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Abstract

The synchronization of different γ-rhythms arising in different brain areas has been impli-

cated in various cognitive functions. Here, we focus on the effect of the ubiquitous neuronal

heterogeneity on the synchronization of ING (interneuronal network gamma) and PING

(pyramidal-interneuronal network gamma) rhythms. The synchronization properties of

rhythms depends on the response of their collective phase to external input. We therefore

determine the macroscopic phase-response curve for finite-amplitude perturbations

(fmPRC) of ING- and PING-rhythms in all-to-all coupled networks comprised of linear (IF) or

quadratic (QIF) integrate-and-fire neurons. For the QIF networks we complement the direct

simulations with the adjoint method to determine the infinitesimal macroscopic PRC

(imPRC) within the exact mean-field theory. We show that the intrinsic neuronal heterogene-

ity can qualitatively modify the fmPRC and the imPRC. Both PRCs can be biphasic and

change sign (type II), even though the phase-response curve for the individual neurons is

strictly non-negative (type I). Thus, for ING rhythms, say, external inhibition to the inhibitory

cells can, in fact, advance the collective oscillation of the network, even though the same

inhibition would lead to a delay when applied to uncoupled neurons. This paradoxical

advance arises when the external inhibition modifies the internal dynamics of the network by

reducing the number of spikes of inhibitory neurons; the advance resulting from this disinhi-

bition outweighs the immediate delay caused by the external inhibition. These results

explain how intrinsic heterogeneity allows ING- and PING-rhythms to become synchronized

with a periodic forcing or another rhythm for a wider range in the mismatch of their frequen-

cies. Our results identify a potential function of neuronal heterogeneity in the synchroniza-

tion of coupled γ-rhythms, which may play a role in neural information transfer via

communication through coherence.

Author summary

The interaction of a large number of oscillating units can lead to the emergence of a col-

lective, macroscopic oscillation in which many units oscillate in near-unison or near-

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008575 June 30, 2021 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Xu X, Riecke H (2021) Paradoxical phase

response of gamma rhythms facilitates their

entrainment in heterogeneous networks. PLoS

Comput Biol 17(6): e1008575. https://doi.org/

10.1371/journal.pcbi.1008575

Editor: Boris S. Gutkin, École Normale Supérieure,
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synchrony. This has been exploited technologically, e.g., to combine many coherently

interacting, individual lasers to form a single powerful laser. Collective oscillations are

also important in biology. For instance, the circadian rhythm of animals is controlled by

the near-synchronous dynamics of a large number of individually oscillating cells. In ani-

mals and humans brain rhythms reflect the coherent dynamics of a large number of neu-

rons and are surmised to play an important role in the communication between different

brain areas. To be functionally relevant, these rhythms have to respond to external inputs

and have to be able to synchronize with each other. We show that the ubiquitous hetero-

geneity in the properties of the individual neurons in a network can contribute to that

ability. It can allow the external inputs to modify the internal network dynamics such that

the network can follow these inputs over a wider range of frequencies. Paradoxically,

while an external perturbation may delay individual neurons, their ensuing within-net-

work interaction can overcompensate this delay, leading to an overall advance of the

rhythm.

Introduction

Collective oscillations or rhythms representing the coherent dynamics of a large number of

coupled oscillators play a significant role in many systems. In the technological realm they

range from laser arrays and Josephson junctions to micromechanical oscillators [1, 2]. Among

the important biological examples are the heart rhythm, the circadian rhythm generated by the

suprachiasmatic nucleus [3], the segmentation clock controlling the somite formation during

development [4], and brain waves [5]. One prominent brain rhythm is the widely observed γ-

rhythm with frequencies in the range 30–100Hz. The coherent spiking of the neurons underly-

ing this rhythm likely enhances the downstream impact of the neurons participating in the

rhythm. The rhythmic alternation of low and high activity has been suggested to play a signifi-

cant role in the communication between different brain areas [6, 7]. That communication has

also been proposed to be controlled by the coherence of the rhythms in the participating brain

areas [8–13].

For collective oscillations or rhythms to play a constructive role in a system they need to

respond adequately to external perturbations and stimuli. For instance, for the circadian

rhythm it is essential that it is reliably entrained by light and phase-locks to the day-night

cycle. Similarly, if rhythms are to play a significant role in the communication between differ-

ent brain areas, their response to input from other areas represents a significant determinant

of their function. Moreover, the stimulation and entrainment of γ-rhythms by periodic sensory

input is being considered as a therapeutic approach for some neurodegenerative diseases [14].

Even small perturbations can affect oscillations significantly in that they can advance or

delay the oscillations, i.e. they can change the phase of the oscillators. This change typically

depends not only on the strength of the perturbation but, importantly, also on the timing of

the perturbations and is expressed in terms of the phase response curve (PRC), which has been

studied extensively for individual oscillators [15]. For infinitesimal perturbations the PRC can

be determined elegantly using the adjoint method [16].

If the collective oscillation of a network of interacting oscillators is sufficiently coherent,

that system can be thought of as a single effective oscillator. Consequently, the response of the

macroscopic phase of the collective oscillation to external perturbations and the mutual inter-

action of multiple collective oscillations is of interest. The macroscopic phase-response curve

(mPRC) has been obtained in various configurations, including noise-less heterogeneous
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phase oscillators [17, 18], noisy identical phase oscillators [19, 20], noisy excitable elements

[21], and noisy oscillators described by the theta-model [22], which is equivalent to the qua-

dratic integrate-and-fire model for spiking neurons. Recent work has used the exact mean-

field theory of [23], which is related to the Ott-Antonsen theory [24, 25] and reduces the

dynamics of networks of quadratic integrate-and-fire neurons to two coupled differential

equations for the firing rate and the mean voltage, to develop a method to obtain the infinitesi-

mal macroscopic PRC (imPRC) for excitatory-inhibitory spiking networks [26, 27].

A key difference between the response of an individual oscillator to a perturbation and that

of a collective oscillation is the fact that the degree of synchrony of the collective oscillation can

change as a result of the perturbation, reflecting a change in the relations between the individ-

ual oscillators. Thus, the phase response of a collective oscillation to a brief perturbation con-

sists not only of the immediate change in the phases of the individual oscillators caused by the

perturbation, but includes also a change in the collective phase that can result from the subse-

quent convergence back to the phase relationship between the oscillators corresponding to the

synchronized state, which is likely to have been changed by the perturbation [18]. Interest-

ingly, it has been observed that the infinitesimal macroscopic phase response can be qualita-

tively different from the phase response of the individual elements. Thus, even if the individual

oscillators have a type-I PRC, i.e. a PRC that is strictly positive or negative, the mPRC of the

collective oscillation can be of type II, i.e. it can exhibit a sign change as a function of the phase

[21, 22, 28].

Here we investigate the interplay between external perturbations and the internal interac-

tions among neurons in inhibitory and in excitatory-inhibitory networks exhibiting γ-rhythms

of the ING- and of the PING-type. We focus on networks comprised of neurons that are not

identical, leading to a spread in their individual phases and a reduction in the degree of their

synchrony. How does this phase dispersion affect the response of the macroscopic phase of the

rhythm to perturbations? Does it modify the ability of the network to follow a periodic

perturbation?

We show that the dispersion in the phase together with the within-network interactions

among the neurons can be the cause of a paradoxical phase response: an external perturbation

that delays each individual neuron can advance the macroscopic rhythm. We identify the fol-

lowing mechanism underlying this paradoxical response: external perturbations that delay

individual neurons sufficiently allow the within-network inhibition generated by early-spiking

neurons to suppress the spiking of less excited neurons. This results in a reduced within-net-

work inhibition, which reduces the time to the next spike volley, speeding up the rhythm. This

paradoxical phase response increases with the neuronal heterogeneity and allows the network

to phase-lock to periodic external perturbations over a wider range of detuning. Thus, the

desynchronization within the network enhances its synchronizability with other networks.

The mechanism is closely related to that underlying the enhancement of synchronization of

collective oscillations by uncorrelated noise [29] and the enhanced entrainment of the rhythm

of a homogeneous network to periodic input if that input exhibits phase dispersion across the

network [30, 31]. We demonstrate and analyze these behaviors for networks of inhibitory neu-

rons (ING-rhythm) and for networks comprised of excitatory and inhibitory neurons (PING-

rhythm).

Results

We investigated the impact of neuronal heterogeneity on the response of the phase of γ-

rhythms to brief external perturbations and the resulting ability of rhythms to synchronize to

periodic input. As described in the Methods, we used networks comprised of minimal linear
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(IF) and quadratic (QIF) integrate-and-fire neurons that interact with each other through syn-

aptic pulses modeled via delayed double-exponentials. To study ING-rhythms, all neurons

were inhibitory and all-to-all coupled, while for the PING-rhythms we used excitatory-inhibi-

tory networks with all-to-all E-I and I-E connections. Throughout, we implemented the neuro-

nal heterogeneity by injecting a different steady bias current Ibias into each neuron. Our

analysis suggests that the origin of the neuronal heterogeneity plays only a minor role as long

as it leads to a dispersion of their spike times [29].

