∼0.67mg cm−2), CuO NWs array (typically ∼3.64mg
cm−2) and Ge on pristine CF (typically ∼0.45mg cm−2)
were weighed before and after sputtering using a microbalance
(OHAUS, AX224ZH) with an accuracy of 0.1mg. Besides, the
Ge film was also deposited on pristine CF under the same
deposition parameters.

Structural Characterization
The samples were characterized using X-ray diffraction (Rigaku
Ultima IV) and Raman spectroscopy (WITEC alpha300 R
Confocal Raman system), and the structure and morphology
characterization of them were carried out by field-emission
scanning electron microscopy (SEM, FEI Inspect F50) with
accelerating voltage of 5.00 kV and transmission electron
microscopy (TEM, FEI Tecnai G2).

Electrochemical Characterization
CR 2032-type coin cells was used to test electrochemical
characterizations, test cells were assembled in a high-purity
argon filled glove box (Mikrouna Technology) with oxygen
and moisture level <0.5 ppm. The fabricated self-supporting
electrodes were used as the working electrode and a Li foil as the
counter and reference electrode. Lithium hexafluorophosphate
(LiPF6) (1M) in a mixture of ethylene carbonate and diethyl
carbonate (1:1 in volume) was used as the electrolyte. All
the cells were aged for 12 h so that the electrolyte can fully
infiltrate the whole cell before measurement. Lithium storage
performance were evaluated by a multichannel battery tester
(Neware, BTS-610) in the voltage range of 3.0–0.01V (Li/Li+).
An electrochemical workstation (CHI660c, Shanghai Chenhua
Co.) was used to evaluate the cyclic voltammetry (CV) at scan rate
of 0.1mV s−1. All the tests were carried out in the thermotank at
fixed temperature of 25◦C.

RESULTS AND DISCUSSION

The Raman spectra analyses of the Ge film, CuO NWs array,
and CuO–Ge hybrid film are shown in Figure 2A. For Ge film,
a broad peak at 290 cm−1 was observed, which can be indexed
to amorphous form of Ge (Susantyoko et al., 2014). There are
three Raman peaks at 280, 324, and 618 cm−1 for CuONWs array

samples, which can be indexed to the Ag, B
(1)
g , and B

(2)
g modes of

CuO (Xu et al., 2015). All the peaks can be found on the CuO–Ge
hybrid film samples, demonstrating that the hybrid structure was
successfully fabricated. The X-ray diffraction patterns are shown
in Figure 2B. One can note that the strong diffraction peaks of
43.3, 50.4, and 74.1◦, which could be indexed to the CF with
JCPDS card no. 70-3039. There are two weak but identifiable
peaks located at 35.5 and 38.8◦, corresponding to the (−111)
and (111) planes of the monoclinic CuO, with JCPDS card
no. 89-5899.

The typical SEM images of the obtained CuO NWs array
on CF are shown in Figures 3A–C. The low-magnification SEM
image in Figure 3A shows that CF has a well-organized 3D
porous architecture. The magnified image shown in Figure 3B

indicates the aligned CuONWs array are 192 nm in diameter, and
there are sufficient space available in CuONWs array as indicated
by the white-dashed squares, which can provide room for Ge
thin film loading. Besides, the side view SEM image shown in
Figure 3C demonstrates that all the CuO NWs array with length
of∼6.1µm are firmly rooted from Cu microfibers.

Then, a thick amorphous Ge was sputtered on the CuO NWs
array using RF sputtering technique. Figures 3D–F show the
SEM images of the CuO–Ge hybrid film. A typical image of a
part of CF, as shown in Figure 3D, indicates that the 3D ordered
nanowire architecture are well preserved after Ge coating. From
Figures 3E,F, it is clearly observed that the average diameters and
length of the nanowires are increased to 587.5 nm and 6.6µm,
respectively, due to the deposition of Ge film. There are still large
space in between these nanowires after sputtering as indicated
by the white-dashed squares in Figure 3E, which will not only
benefit for accommodating the volume change but also facilitate
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FIGURE 2 | (A) Raman spectrum of Ge, CuO NWs array, and CuO–Ge hybrid film; (B) X-ray diffraction (XRD) pattern of the CuO–Ge hybrid film.

FIGURE 3 | (A,B) The top and (C) side view SEM images of CuO NWs array; (D,E) The top and (F) side view SEM images of the CuO–Ge hybrid film.

the diffusion of electrolyte into the electrode. From the side view
SEM images shown in Figure 3F, it can be seen that the diameter
of the synthetic nanowires is gradually decreased from the top to
the bottom, which is attributed to the shadowing effect of the RF
sputtering technique. It has been demonstrated that this structure
is beneficial for Li storage performance (Wang et al., 2016).

