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Background: Recently, the impact of solar radiation (RAD) on diseases worldwide has garnered growing 
attention. However, the association between RAD and lung cancer remains largely unknow and no consensus 
has been reached. The aim of this study was to investigate the lag exposure-response of RAD on lung cancer 
and provide robust scientific evidence for updating prevention and treatment strategies of lung cancer.
Methods: Data of RAD were obtained from Google Earth Engine, which was post-processed by European 
Centre for Medium-Range Weather Forecasts (ECMWF). Lung cancer incidence, smoking prevalence and 
socio-demographic index (SDI) were obtained from Global Burden of Disease (GBD). Spearman’s rank 
correlation tests and linear regression analyses were performed to investigate the relationship between RAD 
and lung cancer incidence. Additionally, a distributed lag non-linear model (DLNM) was utilized to reveal 
the lag effects of RAD on lung cancer incidence. 
Results: There were 204 countries and territories and selected subnational locations with information 
recorded in GBD and radiation exposure was calculated in 272 countries and territories. After excluding 
missing and abnormal data, as well as Kashmir and Western Sahara which were two disputed districts, 
this study included 186 countries from 1992 to 2019. After adjusted for smoking and SDI, the Spearman’s 
correlation coefficient ranged from −0.630 to −0.581. In the DLNM for lung cancer adjusted for smoking 
and SDI, the maximum relative risk (RR) was 1.013 [95% confidence interval (CI): 1.011–1.014], at RAD 
exposure of 12,760,000 with 5.8 lag years, while the minimum RR was 0.973 (95% CI: 0.947–0.992) at RAD 
exposure of 12,845,000 with 8.0 lag years.
Conclusions: The global rise in lung cancer incidence has been notably associated with low exposure to 
RAD, whereas the defensive influence of sunlight against lung cancer demonstrated hysteresis. This study 
shows that properly exposure to sunlight is a possible strategy for lung cancer prevention, which provides 
scientific support for the formulation of future health strategies. It is also crucial in epidemiological research 
as it offers a novel pattern for identifying additional potential risk factors for diseases.
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Introduction

Today, lung cancer is not only the most common causes of 
cancer death but a leading cause of death according to World 
Health Organization. In 2022, there were 2.48 million  
cases of lung cancer and resulted in 1.82 million deaths, 
which ranked first among causes of cancer incidence and 
death (1). Therefore, identification of modifiable risk 
factors for lung cancer would better inform lung cancer 
screening and public health prevention work. Recently, 
in addition to widely studied high-risk factors for lung 
cancer such as smoking (2,3), unhealthy diet, physical 
inactivity (4), genetic predisposition (5,6) and hormone 
effect (7), increasing published research focuses on 
various environmental risk factors, such as atmospheric 
particulate matter exposure (8,9), air temperature, relative 
humidity (10) and wildfire exposure (11). But there are still 
numerous risk factors remained to be found, for instance, 
solar radiation (RAD).

Recently, the influence of RAD on non-skin cancer has 
aroused increasing attention (12,13). A growing body of 
epidemiologic studies have explored the correlation between 
a variety of cancers and RAD, such as breast (14), colonic 
(15,16), prostatic (17), pancreatic (18), ovarian (19) and 
lung cancer (20,21). And the study of Yoshiharu Fukuda  

et al. (22) using ecological data in Japan shows that RAD is 
significantly inversely associated with most gastrointestinal 
cancers and male lung cancer and this study supports the 
preventive measures of RAD on several types of cancer. 
According to Webb et al. (23), Higashimoto et al. (24), Güzey 
et al. (25), RAD, particularly ultraviolet-B (UVB) radiation 
(280–320 nm), initiates the first stage of vitamin D synthesis 
by converting 7-dehydrocholesterol (7-DHC) in the skin 
to the precursor of vitamin D3. The active form of vitamin 
D, 1,25-(OH)2-D3, has been shown to significantly inhibit 
cell proliferation in various lung cancer cell lines, including 
NCI-H82 and NCI-H209 small cell lung carcinoma and 
EBC-1 and H520 non-small cell carcinoma cell lines. This 
suggests that adequate sun exposure, facilitating vitamin D 
production, may have a protective effect against lung cancer 
by inhibiting the proliferation of cancer cells. Similarly, Lin  
et al. (26) also found that RAD was significantly associated with 
decreased risks of squamous cell lung cancer but no significant 
association with lung adenocarcinoma, and Grant et al. (27) 
found that there was a strong inverse correlation between 
lung carcinoma mortality and RAD, while Lin et al. (28)  
found a weak positive association of RAD with deaths from 
lung cancer, but no consensus has been reached, and deep, 
global learning of RAD with lung cancer mortality is scarce.