Paradoxical phase response of heterogeneous networks: ING-Rhythm

In the absence of external perturbations the all-to-all inhibition among the neurons leads to

rhythmic firing of the neurons. Due to their heterogeneity they did not spike synchronously

but sequentially, as shown in Fig 1A, where the neurons are ordered by the strength of their

bias current. The dependence of the phase dispersion on the coefficient of variation of the het-

erogeneity in the bias current (CV) is shown in S1 Fig. For sufficiently large heterogeneity

some neurons never spiked: while the weak bias current they received would have been suffi-

cient to induce a spike eventually, the strong inhibition that was generated by the neurons

spiking earlier in the cycle suppressed those late spikes. Neurons with strong bias current

could spike multiple times.

A brief, inhibitory external input delivered to all neurons (green dashed line in Fig 1B)

delayed each neuron. The degree of this individual delay depended on the timing of the input,

as is reflected in the PRC of the individual neurons. If the perturbation was applied during the

time between the spike volleys, the delay of each neuron had no further consequence and the

overall rhythm was delayed. However, if the same inhibitory perturbation arrived during a

spike volley (dashed green line in Fig 1B), it could advance the overall rhythm. As illustrated in

Fig 1B, only the spiking of the late neurons was delayed by the perturbation. Importantly, with

this delay some neurons did not spike before the within-network inhibition triggered by the

early-spiking neurons (dashed blue line in Fig 1B) became strong enough to suppress the spik-

ing of the late neurons altogether. With fewer neurons spiking, the all-to-all inhibition within

the network was reduced, allowing all neurons to recover earlier, which lead to a shorter time

Fig 1. ING-rhythm can be advanced by inhibition while individual neurons are delayed. (A) Top: spike raster of neurons spiking sequentially in the

order of their input strength (increasing with neuron index). Bottom: mean voltage across the network (LFP). (B) External inhibition advanced the rhythm.

Top: raster plot of spikes without (black) and with (red) external inhibitory pulse. Bottom: Average of the total inhibitory current each neuron received

from the other neurons within the network. I(I) = 20.4 pA, CðIÞV ¼ 0:15, fnetwork = 47 Hz. In (B), perturbations were made with a square-wave inhibitory

current pulse with duration 0.1 ms and amplitude 3200 pA to each neuron, resulting in a 4 mV rapid hyperpolarization.

https://doi.org/10.1371/journal.pcbi.1008575.g001
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to the next spike volley. If the speed-up was larger than the immediate delay induced by the

external inhibition, the overall phase of the rhythm was advanced by the delaying inhibition.

As the example in Fig 1B shows, the paradoxical phase response requires proper timing of

the perturbation. We therefore determined quantitatively the macroscopic phase-response

curve (mPRC) of the rhythm. To do so we measured computationally the amount a brief cur-

rent injection shifted the phase of the rhythm (Fig 2A). We defined the phase ϕinh of the per-

turbation as the normalized time since the first spike in the most recent volley of spikes.

Reflecting the strictly positive PRC of the individual IF neurons, without heterogeneity

(CV = 0) external inhibition always delayed the rhythm, independent of the timing of the

pulse. In contrast, in heterogeneous networks the rhythm could be advanced if the same inhib-

itory perturbation was applied shortly after the first spikes in the spike volley (ϕinh > 0).

Increasing the neuronal heterogeneity enhanced this phase advance, since it shifted the

within-network inhibition driven by the leading neurons to earlier times, while it delayed the

lagging neurons. As a result, for the same external perturbation, a larger fraction of neurons

that would spike in the absence of the external inhibition was sufficiently delayed to have their

spikes be suppressed by the within-network inhibition (cf. Fig 1B), reducing the within-net-

work inhibition and with it the time to the next spike volley. To keep the frequency of the

Fig 2. fmPRC of heterogeneous ING network. (A) Phase shift in response to inhibition for different neuronal heterogeneity but fixed natural frequency

(fnetwork = 40Hz). The paradoxical phase advance increased with neuronal heterogeneity. (B) fmPRC changed qualitatively with the amplitude of the

perturbation. Left: fmPRC for three different perturbation amplitudes. Right: raster plot of spikes without (black) and with (red) external inhibition. Top:

strong perturbation advanced the network. Bottom: weak perturbation applied at the same time as in the top figure. The network was delayed. (C) Maximal

phase advance as a function of neuronal heterogeneity and external inhibition strength. The threshold of the inhibition amplitude to obtain an advance

decreased with heterogeneity (white line). fnetwork was kept constant (fnetwork = 40Hz). In (A)-(C), perturbations were made with a square-wave inhibitory

current pulse with duration 0.1 ms to each neuron. In (A), the amplitude of the current was 1600 pA, resulting in a 2 mV rapid hyperpolarization.

https://doi.org/10.1371/journal.pcbi.1008575.g002
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unperturbed network fixed in Fig 2A, we reduced the tonic input with increasing heterogene-

ity, which enhanced the phase advance. However, even if the tonic input was kept fixed, the

phase advance increased with heterogeneity (S2 Fig).

For weak heterogeneity the paradoxical phase response occurred only for sufficiently strong

perturbations, i.e. it did not arise in the infinitesimal macroscopic PRC (imPRC). Thus, the

phase response changed qualitatively when the amplitude of the perturbation was strong

enough to delay the spikes of sufficiently many slow neurons until the self-inhibition of the

network set in and suppressed their spikes (Fig 2B). With sufficiently large heterogeneity, the

dispersion was large enough that the spikes of the lagging neurons were suppressed by the self-

inhibition of the network even in the absence of an external perturbation. In that regime the

paradoxical phase response occurred even for infinitesimal perturbations (to the right of the

white line in Fig 2C).

The paradoxical phase response was robust with respect to changes in the natural frequency

of the network, the coupling strength, and the effective synaptic delay, as long as the rhythm

persisted. The paradoxical phase advance increased with decreasing natural frequency of the

network, since the inhibition had a stronger effect for lower mean input strength (Fig 3A).

Varying the within-network coupling strength by more than a factor of 20 only moderately

affected the paradoxical phase response (Fig 3B) and the strength of the rhythm (Fig 3C). With

increasing within-network coupling strength, a larger fraction of spiking neurons was delayed,

resulting in a larger temporal advance (Fig 3B top). Nevertheless, since the rhythm slowed

down with increasing within-network coupling strength (Fig 3C, size of the perturbations in

Fig 3B marked in the y-axis tick labels), the phase advance, which was defined as the temporal

advance normalized by the period of the LFP, decreased with coupling strength (Fig 3B bot-

tom). Additionally, even without explicit synaptic delay (τd = 0), the effective delay given by

the double-exponential synaptic interaction was sufficient to render a paradoxical response

(Fig 3D). However, when this effective delay was reduced by decreasing the rise time tI
1

of the

synaptic current, the rhythm itself developed a strong subharmonic component and eventually

disintegrated (Fig 3E). In the subharmonic regime the paradoxical phase advance alternated in

consecutive cycles of the rhythm.

Enhancing entrainment of ING-rhythms through neuronal heterogeneity

In order to allow communication by coherence [11, 32], the rhythms in different brain areas

need to be sufficiently phase-locked with each other. As a simplification of two interacting γ-

rhythms, we therefore investigated the ability of the rhythm in a network to be entrained by a

periodic external input, particularly focusing on the possibly facilitating role of neuronal het-

erogeneity. Motivated by the paradoxical phase response induced by the heterogeneity, we

addressed, in particular, the question whether an ING network can be sped up by inhibition to

entrain it with a faster network.

The network considered here was the same as that used to analyze the fmPRC. The within-

network interaction was an all-to-all inhibition with synaptic delay τd, resulting in a rhythm

with natural frequency fnatural. Each neuron received heterogeneous input Ibias and inhibitory

periodic pulses with frequency fclock. The latter can be considered as the output of another

ING-network and were, in fact, generated that way (Fig 4). We refer to this external input as

the ‘clock’. All neurons in the ‘clock’ network received the same input. Thus, their spiking had

no dispersion and their spikes were perfectly synchronous. The detuning Δf = fclock − fnatural

was a key control parameter.