We also present the TEM images of the CuO–Ge hybrid film
in Figure 4A. The obtained distributions of Cu and Ge are shown
in Figure 4B, the energy dispersive spectroscopy mapping profile
obviously pictures that the outer sheath consists of Ge, whereas
Cu is perfectly populated in the inner part of the CuO–Ge hybrid
film, and the Ge films were grown uniformly and was deposited
onto the whole CuO NWs.

Figure 5A shows the typical initial discharge and charge
profiles of the CuO–Ge hybrid film, CuO NWs array, and Ge
film with the voltage window of 0.01–3V (Li+/Li) at a current
density of 0.8mA cm−2. The CuO–Ge hybrid film delivers an

initial discharge and charge capacity of ∼5.09 and 3.81mA h
cm−2, giving the initial Coulombic efficiency of 74.8%. The
irreversible discharge capacity is associated with the formation
of solid electrolyte interface layer and the irreversible insertion
of Li+ into CuO and Ge films, which are common for CuO
and Ge based anodes (Chan et al., 2008; Chockla et al., 2012;
Yuan et al., 2012; Mullane et al., 2013; Liu et al., 2018a). The low
Coulombic efficiencymay restrict the capacity of anodematerials;
however, it has been demonstrated that LIBs must undergo a few
charge–discharge cycles, which is generally called the “formation
process” (Chen et al., 2013). Besides the first cycle, the Coulombic
efficiency of the battery was all above 99.2%, indicating excellent
recyclability. In contrast, the first discharge and charge capacities
are 3.34 and 2.50mA h cm−2 for CuO NWs array and 0.71 and
0.59mA h cm−2 for Ge film, respectively. The CuO–Ge hybrid
film electrode exhibits much higher initial charging areal capacity
when compared with the sum of the Ge film and CuONWs array
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FIGURE 4 | (A) Annual dark-field TEM image of the CuO–Ge hybrid film; (B) elemental mapping of CuO–Ge hybrid film: the corresponding Cu, Ge EDX maps.

FIGURE 5 | (A) The initial voltage profiles of the CuO–Ge hybrid film, CuO NWs array, and Ge film; (B) the cycle performance of the CuO–Ge hybrid film, CuO NWs

array, and Ge film; (C) the initial five cyclic voltammetry (CV) curves of the CuO–Ge hybrid film; (D) rate performance of CuO–Ge hybrid film, CuO NWs array, and

Ge film.

electrode. This is because the mass loading of the Ge film on
CuO NWs array is higher than that on CF attribute to the larger
surface area of the CuO NWs array, demonstrating the structural
advantages of the CuO NWs array.

Figure 5B compares the cycle performance of the CuO–Ge
hybrid film, CuO NWs array and Ge film for subsequent 150
cycles at a high current density of 0.8mA cm−2. For the CuO–Ge
synthesized film electrode, a reversible discharge capacity of
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FIGURE 6 | (A,B) SEM images of the CuO–Ge hybrid film after 50 cycles.

3.81mA h cm−2 was achieved at the second cycle, corresponding
to a specific capacity of 883mA h g−1. The electrode could still
deliver a high areal capacity of∼3.45mA h cm−2 with a capacity
retention of 90.5% after 150 cycles (the corresponding specific
capacity contribution from Ge was 1,462mA h g−1, and CuO
was 678mA h g−1). In contrast, the CuO NWs array electrode
could deliver a capacity of 2.47mA h cm−2 after 150 cycles,
which corresponds to the 90.0% of the original one. While Ge
film can only obtain a reversible capacity of 0.2mA h cm−2 after
150 cycles with a much lower capacity retention of 59.3%. The
CuO–Ge hybrid film electrode exhibits a superior improvement
in Li storage performance compared to the other electrodes,
which may be attribute to the novel structure design using a
hierarchical 3D nanostructure to combine two high theoretical
capacity materials. The well-separated CuO NW arrays will not
only provide large area for larger mass loading of Ge but also
the large void space to overcome the large volume change during
charge and discharge.