One of the reasons why the above research reached different 
conclusions is that risk factors may have delayed influence 
on diseases (29), while exposure-lag-response associations 
reveal the duration of radiation-induced diseases onset (30). 
Common methods to capture the temporal dynamics and 
cumulative effects of environmental exposures on health 
outcomes, providing a deeper understanding of their long-
term impacts include distributed lag model (DLM) and 
time-series models such as autoregressive integrated moving 
average model (ARIMA) (31,32). However, these methods 
are often limited by their assumptions of linear relationships 
or their focus on short-term effects, making them less 
suitable for capturing complex, non-linear, and delayed 
effects of environmental exposures, which is why distributed 
lag non-linear model (DLNM) excels. DLNM, first 
introduced by Armstrong (33), allows for the consideration 
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of both delayed effects and non-linear relationships in 
time series data (34), making it particularly suitable for 
our analysis of the lagged effects of RAD on lung cancer 
incidence. In 2010, Armstrong and Gasparrini established 
the foundational family of DLNMs by introducing the 
definition of a ‘cross-basis’, which led to the creation of new 
models, including generalized linear models and additive 
models (35). From then on, DLNM is optimized consistently 
and obtains extensive acknowledgement in environmental 
epidemiological investigation which studies the relationship 
between risk factors and health outcomes (2,29,36).

With rapid development in geographic information 
sciences, statistical data science and computer science, we are 
conveniently accessible to continuous high-precision remote 
sensing data measured by satellite (37) and to public health 
database (38-40), which makes it possible for us to investigate 
on the correlation between RAD exposure and lung cancer. 
For instance, Google Earth Engine is an extensive platform 
that integrates scientific analysis and the visualization of 
geographic information data, providing historical images and 
scientific datasets for more than 40 years to meet users’ needs 
for large-scale data, ranging from Climate and Weather data, 
Imagery data to Geophysical data.

It is noteworthy that this study is pioneering in investigating 
the time-lag exposure-response relationship between RAD 
and lung cancer incidence on a global scale using DLNM. 
It provides valuable insights into the association between 
RAD exposure and lung cancer, setting a methodological 
precedent for investigating the risk factors of various 
diseases., though further studies are needed to confirm 
these findings and apply the methodology to investigate on 
other potential risk factors for various diseases. We present 
this article in accordance with the STROBE reporting 
checklist (available at https://tlcr.amegroups.com/article/
view/10.21037/tlcr-24-125/rc).

Methods

Global Burden of Disease (GBD) data

We downloaded the latest data of age-standardized smoking 
prevalence, lung cancer incidence and socio-demographic 
index (SDI) of 1992–2019 directly from GBD website: 
http://ghdx.healthdata.org/gbd-2019. The GBD study, 
led by the Institute for Health Metrics and Evaluation 
(IHME), which is a comprehensive worldwide observational 
epidemiological study tracking health progress within 
and between 204 countries and territories and selected 
subnational locations. It offers a comprehensive annual 

estimation of the diseases, injuries, and risk factors burden, 
providing valuable insights for clinicians, researchers, and 
policymakers (41). We used age-standardized estimates of 
smoking tobacco use prevalence and tracheal, bronchus, 
and lung cancer (GBD case ID: 426) incidence estimates 
to describe smoking prevalence with an age group of  
15+ years and represent for lung cancer incidence with an 
age group start at 10–14 years and end at 95+ years. The 
units of lung cancer incidence were new cases per 100,000 
population. In GBD 2019, cancer incidence data were 
gathered from population-based cancer registries, including 
“Cancer Incidence in Five Continents (CI5)” (42-51), 
EUREG (52), and NORDCAN (53). Data were excluded 
if they lacked representativeness, failed to encompass all 
malignant neoplasms, did not include data for both sexes 
and all age groups, or were confined to years prior to 1980. 
Preference was given to registries with national coverage. 
Methodological details of GBD 2019 have been presented in 
previous publications (54-56). As for SDI, it is a composite 
measure of development status and has a strong correlation 
with health outcomes developed by GBD researchers and 
widely used to help make estimates. Additionally, it is the 
geometric mean calculated from indices ranging from 0 to 
1, which include the total fertility rate for individuals under 
25 years, the average education level for those aged 15 years  
and older, and the lag-distributed income per capita. To 
sum up with, a district with an SDI of 0 represents the 
theoretical minimum level of development pertinent to 
health, whereas a district with an SDI of 1 indicates the 
theoretical maximum level of development (39). Age-
standardized smoking prevalence estimates and SDI were 
used for models adjustment because they are considered the 
main risk factor for lung cancer incidence. All of the three 
datasets include all genders. Detailed information about 
these datasets can be found at http://ghdx.healthdata.org/
gbd-2019. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