For periodic input the fmPRC allows the definition of an iterated map for the phase F
ðnÞ
inh of

the network relative to the nth clock cycle. For periodic δ-pulses that map is shown in Fig 5A.
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Fig 4. Sketch of computational models. (A) ING rhythm receives periodic inhibitory input generated from another ‘clock’ ING rhythm. (B) PING rhythm

receives periodic excitatory input by its E-population generated from another ‘clock’ PING rhythm.

https://doi.org/10.1371/journal.pcbi.1008575.g004

Fig 3. The paradoxical phase response of a heterogeneous ING network is robust. (A) The phase advance of the fmPRC decreased with the natural

frequency (CV(I) = 0.15). (B) The fmPRC did not depend sensitively on the within-network coupling strength W (CV(I) = 0.15, I(I) = 10.8 pA). Top: the

temporal advance increased with within-network coupling strength. Bottom: the phase advance decreased with within-network coupling strength. (C) The

Fourier spectrum of the LFP as a function of the within-network coupling strength W. Parameters as in (B). (D) Paradoxical phase response in the absence

of an explicit delay, τd = 0, for different synaptic rise times tI
1

(CV(I) = 0.05, I(I) = 15.84 pA). For low tI
1

(blue curve), the PRC alternated in subsequent cycles

reflecting the subharmonic nature of the rhythm, but it still showed a strong paradoxical component. (E) The Fourier spectrum of the LFP as a function of

the synaptic time constant of rise tI
1
. With decreasing tI

1
, a subharmonic peak emerged and eventually the rhythm disintegrated. Parameters as in D. In (A),

(B) and (D), perturbations were made with a square-wave inhibitory current pulse with duration 0.1 ms to each neuron. In (A) and (B), the amplitude of

the current was 1600 pA, resulting in a 2 mV rapid hyperpolarization. In (D), the amplitude of the current was 400 pA, resulting in a 0.5 mV rapid

hyperpolarization.

https://doi.org/10.1371/journal.pcbi.1008575.g003
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For positive detuning, i.e. when the clock is faster than the network, entrainment requires that

the phase response is paradoxical in order for the rhythm to be sped up by the inhibition. If

the heterogeneity and the resulting phase response are sufficiently large, the maximum of the

iterated map crosses the diagonal, generating a stable and an unstable fixed point. The former

is the desired entrained state.

As the detuning is increased the iterated map is shifted downward. This can decrease the

slope of the iterated map at the fixed point below -1, destabilizing the fixed point in a period-

doubling bifurcation. For periodic pulses comprised of double-exponential inhibitory currents

(cf. Eqs (2) and (3)) a rich bifurcation scenario emerged (Fig 5B). Note that the strength of the

periodic input is significantly larger than that of the δ-pulses used in Fig 5A. As a result, the

map is not continuous and not unimodal (cf. first bottom panel of Fig 5B). Nevertheless, for

Δf< 7.17 Hz the attractor remains near the unstable fixed point and displays a period-dou-

bling cascade to chaos and multiple periodic windows. For Δf> 7.28 Hz, however, the

attractor includes points on both sides of the discontinuity (cf. third bottom panel in Fig 5B).

Having clarified the role of the fmPRC in the network’s synchronizability and ability to

phase-lock, we investigated the role of neuronal heterogeneity in more detail (Fig 6). To do

that, we adjusted for each value CV of the input heterogeneity the mean input strength I(I) (cf.

Eq (4)) so as to keep the natural frequency fnetwork constant (fnetwork = 44 Hz). Then we deter-

mined the extent of synchronization and phase-locking of the network under the influence of

periodic inhibitory input as a function of the detuning Δf and neuronal heterogeneity CV. As

shown above, with heterogeneity, the fmPRC could be biphasic with the amplitude of the para-

doxical phase response increasing with neuronal heterogeneity. Expecting that for sufficiently

Fig 5. Connection between fmPRC and the synchronization of γ-rhythms. (A) Iterated map for the phaseF
ðnÞ
inh of the network relative to the periodic

inhibition. Without coupling the network falls back by dF in each cycle. For sufficiently large advancing phase response the network can be synchronized

by faster periodic inhibition. (B) Top: The bifurcation diagram of the iterated map for F
ðnÞ
inh with varying detuning Δf. To the right of the magenta dashed

line (Δf = 7.28 Hz) the attractors involve points on both sides of the discountinuity of the map. Bottom from left to right: iterated maps for F
ðnÞ
inh for Δf = 0,

2.44, 8.8 Hz. The distance between the diagonal and subdiagonal line represents the detuning between the network and periodic input. In (A), the fmPRC

was determined for a δ-pulse perturbation, in (B) for a double-exponential inhibitory current (cf. Eqs (2) and (3)) was used as in Fig 6.

https://doi.org/10.1371/journal.pcbi.1008575.g005
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large heterogeneity an ING-rhythm could be accelerated by a faster periodic inhibition, we

tested phase-locking predominantly for positive detuning, corresponding to fclock > fnetwork.

We first investigated how neuronal heterogeneity affected the synchronization by comparing

the dominant frequency fdom in the Fourier spectrum of the network’s LFP with fclock. In Fig

6A, the color hue indicates the ratio fdom: fclock. For small heterogeneity, fdom was a rational

multiple of fclock that depended on the detuning, while for sufficiently large CV the network

became synchronized in the sense that fdom = fclock (yellow). The range of Δf allowing synchro-

nization became wider with increasing neuronal heterogeneity, implying that the neuronal

heterogeneity enhanced the synchronization of the ING-rhythm. However, note that fdom =

fclock did not imply a perfectly synchronized or a 1:1 phase-locked state. In fact, various differ-

ent subharmonic responses arose: example 2 shows a period-4 state, while in example 3 the

dynamics were actually chaotic (Fig 6A) even though fdom = fclock. Motivated by these observa-

tions, we divided the states into three types:

Fig 6. Neuronal heterogeneity enhances synchronization and phase-locking of periodically driven ING rhythm. (A) Synchronization quantified using

fdom: fclock with fdom and fclock being the dominant frequencies of the Fourier spectrum of the LFP of the network and the clock, respectively. The neuronal

heterogeneity enhanced the synchronization by shifting fdom to fclock. Example 1: Synchronized with 1:1 phase-locking. Example 2: Synchronized with

subharmonic response (period 4). Example 3: synchronized with subharmonic response (chaotic). Example 4: Not synchronized. Squares and dashed lines

in the iterated map for F
ðnÞ
inh indicate clock cycles in which the network did not spike (F

ðnÞ
inh was arbitrarily set to 2). (B) Subharmonic response. Color hue and

saturation indicate the frequency ratio fsub: fclock and the ratio of the Fourier power at these two frequencies. fsub is the frequency of the dominant peak of the

network power spectrum that satisfies fsub < fclock. The power ratio is capped at 1. Dashed line marks the value of input heterogeneity used in Fig 5B. (C)

Spiking variability and varðFðnÞinhÞ as a function of neuronal heterogeneity and detuning. Color hue indicates the fraction of clock cycles without spikes in the

network. In particular, red indicates that the network spikes in every cycle. Color saturation indicates varðFðnÞinhÞ. The neuronal heterogeneity enhances the

tightness of the phase-locking.

https://doi.org/10.1371/journal.pcbi.1008575.g006
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• Type 1: fdom 6¼ fclock, not synchronized, not phase-locked (Example 4 in Fig 6A).

• Type 2: fdom = fclock with subharmonic response (‘frequency synchronization’). The network

may display rational ratio phase-locking with the forcing (Example 2 in Fig 6A) or may be

poorly phase-locked (Example 3 in Fig 6A).

• Type 3: fdom = fclock, no subharmonic response, (‘phase synchronization’). The network is

1-to-1 phase-locked with the forcing (Example 1 in Fig 6A).

The phase diagram Fig 6A does not differentiate between types 2 and 3. It only shows that

neuronal heterogeneity enhanced the synchronization of the network by shifting fdom to fclock.

Therefore, we studied whether neuronal heterogeneity also enhanced the synchronization by

weakening the subharmonic response and changing the synchronized state from type 2 to type

3, as well as whether the dynamics of the fmPRC shown in the bifurcation diagram Fig 5B

could predict the phase relationship between the network and the clock. Using the same simu-

lation setup as in Fig 6A, the subharmonic response is shown in Fig 6B. The color hue indicates

the ratio fsub: fclock, where fsub is the frequency of the dominant peak of the LFP power spectrum

that satisfies fsub < fclock. The color saturation gives the ratio of the powers at fsub and fclock

(capped at 1). Thus, over most of the range of positive detuning and neuronal heterogeneity

tested, the fading-away of the color with increasing heterogeneity reveals that the neuronal het-

erogeneity weakened the subharmonic response. Over a small range of positive detuning,

increasing neuronal heterogeneity from small values induced perfect synchronization (type 3)

by weakening the subharmonic response with frequency ratio fsub: fclock = 1: 2; the system tra-

versed a continuous period-doubling bifurcation in reverse, with type 2 (red) giving way to

type 3 (white). Together with Fig 6A, this showed that neuronal heterogeneity could enhance

the synchronization both by making fdom = fclock (from type 1 to type 2) and by weakening the

subharmonic response (from type 2 to type 3). The range of detuning where increasing hetero-

geneity induced a type 3 synchronization became wider for larger synaptic delay within the

network (S3 Fig). Note that the bifurcation diagram (Fig 5B) based on the fmPRC agrees well

with the subharmonic response marked along the dashed line at CV = 0.1 in Fig 6B, suggesting

that the fmPRC can well predict the subharmonic response and persistent phase response of

the network.