The initial few CV curves of the CuO–Ge hybrid film electrode
were conducted in range of 0.01–3.0V at a scan rate of 0.1mV
s−1 as displayed in Figure 5C. It can be indicated from these
peaks that there is a multistep electrochemical reaction between
Li and the hybrid electrode. A broad but moderate peak at
∼2.1V corresponding to the initial formation of LixCuO in
the first cathodic sweep. Then, two succession reduction peaks
were observed at ∼1.0 and ∼0.66V, corresponding to the
transformation of LixCuO into Cu2O and Cu; then, a moderate
peak at ∼0.07V was observed, which was associated with the
formation of the LixGe alloy (Rudawski et al., 2013; Guo et al.,
2015). These reduction peaks shifted toward slightly higher
voltages in the following scans, which might associate with
the drastic Li driven structural modifications during the initial
discharge and charge process (Yunhua et al., 2014). A peak was
found at 0.44V during the first anodic scan, attributing to the
phase transition of LixGe to Ge; then, two distinct peaks at ∼1.5
and ∼2.5V and a shoulder peak at ∼2.7V appeared, which was
associated with oxidation of Cu0 to Cu+ and Cu2+ (Dong et al.,
2016; Xu et al., 2016; Wang et al., 2018). These results are in
agreement with the other reports of electrochemical reactions of

Ge and CuO with Li (Seo et al., 2011; Ren et al., 2013; Xinghui
et al., 2014; Wei et al., 2017; Lin et al., 2018; Wang et al.,
2018). The CV curves were well-overlapped with each other from
the second cycle afterwards, suggesting that the electrode has a
good reversibility.

The rate capability is further tested for the CuO–Ge hybrid
film electrode, which is of significant importance for high
power energy storage. The rate performance was evaluated by
charging–discharging at varied current densities varying from
0.4 to 4mA cm−2. As shown in Figure 5D, after the first five
cycles at the current density of 0.4mA cm−2, the obtained
electrode showed a high discharge areal capacity of 3.85m A h
cm−2; then, it slightly reduced to 3.68 and 3.45m A h cm−2

at current rates of 0.8 and 1.6mA cm−2. Even at a rate as
high as 4mA cm−2, the CuO–Ge hybrid film could still deliver
a reversible capacity of ∼2.98m A h cm−2, corresponding to
the 77.4% capacity of the capacity at 0.4mA cm−2. After the
rate returned back to the initial value of 0.4mA cm−2 for five
cycles, 94.5% of the initial charge capacity was regained. In
the comparison, the CuO NWs exhibited a capacity of 2.83,
2.65, 2.35, and 1.86m A h cm−2, respectively, and eventually
obtained a capacity of 2.59m A h cm−2. As for the Ge film,
it only showed a capacity of 0.98, 0.44, 0.33, and 0.10m A h
cm−2, respectively. Indicating the benefit from the favorable
nanostructures as well as the synergic effect of the Ge film and
CuO NWs array, the hybrid electrode hybrid film electrode has
wonderful rate capability far beyond the CuO NWs and Ge
film electrode.

To examine the structure stability of the CuO–Ge hybrid film
electrode upon repeated discharge/charge process, the electrode
was disassembled after 50 cycles. As shown in Figure 6A, the
CuO–Ge hybrid film were uniformly remained on the CF with
no detaching signs. From high magnification SEM shown in
Figure 6B, one can see that the hierarchical CuO–Ge hybrid films
maintain their original structure even after 50 cycles, indicating
high structural stability of the hybrid structure, which proves that
this novel structure can withstand the dramatic volume change
caused during repeated discharge and charge cycles. Therefore,
the excellent lithium storage performance of the CuO–Ge hybrid
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film electrode is mainly due to the following aspects: (1) The well-
separated CuO NW arrays can not only provide large area for
higher mass loading of Ge, resulting in higher areal capacity, but
also improve the cycle performance of the Ge film by providing
sufficient void space to alleviate the large volume change of the
Ge film. (2) The hierarchical porous feature in the hybrid film not
only provides sufficient space to accommodate the drastic volume
change but also facilitates the lithium diffusion into the inner
electrodes. (3) The Cu in the lithiated CuO NWs will promote
the electronic conductivities, enhancing the rate performance of
the electrodes (Yang et al., 2014).

CONCLUSIONS

In conclusion, an efficient strategy to prepare self-supporting
electrode with ultrahigh areal capacity for LIB application has
been introduced. The obtained CuO–Ge hybrid film electrode
exhibits excellent lithium storage performance. It can deliver
a high areal capacity of 3.81mA h cm−2 after 150 cycles,
corresponding to 90.5% of the original one. Furthermore, the
electrode could deliver high areal capacities of 2.98mA h cm−2

even at ultrahigh current density of 4mA cm−2. The hierarchical
CuO–Ge hybrid film grown directly on CF could be a novel
substitute of graphite for LIBs, and the facial and efficiency
synthesis strategy sheds light on improving the areal capacity

of the self-supporting electrodes, which can be applicable for

preparation of other high capacity hybrid electrode for energy
storage application.
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