RAD data

We downloaded raw raster data with a resolution of 
11,132 m from Google Earth Engine: (https://developers.
google.com/earth-engine/datasets/catalog/ECMWF_
ERA5_LAND_MONTHLY) (37). The data we used were 
a portion of ERA5-Land dataset, which has been post-
processed by European Centre for Medium-Range Weather 
Forecasts (ECMWF). ERA5-Land is a reanalysis dataset 
that integrates model data with global observations, creating 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-125/rc
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a comprehensive and consistent dataset that adheres to 
physical laws. In this dataset, we selected the surface net 
RAD band as our primary radiation data. This measurement 
represents the amount of RAD, including both direct and 
diffuse components, that reaches the Earth’s surface, minus 
the portion reflected by the surface, which is determined by 
the albedo. The units of this data are expressed in joules per 
square meter (J/m2). It is noteworthy that this reanalysis data 
were reprocessed from the raw remote sensing data which 
is accurate to hours into a data with an accuracy of months 
and we calculated the average annual value of it. Then, we 
added this raw raster data as a layer on a country boundaries 
layer formed by a vector data. Finally, we used the country 
boundaries to control the raster data and calculated mean 
radiation value within each country boundaries as our RAD 
data distributed by countries and years (57,58).

We calculated radiation exposure in 272 countries 
and territories in total according to the raster data. After 
eliminated the one which lacked data or the value was 
equaled to 9,999 (abnormal value) which means the land area 
of those districts was smaller than the resolution of our raster 
data, as well Kashmir and Western Sahara which were two 
disputed districts, 220 countries and territories remained. 
Countries and territories with missing data on lung cancer 
prevalence or smoking prevalence for any year were excluded 
from the study. Finally, there were 186 countries enrolled in 
the analysis. 

Population data

We downloaded the population data updated in March 
19th, 2021 from World Development Indicators (WDI): 
https://datacatalog.worldbank.org/search/dataset/0037712/
World-Development-Indicators (59), which is a catalog 
of the World Bank. The WDI which compiled from 
officially-recognized international sources are the primary 
World Bank collection of development indicators and it 
not only makes the latest and accurate global development 
data available but also includes national, regional and 
global estimates. And we next conducted a filter of total 
population. Total population counts all residents regardless 
of their legal status or citizenship. The values shown are 
midyear estimates. However, we lost the population data of 
Kuwait in 1992, 1993 and 1994.

Statistical analysis

We conducted Spearman’s correlation tests to establish the 

correlation between RAD and lung cancer and calculated 
the correlation coefficients. Then, we conducted quasi-
Poisson regression analysis with a DLNM which estimated 
the long-term association between radiation and lung 
cancer. DLNMs are widely accepted and frequently 
employed to investigate on the relationship between risk 
factors and health outcomes. In this study, we utilized 
the cross-basis function and natural spline (ns) function 
with 3 degrees of freedom (df) and a maximum lag of  
15 years, following the Akaike information criterion (AIC) 
to construct the basis matrix for the two dimensions of 
radiation exposure intensity and lag years (60).

Eventually, the model with unadjusted lung cancer 
incidence can be expressed by the following formula: 

( )Y ~quasiPoission μt t  [1]

( )0 1 crossbasis Radiationtµ β β= + ⋅  [2]

The model with adjusted lung cancer incidence can be 
expressed by the following formula:

Z Y δ= +  [3]

( )~ quasiPoission μt tZ  [4]

( )0 1 crossbasis Radiationtµ β β= + ⋅  [5]

In these two formulas, Y represents the actual value of 
lung cancer prevalence without adjustments for smoking 
prevalence and SDI, while μ denotes the expected value 
of lung cancer prevalence. The variable t indicates the 
observation years. The actual value of lung cancer prevalence 
adjusted for smoking prevalence and SDI is represented 
by Z. The term β0 refers to the overall intercept, β1 is the 
regression coefficient of radiation, and δ stands for the 
residuals after regressing lung cancer prevalence on smoking 
prevalence and SD.