In addition to enhancing the frequency synchonization, neuronal heterogeneity was also

able to increase the tightness of the phase-locking. Over most of the parameter regime investi-

gated, the variance of the phase of the network relative to the periodic input varðFðnÞinhÞ

decreased with increasing heterogeneity, as indicated by the decrease in the color saturation in

Fig 6C. In fact, for detuning between 0 Hz and 2 Hz the heterogeneity reduced varðFðnÞinhÞ to 0

(white), corresponding to the 1:1 phase-locked state. Even for the 1:2 phase-locked state (cf.

the red area in Fig 6B) varðFðnÞinhÞ was very small for a range of heterogeneity and detuning (2

Hz to 4 Hz), indicating tight phase locking. Except for type-3 synchronized states the size of

the spike volleys varied between clock cycles. In fact, over wide ranges of the parameters the

network did not spike in each of the clock cycles, as indicated by the color hue in Fig 6C,

which gives the fraction of cycles with no network spikes (e.g. Example 4 in Fig 6A).

Paradoxical phase response and entrainment of PING rhythms

Many γ-rhythms involve not only inhibitory neurons, but arise from the mutual interaction of

excitatory (E) and inhibitory (I) neurons (PING rhythm) [33]. The key elements to obtain a

paradoxical phase response and the ensuing enhanced synchronization are self-inhibition
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within the network, neuronal heterogeneity and effective synaptic delay. Since in PING

rhythms the connections from excitatory cells (E-cells) to inhibitory cells (I-cells) and back to

the E-cells form an effective self-inhibiting loop, we asked whether PING-rhythms can exhibit

behavior similar to the behavior we identified for ING-rhythms.

Considering a PING-rhythm generated by an E-I network comprised of IF neurons, we

first studied its fmPRC. To avoid that all I-cells receive identical input and therefore spike as a

single unit, the I-cells received, in addition to the excitation from the E-cells, heterogeneous,

tonic, Gaussian-distributed subthreshold input with mean I(I) = 3.6 pA and CV(I) = 0.167. The

phase response of the network was probed by applying an identical external excitatory pertur-

bation to all E-cells and recording the resulting phase shift (cf. Eqs (8) and (9)) of the E-popu-

lation, averaged across 500 realizations of the subthreshold input to the I-cells (Fig 7A). More

specifically, the perturbations consisted of a square-wave excitatory current pulse with ampli-

tude 76 pA and duration 0.1 ms to each E-cell, resulting in a 2 mV rapid depolarization. With-

out neuronal heterogeneity the external excitation always advanced the phase of the rhythm

resulting in an fmPRC that was strictly positive. In the heterogeneous case, however, the PING

rhythm exhibited a paradoxical phase response, whereby the collective rhythm was delayed

Fig 7. Neuronal heterogeneity enhances the synchronization and the tightness of phase-locking of the PING rhythm. (A) fmPRC of PING networks

with constant natural frequency (fnetwork = 41 Hz) but different neuronal heterogeneity. Only with neuronal heterogeneity the phase was delayed by the

excitation. (B) Non-monotonicity of the paradoxical delay with constant natural frequency (fnetwork = 41 Hz). B2–4: Top: raster plot of spikes in E-

population (input strength increased with cell index). Bottom: mean inhibitory synaptic conductance within the PING network. The titles show the

absolute and relative increase in spike number (B2: CV = 0.05, B3: CV = 0.1, B4: CV = 0.2). (C) Subharmonic response of the PING rhythm with periodic

excitation as function of neuronal heterogeneity and detuning. fnetwork was fixed at 41 Hz. Color hue and saturation indicate the frequency ratio and power

ratio at the frequencies fsuper and fclock of the E-population’s LFP. fsuper was the frequency of the dominant peak of the LFP power spectrum that satisfies fsuper
> fclock. The power ratio was capped at 1. Generally, the neuronal heterogeneity enhanced the synchronization of the PING rhythm by weakening

subharmonic response. (D) The tightness of the phase-locking (var(Fexc)) as a function of neuronal heterogeneity and detuning. The neuronal

heterogeneity enhanced the tightness of the phase-locking. For Δf 2 [−22Hz, −17.4Hz] the clock was twice as fast as the network, resulting in vanishing var
(Fexc).

https://doi.org/10.1371/journal.pcbi.1008575.g007
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while the individual neurons were advanced by the excitation. The delay was caused by the

increase of self-inhibition within the network that was generated by the additional spikes in

the E-population, which in turn drove additional spikes in the I-population. In contrast to the

fmPRC of the ING-rhythm, this paradoxical phase response was not monotonic in the hetero-

geneity. While weak heterogeneity resulted in strong delay, the delay decreased with increasing

intermediate CV-values and only increased again for larger CV (Fig 7B left top). This non-

monotonicity arose because we kept the frequency of the network constant as we increased its

heterogeneity. This required a decrease in the tonic input to the E-cells with increasing hetero-

geneity. For the stronger tonic input used for weak heterogeneity the same external perturba-

tion elicited more additional spikes than it did for strong heterogeneity where the tonic input

was weaker (cf. titles of subpanels of Fig 7B). The total number of spikes occurring in each

cycle of the unperturbed network also decreased with increasing heterogeneity. Consequently,

the relative change in the number of spikes and in the inhibitory synaptic conductance

induced by the perturbation were non-monotonic in the heterogeneity. As a result, the phase

delay became non-monotonic.

As for the ING rhythm, we investigated the role of neuronal heterogeneity in the synchoniz-

ability and the ability of phase-locking of coupled PING rhythms. In analogy to the ING-case,

we considered the case of the E-population of a PING network receiving periodic excitation

generated by a clock PING network (Fig 4B). As before, we adjusted the tonic input strength

to the E-population to keep the natural frequency of the network constant as we changed its

heterogeneity (fnetwork = 41Hz). To probe the impact of the paradoxical phase response on the

synchronization we focused on negative detuning for which the periodic external excitation

needed to slow down the network in order to achieve phase-locking. Indeed, with increasing

heterogeneity the network could become synchronized with the slower clock over a larger

range of the detuning as indicated by the fading saturation of the color in Fig 7C. Here the

color hue indicates the ratio fsuper: fclock, where fsuper was determined as the frequency with the

most power among the frequencies higher than fclock in the Fourier spectrum of the E-popula-

tion’s LFP. The color saturation indicates the ratio of the power at the frequencies fsuper and

fclock. Thus, a color hue closer to green (fsuper: fclock = 1: 1) or with a lower saturation implies bet-

ter synchronization. By observing how the width of the range of detuning allowing synchroni-

zation varied with neuronal heterogeneity, we concluded that, generally, the neuronal

heterogeneity enhanced the synchronizability of the PING rhythm by weakening the subhar-

monic response. Note that for CV 2 [0, 0.1] the synchonizability of the PING rhythm

decreased slightly with neuronal heterogeneity. This was consistent with the nonmonotonicity

exhibited by the fmPRC seen in Fig 7B. The neuronal heterogeneity played a similar role in the

tightness of the phase-locking as in the synchronizability (Fig 7D).

Paradoxical phase response in QIF networks and their mean-field

reduction

To demonstrate the generalizability of our results beyond IF neurons, we studied the collective

phase response for networks of QIF neurons, which display biologically more realistic voltage

traces. All-to-all coupled networks of QIF neurons have the additional advantage—in the limit

of infinitely many neurons and if the heterogeneity of the neurons is chosen to follow a Lorent-

zian distribution—that they can be captured by an exact mean-field theory (eMFT) that

reduces the network to two coupled ordinary differential equations. These equations describe

the mean voltage and the mean firing rate of the neurons [23, 34] (see also [25]). This reduc-

tion allowed to obtain the imPRC by applying the adjoint method rather than by direct simula-

tion of spiking networks [27]. In [13, 27], this methodology has been applied to study the
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imPRCs of both PING and ING rhythms in detail, finding good agreement with the direct sim-

ulations of the corresponding spiking networks.

Given the importance of the effective synaptic delay for the paradoxical collective phase

response, we went beyond [13, 27] and included an effective synaptic delay in the eMFT and

studied its impact, combined with that of the neuronal heterogeneity, on the imPRC, obtained

by the adjoint method, as well as the fmPRC, obtained by direct simulation of the spiking net-

works as well as the eMFT.

We introduced the effective synaptic delay via double-exponential synaptic interaction

without including an explicit synaptic delay. We first focused on the ING rhythm. Its imPRC,

obtained with the adjoint method from the eMFT, agreed well with the fmPRC obtained from

weak direct perturbations of the spiking network, regardless of the sign of the perturbation

(Fig 8A). Thus, the agreement between the fmPRC for weak perturbations and the imPRC

found in [13, 27] carried over to the case with effective synaptic delay. With increasing pertur-

bation amplitude the shape of the fmPRC changed substantially, resulting in strong deviations

from the imPRC (Fig 8B). Nevertheless, the fmPRC of the spiking network always agreed well

with the fmPRC obtained with the eMFT (Fig 8B).

Strikingly, due to the effective delay the paradoxical phase response even arose in the

imPRC (Fig 8A). Simulation of the eMFT showed that the paradoxical phase response was

caused by the paradoxical change in the level of the within-network inhibition: as in the IF-

networks with Gaussian heterogeneity, external inhibition decreased the total within-network

inhibition while external excitation increased it (Fig 8C). Furthermore, the amplitude of the

Fig 8. ING rhythms in heterogeneous QIF networks and their eMFT-reduction. (A) The imPRC (black line) of the eMFT multiplied by the signed

perturbation strength agreed well with the fmPRCs (orange = excitation, blue = inhibition) from the spiking network simulation. The negative component

corresponds to a paradoxical phase response, either a delay for excitation (orange) or an advance for inhibition (blue). (B) Even for strong perturbations,

the fmPRC obtained from simulations of the eMFT agreed well with that of the spiking network. (C) As in the IF networks, the paradoxical phase response

of the eMFT arose from the paradoxical change in the within-network inhibition. Top: external excitation increased the within-network inhibition. Bottom:

external inhibition decreased the within-network inhibition. (D) Left: the amplitude of the paradoxical phase response of the imPRC in the eMFT increased

with neuronal heterogeneity. Right: for networks with different synaptic coupling strength JII, the imPRCs of their eMFTs always exhibited a paradoxical

phase response for arbitrarily weak neuronal heterogeneity. Parameters: voltage perturbations ΔVI were made to the membrane potential or the mean

potential variable VI(t) with a square-wave pulse of duration 0.02 ms. In (A), ΔVI = ±0.2. In (B), ΔVI = 2 (left), ΔVI = 4 (right). In (C), ΔVI = ±3. In (A)-(C),

ΔI = 3.

https://doi.org/10.1371/journal.pcbi.1008575.g008
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paradoxical phase response of the imPRC from the eMFT also increased with neuronal hetero-

geneity (Fig 8D). However, in contrast to the case discussed above where the distribution of

the input currents was Gaussian and the paradoxical phase response occurred only for suffi-

ciently strong perturbations or sufficiently strong heterogeneity (Fig 2C), for the Lorentzian

distributed input a paradoxical phase response arose in the imPRC, i.e. without a threshold for

the perturbation amplitude, even for arbitrarily small neuronal heterogeneity (Fig 8D right).

This reflects the fact that in the limit of infinitely many neurons even for small heterogeneity

ΔI there were always neurons in the heavy tail of the Lorentz distribution that were on the bor-

der between spiking and not spiking for whom an infinitesimal external inhibition was suffi-

cient to suppress their spiking.

For the PING rhythm with effective synaptic delay, we investigated all possible perturbation

scenarios: excitation to E-cells, inhibition to E-cells, excitation to I-cells, inhibition to I-cells.

For small perturbation amplitudes the imPRC obtained with the adjoint method applied to the

eMFT of the E-I network again agreed well with the fmPRC of the spiking E-I network (Fig

9A). We determined the dynamical regime of the eMFT in terms of the heterogeneities of the

E-population (ΔE) and of the I-population (ΔI). Similar to the result in [13, 27], the eMFT dis-

played a Hopf bifurcation when decreasing either neuronal heterogeneity (Fig 9B). Note that

for very small heterogeneities the numerical solution diverged (below the orange line in Fig

9B, which corresponds to the black area below the white line in Fig 9C), reflecting an approach

to perfect synchrony in the limit of vanishing heterogeneity. Within the oscillatory regime, we

studied the influence of ΔE and ΔI on the fmPRC by simulating the eMFT rather than the spik-

ing network. The paradoxical phase response, either an advance under external inhibition or a

delay under external excitation, existed in all perturbation scenarios (Fig 9C). As in the ING

rhythm, it was caused by a paradoxical change in the level of the within-network inhibition.

Fig 9. PING rhythms in heterogeneous QIF networks and their eMFT-reduction. (A) The imPRC (black line) of the eMFT multiplied by the signed

perturbation strength agreed well with the fmPRCs (orange = excitation, blue = inhibition) from the spiking network simulations when perturbing the E-

population (left) or the I-population (right). The negative component corresponds to a paradoxical phase response, either a delay for excitation (orange) or

an advance for inhibition (blue). (B) Dynamical regimes of the PING rhythm in the eMFT. (C) The maximal paradoxical phase response obtained from

simulations of the eMFT. Paradoxical phase response always existed. The black regions below the white dashed line correspond to the area below the orange

line in (B). Parameters: voltage perturbations ΔVE,I were made to the membrane potential or the mean potential variable VE,I(t) with a square-wave pulse of

duration 0.02 ms. In (A), ΔVE,I = ±0.2, ΔE = 1, ΔI = 1. In (C), ΔVE,I = ±0.2.

https://doi.org/10.1371/journal.pcbi.1008575.g009
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Thus, the results of the IF networks with Gaussian heterogeneity carry over to QIF net-

works with Lorentzian heterogeneity and their eMFT-description.

Discussion

We have analyzed the response of collective oscillations of inhibitory and of excitatory-inhibi-

tory networks of linear and of quadratic integrate-and-fire neurons to external perturbations.

For the QIF networks with Lorentzian heterogeneity we made extensive use of the eMFT that

reduces the network dynamics to two coupled ordinary differential equations [23]. For ING-

and PING-rhythms we have shown that the combination of neuronal heterogeneity and effec-

tive synaptic delay can qualitatively change the phase response compared to the phase response

of the individual neurons generating the rhythm. Thus, perturbations that delay the I-cells can

paradoxically advance the ING-rhythm and perturbations that advance the E-cells can delay

the PING-rhythm. As a result, the macroscopic phase-response curve for finite-amplitude per-

turbations (fmPRC) of the rhythm can change sign as the phase of the perturbation is changed

(type-II), even though the PRC of all individual cells is strictly positive (type-I). This change of

the fmPRC enhances the ability of the γ-rhythm to synchronize with other rhythms.

The key element of the mechanism driving the paradoxical phase response and the

enhanced synchronization is the cooperation of the external perturbation and the effectively

delayed within-network inhibition. In the ING-network a suitably timed external perturbation

delays the lagging—but not the early—neurons sufficiently to allow the within-network inhibi-

tion triggered by the early neurons to keep the lagging neurons from spiking. This reduces the

overall within-network inhibition and with it the duration of the cycle. Thus, the perturbation

modifies the internal dynamics of the rhythm, which leads to changes in the phase of the

rhythm that can dominate the immediate phase change the perturbation induces. The situa-

tion is somewhat similar to that investigated in [18]. There it had been pointed out that an

external perturbation of a collective oscillation can lead to changes in its phase in two stages: i)

an immediate change of the phases of all oscillators as a direct result of the perturbation and ii)

a subsequent slower change in the collective phase resulting from the convergence of the dis-

turbed phases back to the synchronized state. That analysis was based on a network of phase

oscillators and could therefore not include a key element of our results, which is the perturba-

tion-induced change in the dynamics within the network that is associated with a change in

the number of spiking neurons and induces a change of the period of the rhythm. As discussed

in [31, 35], for ING-rhythms such a change in the number of spiking neurons underlies also

the enhanced phase-locking found in [30].

Going beyond ING-rhythms, we showed that PING-rhythms can also exhibit a paradoxical

phase response via a mechanism that is analogous to that of ING-rhythms. For that analysis

we have focused on excitatory-inhibitory networks with only connections between but not

within the excitatory and inhibitory populations. For excitatory inputs to the excitatory cells to

generate a paradoxical phase response it is necessary that the additional spikes of the excitatory

neurons that are caused by the external perturbation induce additional spikes of the inhibitory

neurons. This behavior arises if the inibitory population is also allowed to be heterogeneous.

Moreover, the within-network inhibition has to be strong enough to be able to suppress the

spiking of lagging excitatory neurons. This is, e.g., found in mice piriform cortex, where prin-

cipal neurons driven by sensory input from the olfactory bulb arriving early during a sniff

recruit inhibitory interneurons via long-range recurrent connections, resulting in the global,

transient suppression of subsequent cortical activity [36]. A characteristic feature of the para-

doxical phase response of the PING rhythm is the extended cycle time following enhanced

activation of the excitatory cells. A strong such correlation between the cycle time and the
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previous LFP amplitude has been observed for the γ-rhythm in hippocampus [37]. To assess

whether this rhythm exhibits paradoxical phase response it would be interesting to compare

the macroscopic phase response [38] with that of indvidual participating neurons.