We consider P values of less than 0.05 to be statistically 
significant. All statistical analyses were performed using R  
(R Core Team, Vienna, Austria), version 4.1.1 and the 
DLNM models were generated using R package “dlnm” 
version ‘2.4.7’ and “splines” version ‘4.1.1’. 

Results

Figure 1 is the global distribution map of surface net RAD 
in 2019 and the other global distribution maps of radiation 
by year (1992–2018) are shown in Figures S1-S27. The 
countries excluded in our analysis shaded grey. The figures 
were produced by ArcGIS 10.7.

https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators
https://datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators
https://cdn.amegroups.cn/static/public/TLCR-24-125-Supplementary.pdf
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Figure 1 Global distribution map of surface net solar radiation in 2019.

Table 1 shows the statistical descriptions of RAD, SDI, 
lung cancer incidence (unadjusted for smoking and SDI and 
adjusted for smoking and SDI) and smoking prevalence. 
For all countries dataset, the smoking prevalence was 
0.315±0.127, where the minimum prevalence was 0.056 

(Guinea-Bissau, 1999, 2000, 2001, 2002), and the maximum 
prevalence was 0.649 (Timor-Leste, 2014, 2015). The 
SDI was 0.567±0.197, where the minimum value was 
0.052 (Somalia, 1992) and the maximum value was 0.929 
(Switzerland, 2019). The lung cancer incidence was 

Table 1 Statistical descriptions for smoking prevalence, SDI, lung cancer incidence, lung cancer incidence adjusted for smoking and SDI and RAD

Item Min 1st Qu Median Mean 3rd Qu Max SD

Countries

Smoking prevalence 0.056 0.216 0.306 0.315 0.418 0.649 0.127

SDI 0.052 0.414 0.592 0.567 0.728 0.929 0.197

Incidence 4.735 10.292 17.566 21.918 31.628 104.156 14.360

Incidence adjusted for 
smoking and SDI

5.095 10.289 17.389 21.945 32.129 98.455 14.213

RAD (take two decimal 
places) (J/m2)

1,291,606.49 10,699,905.07 13,431,526.54 12,735,923.05 15,369,323.27 18,440,775.92 3,494,273.32

Global

Smoking prevalence 0.290 0.298 0.315 0.315 0.331 0.347 0.019

SDI 0.494 0.529 0.567 0.567 0.606 0.640 0.046

Incidence 21.17 21.76 21.97 21.92 22.15 22.47 0.38

Incidence adjusted for 
smoking and SDI

21.67 21.83 21.93 21.94 22.10 22.27 0.17

RAD (take two decimal 
places) (J/m2)

12,571,845.96 12,720,931.75 12,742,101.46 12,735,923.05 12,778,329.76 12,846,318.62 67,507.83

RAD, solar radiation; SDI, socio-demographic index; SD, standard deviation.

No data
15928.429−18367.873
13462.808−15928.429
10353.138−13462.808
6039.913−10353.138
1391.859−6039.913

0 3,000

Legend
Solar radiation in 2019
Unit: KJ/m2
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21.918±14.360, where the minimum was 4.735 (Jordan, 
2014; Kenya, 1992) and the maximum was 104.156 
(Greenland, 1999). The lung cancer incidence which was 
adjusted for smoking and SDI was 21.945±14.213, where 

the minimum was 5.095 (Kenya, 2015) and the maximum 
was 98.455 (Greenland, 2000). The amount of surface net 
RAD was 12,735,923.05±3,494,273.32, where the minimum 
was 1,291,606.49 (The Federated States of Micronesia, 
2002) and the maximum was 18,440,775.92 (Namibia, 2007). 
While for the global dataset (we created it by calculating 
the average value for each country in certain years), the 
smoking prevalence was 0.315±0.019, where the minimum 
prevalence was 0.290 (2019), and the maximum prevalence 
was 0.347 (1992). The SDI was 0.567±0.046, where the 
minimum value was 0.494 (1992) and the maximum 
value was 0.640 (2019). The lung cancer incidence was 
21.92±0.38, where the minimum was 21.17 (2019) and the 
maximum was 22.47 (1995). The lung cancer incidence 
which was adjusted for smoking and SDI was 21.94±0.17, 
where the minimum was 21.67 (2017) and the maximum 
was 22.27 (2009). The RAD was 12,735,923.05±67,507.83, 
where the minimum was 12,571,845.96 (1996) and the 
maximum was 12,846,318.62 (2019).