In order for the global perturbation to affect the various neurons differently, they have to be

at different phases in their cycle. Our analysis suggests that the specific cause for this heteroge-

neity in the spike times does not play an important role. Indeed, as shown in [29], even fluctu-

ating heterogeneities that are generated by noise rather than static heterogeneities reflecting

intrinsic properties of neurons can enhance the synchronization of multiple γ-rhythms in

interconnected networks of identical neurons. Note that the noise driving this synchronization

is uncorrelated across neurons. The analysis of that system revealed the same mechanism at

work as the one identified here.

In various previous analytical and computational analyses it has been found that the

dynamics of the macroscopic phase of a collective oscillation can qualitatively differ from that

of the microscopic phase [17, 20–22, 28]. Thus, for interacting groups of noisy identical phase

oscillators the macroscopic phases of the groups can tend to line up with each other, even if all

pair-wise interactions between individual oscillators prefer the antiphase state, and vice versa

[20]. An analogous result has been obtained for heterogeneous populations of noiseless oscilla-

tors [17].

Qualitative changes have also been found in the macroscopic phase response of rhythms in

noisy homogeneous networks when the noise level was changed [21, 22, 28]. Using a Fokker-

Planck approach for globally coupled excitable neurons, a type-I mPRC was obtained for weak

noise, where the rhythm emerges through a SNIC bifurcation, while a type-II mPRC arose for

strong noise that led to a Hopf bifurcation [21]. A similar approach was used to obtain the

imPRC via the adjoint method for an extension of the theta-model that implements conduc-

tance-based synaptic interactions. Again, although individual theta-neurons have a type-I

PRC, a type-II imPRC was obtained for the rhythm, which arose in a Hopf bifurcation [22].

This was also the case in an extension to networks of excitable and inhibitory neurons [28].

Thus, results reminiscent of those presented here have been obtained previously. However,

the mechanism underlying them was not addressed in detail and remained poorly understood.

We expect that our analysis will provide insight into those systems. The key element of the

mechanism discussed here is that due to the dispersion of the spike times, which either results

from neuronal heterogeneity or noise, the external perturbation enables the within-network

inhibition to suppress the spiking of a larger number of neurons than without it. In our system

this was facilitated by the delay with which spikes triggered the within-network inhibition,

which allowed some neurons to escape its impact in the absence of the external perturbation,

but not in its presence. Our analysis showed, however, that an explicit delay is not necessary;

the effective delay resulting from a double-exponential synaptic interaction is sufficient. In

fact, when reducing that effective delay the paradoxical phase response did not disappear until

the delay was so short that the rhythm itself developed a strong subharmonic component and

disintegrated.

In this paper we have focused on two specific, very simple neuronal models, the linear and

the quadratic leaky integrate-and-fire model with pulsatile coupling. Both have a type-I PRC,

which is non-negative. This makes the paradoxical aspect of the mPRC of the rhythm easier to

identify and analyze. For networks comprised of heterogeneous neurons with type-II PRC the

mPRC of the collective oscillation is likely to be more complex, since the heterogeneity allows

the same input to induce phase shifts with opposite signs for different neurons depending on

their phases. However, we expect that the interplay between the within-network inhibition

and the external perturbation can again substantially and qualitatively modify the mPRC by

changing the number of neurons participating in the rhythm. Previous work on the

PLOS COMPUTATIONAL BIOLOGY Paradoxical phase response of gamma rhythms enhances entrainment in heterogeneous networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008575 June 30, 2021 16 / 27

https://doi.org/10.1371/journal.pcbi.1008575


enhancement of synchronization among γ-rhythms via noise-induced spiking heterogeneity

has demonstrated that this enhanced synchronization does not depend sensitively on the neu-

ron type. Comparable results were obtained also with Morris-Lecar neurons for parameters in

which the periodic spiking arises from a SNIC-bifurcation, resulting in a type-I PRC for the

individual neurons as is the case for integrate-and-fire neurons, but also for parameters for

which the spiking is due to a Hopf bifurcation, resulting in a type-II PRC [29].

In [29] the results were also found to be robust with respect to significant changes in the

network connectivity (random instead of all-to-all) as well as the reversal potential of the

inhibitory synapses, as long as the rhythm itself persisted robustly (cf. [39]). In fact, the cou-

pling did not even have to be synaptic; collective oscillations of relaxation-type chemical oscil-

lators that were coupled diffusively were also shown to exhibit noise-induced synchronization.

These results suggest that the paradoxical phase response found here arises in a much wider

class of macroscopic collective oscillations.

The strong paradoxical phase response that we demonstrated for heterogeneous networks

allows their rhythm to synchronize with a periodic external input over a range of detuning

that increases substantially with the neuronal heterogeneity. This is reminiscent of computa-

tional results for anterior cingulate cortex that investigated networks of excitatory neurons

coupled via a common population of inhibitory neurons. There heterogeneity was also found

to enhance the synchrony of rhythms, as measured in terms of coincident spikes within 10ms

bins [40].

The heterogeneity-enhanced synchrony we have identified suggests that the coherence of γ-

rhythms emerging in different interacting networks could also be enhanced by neuronal het-

erogeneity. It has been proposed that the coherence of different γ-rhythms, which has been

observed to be modified by attention [8], plays an important role in the communication

between the corresponding networks [11, 32]. Computational studies have shown that the

direction of information transfer between networks depends on the relative phase of their

rhythms [12, 13], which can be changed by switching between different base states [41, 42].

Whether the enhanced synchrony resulting from neuronal heterogeneity enhances this infor-

mation transfer is still an open question.

Disrupted γ-rhythms have been observed in multiple brain regions in neurological diseases,

especially Alzheimer’s disease. Optogenetic and sensory periodic stimulation at γ-frequencies

has been found to entrain the γ-rhythm in hippocampus and visual cortex, respectively, and

has resulted in a significant reduction in total amyloid level [43]. Similar neuro-protective

effects of entrainment by external γ-stimulation have also been found for other sensory modal-

ities [14, 44]. This suggests that γ-stimulation by sensory input might be a feasible therapeutic

approach. Our results suggest a potential role of neuronal heterogeneity in this context.

From a functional perspective, it has been shown that the noise-induced synchronization

mentioned above can facilitate certain learning processes [45]. Specifically, a read-out neuron

was considered that received input from neurons in two networks via synapses that exhibited

spike-timing dependent plasticity. The two networks were interacting with each other and

each of them exhibited a γ-rhythm, albeit at different frequencies. For low noise the two

rhythms were not synchronized and the read-out neuron received inputs from the two net-

works at uncorrelated times. These inputs drove the plasticity inconsistently, leading only to a

very slow overall evolution of the synaptic weights, if any. However, for stronger noise the two

networks were synchronized, providing a more consistent spike timing that lead to substantial

changes in the synaptic weights. As a result, the read-out neuron was eventually only driven by

the network that had the larger natural frequency in the absence of the coupling between the

networks. It is expected that synchrony by neuronal heterogeneity will have a similar impact.
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Methods

The network of integrate-and-fire (IF) neurons

Neuron model. Both E-cells and I-cells were modeled as leaky IF neurons, each character-

ized by a membrane potential Vi(t) satisfying

tE;I
d
dt

Vi ¼ � ðVi � VrestÞ þ
IðsynÞ

i

gsyn
þ

IðextÞ
i

gext
þ

IðbiasÞ
i

gbias
; ð1Þ

where Vrest is the resting potential and τE,I the membrane time constants of the E- and I-cells,

respectively. IðsynÞ
i ðtÞ ¼

P

j
IðsynÞ

ij ðtÞ is the total synaptic current that the neuron receives from

the other neurons within the network. IðextÞ
i ðtÞ is a time-dependent external input that repre-

sents perturbations applied to determine the fmPRC or, in the study of synchronization, the

periodic input generated by the clock network. IðbiasÞ
i denotes a tonic, neuron-specific excitatory

bias current that implements the heterogeneity of the neuron properties, The corresponding

conductances are denoted gsyn, gext, and gbias. Upon the ith neuron reaching the spiking thresh-

old Vpeak, the voltage Vi was reset to the fixed value Vreset. Parameters for the neuron were kept

fixed throughout all simulations (see Table 1). The local field potential (LFP) of the network

was approximated as the mean voltage across all neurons j = 1, . . .N in the respective

population.

Network model. We studied two types of networks: an ING network and a PING net-

work. The ING network was modeled as an all-to-all inhibitory network of NðINGÞ
I I-cells. The

PING network was modeled as a network of NðPINGÞ
I I-cells and NðPINGÞ

E E-cells with all-to-all E-I

and I-E connections (i.e., without E-E and I-I connections). In PING, only E-cells received

external input Iext(t).
To gain insight into the interaction between two ING rhythms, we considered the simpli-

fied situation in which all neurons in the network received strictly periodic input I(ext), which

was generated by another ING network (‘clock’). Similarly, for PING rhythms, the E-cells of

the PING network received strictly periodic excitatory input I(ext) from another PING network

through all-to-all connection between their E-populations.

Synaptic currents. We used delayed double-exponential conductance-based currents to

model the excitatory and the inhibitory synaptic inputs from neuron j to neuron i,

IðsynÞ
ij ðtÞ ¼ gsyn

tE;I

t
E;I
2 � t

E;I
1

Að2Þij ðtÞ � Að1Þij ðtÞ
� �

ðVrev;j � ViðtÞÞ ; ð2Þ

with the two exponentials Að1;2Þij ðtÞ satisfying

d
dt

Að1;2Þij ðtÞ ¼ �
Að1;2Þij ðtÞ
t

E;I
1;2

þ
X

k

Wijdðt � tðkÞj � tdÞ ; ð3Þ

where Vrev,j is the synaptic reversal potential corresponding to the synapse type, Wij the dimen-

sionless synaptic strength, and δ the Dirac δ-function. All synapses of the same type (I-I, I-E,

E-I) were equally strong. The time constants of Að1;2Þi ðtÞ satisfied t
E;I
2 > t

E;I
1 . The synaptic cur-

rent was normalized to render the time integral independent of the synaptic time constants

t
E;I
1;2. The inhibitory synaptic currents had a slower decay than the excitatory ones (cf. Table 1).

We included an explicit synaptic delay τd in the model. Every spike of the presynaptic neuron j
at time tðkÞj triggered a jump in both Að1;2Þij ðtÞ, making the synaptic conductance rise continu-

ously after a synaptic delay τd.
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External periodic inputs were also modeled as double-exponential conductance-based cur-

rents with gsyn in (2) and (3) replaced by gext. The time constants and delay were as for the

within-network synaptic inputs.

Heterogeneous tonic input. The bias currents IðbiasÞ
i of the ING network were Gaussian

distributed around I(I) with a coefficient of variation CV(I) and arranged in increasing order,

IðbiasÞ
1 < IðbiasÞ

2 . . . < IðbiasÞ
N

IðbiasÞ
i ¼ IðIÞ þ

ffiffiffi
2
p

IðIÞCVðIÞerf � 1
ð� 1þ

2i
1þ N

Þ; 1 � i � N; ð4Þ

Table 1. Parameters used in the network model of IF neurons. Most parameters are based on [29, 46].

ING network

Parameter Value

τI, membrane time constant 20 ms

urest, resting potential -55 mV

Vpeak, spiking threshold -50 mV

Vreset, reset voltage -60 mV

τd, synaptic delay 3 ms

NðINGÞ
I , # of I-cells 500

W, synaptic strength within the network 3 × 10−2

W(ext), synaptic strength for the input from the clock network 6 × 10−2

Synaptic currents

Parameter Value

tE
1
, time constant of rise in excitatory synapse 0.5 ms

tE
2
, time constant of decay in excitatory synapse 2 ms

tI
1
, time constant of rise in inhibitory synapse 0.5 ms

tI
2
, time constant of decay in inhibitory synapse 5 ms

VI
rev, reversal potential of inhibitory synapse -70 mV

VE
rev, reversal potential of excitatory synapse 0 mV

PING network

Parameter Value

τE, membrane time constant of E-cells 20 ms

τI, membrane time constant of I-cells 10 ms

urest, resting potential -70 mV

Vpeak, spiking threshold -52 mV

Vreset, reset voltage -59 mV

τd, synaptic delay 1 ms

NðPINGÞ
I , # of I-cells 200

NðPINGÞ
E , # of E-cells 800

WI, inhibitory synaptic strength within the network 4.5 × 10−3

WE, excitatory synaptic strength within the network 1.5 × 10−3

W(ext), clock-network synaptic strength 3 × 10−4

Synaptic conductances

Parameter Value

Excitatory input on E-cells: gðPINGÞ
ext , gðPINGÞ

bias E
0.19 nS

Excitatory input on I-cells: gðINGÞ
bias , gðPINGÞ

syn EtoI , gðPINGÞ
bias I

0.3 nS

Inhibitory input on E-cells: gðPINGÞ
syn ItoE

2.5 nS

Inhibitory input on I-cells: gðINGÞ
ext , gðINGÞ

syn
4 nS

https://doi.org/10.1371/journal.pcbi.1008575.t001
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where erf is the error function to implement the Gaussian distribution of the heterogeneity.

For the PING network, all E-cells received a heterogeneous bias IðbiasÞ
E with mean I(E) and a

coefficient of variation CV(E). Similarly, the bias currents IðbiasÞ
I to the I-cells were characterized

by their mean I(I) and their coefficient of variation CV(I). Without the excitatory input from E-

cells, the voltage of I-cells remained below the spiking threshold. In our investigation of the

impact of the neuronal heterogeneity on the phase response and entrainment of the PING

rhythm we kept CV(I) fixed and varied CV(E).

Macroscopic phase-response curve for finite-amplitude perturbations

(fmPRC)

ING rhythm. For a single ING network, we applied a single inhibitory δ-pulse to each

neuron j ¼ 1; . . . NðINGÞ
I at time tinh (dashed green line in Fig 1B) and recorded the resulting

phase shift Δφ. The amplitude of the inhibitory perturbation to each neuron was the same. The

phase of the inhibition relative to the rhythm was defined as

�inh ¼
tinh � tðunperturbedÞ

firstspike

T
; ð5Þ

where T was the period of the network LFP and tðunperturbedÞ
firstspike the time of the first spike in the

spike volley of the unperturbed network that was closest to tinh. The phase shift Δϕ resulting

from the perturbation was given by

D� ¼
tðunperturbedÞ
firstspike � tðperturbedÞ

firstspike

� �

T
;

ð6Þ

where tðperturbedÞ
firstspike is the time of the first spike in the corresponding volley in the perturbed net-

work. Δϕ and ϕinh were taken to be in the range [−0.5 0.5). Positive Δϕ indicated that the net-

work was advanced by the perturbation, while negative indicated a delay.

The periodic input (‘clock’) that was used to test the synchronizability of the ING-rhythm

was generated by a homogeneous ING network. The phase of the network relative to the peri-

odic input in the nth clock cycle was defined by

F
ðnÞ
inh ¼

tðclockÞðnÞ
firstspike þ td � tðnetworkÞðnÞ

firstspike

� �

T
;

ð7Þ

where tðnetworkÞðnÞ
firstspike was the time of the first spike in the spike volley of the network in the nth cycle

and tðclockÞðnÞ
firstspike the time of the spike of the clock. In contrast to the definition of ϕinh in (5), the def-

inition of F
ðnÞ
inh included the delay τd, since the inhibition generated by the clock arrived with

delay τd in the network.

PING rhythm. To probe the phase response of the PING network we used the same

approach as for the ING rhythm, except that we used excitatory instead of inhibitory δ-pulses

and applied them only to the E-cells. The phase of the excitation ϕexc and the resulting phase
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shift Δϕ were determined similarly as in the case of the ING rhythm,

�exc ¼
texc � tðunperturbedÞ

firstspike

T
; ð8Þ

D� ¼
ðtðunperturbedÞ

firstspike � tðperturbedÞ
firstspike Þ

T
; ð9Þ

where tðperturbedÞ
firstspike and tðunperturbedÞ

firstspike were the times of the first spike in the respective spike volleys of

the E-population.

Analogous to F
ðnÞ
inh, the phase of the network during the nth clock cycle was defined by

FðnÞexc ¼
ðtðclockÞðnÞ

firstspike þ td � tðnetworkÞðnÞ
firstspike Þ

T
: ð10Þ

The tonic input to the I-cells in the PING network was heterogeneous with Gaussian distribu-

tion, and fixed throughout: I(I) = 3.6 pA, CV(I) = 0.167.

Networks of quadratic integrate-and-fire (QIF) neurons and their exact

mean-field reduction

Neuron model. The QIF neuron [47] is characterized by a membrane potential Vi(t) satis-

fying

tE;I
d
dt

Vi ¼ Zi þ V2

i ðtÞ þ IE;IðtÞ; ð11Þ

where τE,I are the membrane time constants of the E- and I-cells, respectively. IE,I(t) is the total

synaptic current that the E-, I- neurons receive from the other neurons within the network.

Upon the ith neuron reaching the spiking threshold Vpeak, the voltage Vi is reset to the fixed

value Vreset. In order to facilitate the analysis of the reduction, the limit Vpeak!1, Vreset!

−1 is taken. Analogous to (4), the tonic, external bias currents Zi ¼ �ZE;I þ DE;I tan ðpð i
1þN �

1

2
ÞÞ

implement the heterogeneity of the neuron properties and are distributed according to a Lor-

entzian distribution,

LE;IðZÞ ¼
1

p

DE;I

ðZ � �ZE;IÞ
2
þ D

2

E;I

; ð12Þ

with η1 < η2 < . . .< ηN. Here �ZE;I is the mean value in the principal value sense and ΔE,I the

half-width of the distribution of η for the E- and I-cells, respectively. Note that the heavy tail of

the Lorentzian distribution implies that—for arbitrary �Z and Δ with sufficiently many neurons

to resolve the tail—there are always neurons receiving extremely weak input and unable to

overcome the within-network inhibition to spike. Parameters for the neuron were kept fixed

throughout all simulations (see Table 2). Again, in the spiking network, the local field potential

(LFP) of the network was approximated as the mean voltage across all neurons in the respec-

tive population.

Network model. We studied two types of QIF-networks: an ING network and a PING

network. The ING network was modeled as an all-to-all inhibitory network of NðINGÞ
I I-cells.

The PING network was modeled as a network of NðPINGÞ
I I-cells and NðPINGÞ

E E-cells with all-to-

all E-I and I-E connections (i.e., without E-E and I-I connections).
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Synaptic currents. In the ING rhythm, the total synaptic current I(t) to each I-cell is the

recurrent inhibition:

IIðtÞ ¼ � tIsIIðtÞ : ð13Þ

In the PING network, the total synaptic current I(t) to each E-cell is the inhibition from the

I-cells,

IEðtÞ ¼ � tEsEIðtÞ ; ð14Þ

and that to each I-cell is given by the excitation from the E-cells,

IIðtÞ ¼ tIsIEðtÞ : ð15Þ

Here sαβ(t) denotes the synaptic variable characterizing the synapse from the population β to

the population α. In order to include the effective synaptic delay, we assumed that each spike

triggers a double-exponential current. Extending [13], the synaptic variable sαβ(t) is therefore

modeled by

sabðtÞ ¼ sab;2ðtÞ � sab;1ðtÞ ð16Þ

Table 2. Parameters used in the network model of QIF neurons and its eMFT reduction. Most parameters are

based on [13, 27].

ING network

Parameter Value

τI, membrane time constant 10

Vpeak, spiking threshold 500 (spiking network) +1 (reduction)

Vreset, reset voltage -500 (spiking network) −1 (reduction)

NðINGÞ
I , # of I-cells in spiking network 5000

JII, synaptic strength 15

�ZI , the mean of the bias input to I-cells 20

Synaptic currents

τ1, time constant of rise in all types of synapses 0.98

τ2, time constant of decay in all types of synapses 1

PING network

Parameter Value

τE, membrane time constant of E-cells 10

τI, membrane time constant of I-cells 10

Vpeak, spiking threshold 500 (spiking network) +1 (reduction)

Vreset, reset voltage -500 (spiking network) −1 (reduction)

NðPINGÞ
I , # of I-cells in spiking network 5000

NðPINGÞ
E , # of E-cells in spiking network 5000

JEI, inhibitory synaptic strength 15

JIE, excitatory synaptic strength 15

�ZE, the mean of the bias input to E-cells 5

�ZI , the mean of the bias input to I-cells -5

https://doi.org/10.1371/journal.pcbi.1008575.t002
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with sαβ,1(t) and sαβ,2(t) satisfying

d
dt

sab;1ðtÞ ¼ �
1

t1

sab;1ðtÞ þ JabrbðtÞ ð17Þ

d
dt

sab;2ðtÞ ¼ �
1

t2

sab;2ðtÞ þ JabrbðtÞ : ð18Þ

Here Jαβ is the synaptic strength. The time constants τ1, τ2 of sαβ,1(t), sαβ,2(t) satisfy τ2 > τ1. rE,

I(t) are the population firing rates of the E- and I-populations, respectively.

The mean-field theory. As shown in [23], in the limit of infinitely many neurons, the sys-

tem Eqs (11) and (12) is described by coupled equations for the mean potential and population

firing rate,

tE;I
d
dt

rE;IðtÞ ¼
DE;I

ptE;I
þ 2rE;IðtÞVE;IðtÞ

tE;I
d
dt

VE;IðtÞ ¼ VE;IðtÞ
2
þ �ZE;I þ IE;I � t

2

E;Ip
2rE;IðtÞ

2
;

8
>>><

>>>:

ð19Þ

where VE,I(t) is the mean potential and rE,I(t) the population firing rate of the respective

populations.

So, with the synaptic current defined in Eqs (14)–(18), the ING network is reduced to

tI
d
dt

rIðtÞ ¼
DI

ptI
þ 2rIðtÞVIðtÞ

tI
d
dt

VIðtÞ ¼ VIðtÞ
2
þ �ZI � tI sII;2ðtÞ � sII;1ðtÞ

� �
� t2

Ip
2rIðtÞ

2

d
dt

sII;1ðtÞ ¼ �
1

t1

sII;1ðtÞ þ JIIrIðtÞ

d
dt

sII;2ðtÞ ¼ �
1

t2

sII;2ðtÞ þ JIIrIðtÞ ;

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð20Þ
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while the PING network is reduced to

tI
d
dt

rIðtÞ ¼
DI

ptI
þ 2rIðtÞVIðtÞ

tI
d
dt

VIðtÞ ¼ VIðtÞ
2
þ �ZI þ tI sIE;2ðtÞ � sIE;1ðtÞ

� �
� t2

Ip
2rIðtÞ

2

tE
d
dt

rEðtÞ ¼
DE

ptE
þ 2rEðtÞVEðtÞ

tE
d
dt

VEðtÞ ¼ VEðtÞ
2
þ �ZE � tE sEI;2ðtÞ � sEI;1ðtÞ

� �
� t2

Ep
2rEðtÞ

2

d
dt

sEI;1ðtÞ ¼ �
1

t1

sEI;1ðtÞ þ JEIrIðtÞ

d
dt

sEI;2ðtÞ ¼ �
1

t2

sEI;2ðtÞ þ JEIrIðtÞ

d
dt

sIE;1ðtÞ ¼ �
1

t1

sIE;1ðtÞ þ JIErEðtÞ

d
dt

sIE;2ðtÞ ¼ �
1

t2

sIE;2ðtÞ þ JIErEðtÞ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð21Þ

Infinitesimal macroscopic PRC (imPRC) of the reduced network. For a dynamical sys-

tem like Eqs (20) and (21), within the parameter regime admitting a stable limit cycle, the

adjoint method can be applied to determine the macroscopic phase response for infinitesimal

perturbations to the limit cycle [16]. To be consistent with the fmPRC obtained with the direct

simulation of the spiking network, we adjusted the normalization condition to make the phase

range from 0 to 1. Due to the Lorentzian distribution used for the QIF network input, some

neurons spike incessantly, making it impossible to define the beginning of a spike volley. We

therefore defined phase 0 as the peak of the synaptic variable sII(t) = sII,2(t) − sII,1(t) for the ING

rhythm and as the peak of sEI(t) = sEI,2(t) − sEI,1(t) for the PING rhythm. The phase shift Δϕ
resulting from the perturbation was given by the time difference between the peaks of sII(t)
(ING rhythm) or sEI(t) (PING rhythm) in the perturbed and the unperturbed system normal-

ized by the period.

Supporting information

S1 Fig. Dependence of the phase dispersion on the heterogeneity of the bias current. The

phase dispersion was determined as the time difference between the first and the last spike in

the same spike volley normalized by the period. Blue: fixed natural frequency (fnetwork = 40Hz)

for different neuronal heterogeneity. Red: fixed mean input strength (I(I) = 15.8 pA) for differ-

ent neuronal heterogeneity. For CV� 0.075 (dashed line), some neurons spike more than

once in a cycle.

(EPS)

S2 Fig. fmPRC of heterogeneous ING networks for fixed steady current (I(I) = 15.8 pA)

instead of fixed frequency (cf. Fig 2A). The paradoxical phase advance increased with neuro-

nal heterogeneity.

(EPS)
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S3 Fig. Subharmonic response of the ING rhythm with a longer synaptic delay within the

network (τd = 5 ms) receiving periodic inhibitory input. For each value of the input hetero-

geneity, the natural frequency fnetwork was kept constant (fnetwork = 44 Hz) by adjusting the

mean input strength I(I). The range of detuning where increasing heterogeneity induced a type

3 synchronization became wider compared to Fig 6B, where τd = 3 ms. W(ext) = 1.2 × 10−3.

(EPS)
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