Table 2 shows the Spearman’s correlation coefficients 
and P values between RAD and lung cancer unadjusted 
or adjusted for smoking and SDI distributed by years. 
Since that our data show non-normal distribution, we use 
Spearman’s method to estimate their relevance. As we 
can see, all the P values are less than 0.05, which means 
the correlation between these two variables is statistically 
significant. Moreover, all the values of r are negative so we 
can say the correlation between them is negative. Compared 
the value of r, the value of 1996 shows the strongest 
relevance overall, which is equal to −0.645 with unadjusted 
lung cancer incidence and −0.630 with adjusted lung cancer 
incidence.

Figure 2A is the bubble plot illustrating the correlation 
between RAD exposure and lung cancer incidence without 
adjustments for smoking prevalence and SDI. In contrast, 
Figure 2B displays the correlation between RAD exposure 
and lung cancer incidence, adjusted for smoking prevalence 
and SDI, for the year 1996, which shows the strongest 
correlation between RAD and lung cancer. We can see a 
robust negative correlation between radiation and lung 
cancer prevalence. The Spearman’s correlation coefficient 
between RAD and lung cancer unadjusted for smoking 
and SDI was −0.645, while the Spearman’s correlation 
coefficient between RAD and lung cancer adjusted for 
smoking was −0.630.

In Figure 3, the three-dimensional exposure-lag response 
surface illustrates the combined influence of lag time (in 
years) and RAD (J/m2) on predicted incidence relative risk 

Table 2 Spearman’s correlation coefficients and P values for RAD 
and lung cancer incidence unadjusted for smoking and SDI and 
lung cancer incidence adjusted for smoking and SDI

Year

Unadjusted for smoking  
and SDI

Adjusted for smoking  
and SDI

r P value r P value

1992 −0.646 <0.001 −0.613 <0.001

1993 −0.641 <0.001 −0.615 <0.001

1994 −0.637 <0.001 −0.615 <0.001

1995 −0.639 <0.001 −0.622 <0.001

1996 −0.645 <0.001 −0.630 <0.001

1997 −0.615 <0.001 −0.601 <0.001

1998 −0.608 <0.001 −0.595 <0.001

1999 −0.626 <0.001 −0.620 <0.001

2000 −0.615 <0.001 −0.610 <0.001

2001 −0.623 <0.001 −0.621 <0.001

2002 −0.605 <0.001 −0.606 <0.001

2003 −0.581 <0.001 −0.586 <0.001

2004 −0.595 <0.001 −0.595 <0.001

2005 −0.601 <0.001 −0.604 <0.001

2006 −0.606 <0.001 −0.611 <0.001

2007 −0.606 <0.001 −0.613 <0.001

2008 −0.607 <0.001 −0.619 <0.001

2009 −0.598 <0.001 −0.612 <0.001

2010 −0.597 <0.001 −0.610 <0.001

2011 −0.581 <0.001 −0.602 <0.001

2012 −0.583 <0.001 −0.606 <0.001

2013 −0.583 <0.001 −0.609 <0.001

2014 −0.586 <0.001 −0.612 <0.001

2015 −0.564 <0.001 −0.593 <0.001

2016 −0.578 <0.001 −0.611 <0.001

2017 −0.572 <0.001 −0.604 <0.001

2018 −0.580 <0.001 −0.613 <0.001

2019 −0.549 <0.001 −0.581 <0.001

RAD, solar radiation; SDI, socio-demographic index.
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Figure 2 The correlation between RAD and lung cancer incidence in 1996. (A) Lung cancer unadjusted for smoking prevalence and SDI; (B) 
lung cancer adjusted for smoking prevalence and SDI. RAD, solar radiation; SDI, socio-demographic index.

Figure 3 Three-dimensional plots relative risks of radiation exposure and lung cancer. (A) Lung cancer unadjusted for smoking prevalence 
and SDI; (B) lung cancer adjusted for smoking prevalence and SDI. RAD, solar radiation; SDI, socio-demographic index.
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Figure 4 Estimated radiation exposure-response of the incidence relative risk and 95% confidence intervals for specified lag periods (years). (A) 
Lung cancer unadjusted for smoking prevalence and SDI; (B) lung cancer adjusted for smoking prevalence and SDI. RAD, solar radiation.
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Figure 5 Estimated lag- response of the relative risk and 95% confidence intervals for specified increments in radiation exposure (unadjusted 
smoking) (from exp =12,680,000 to exp =12,720,000).

(RR) of lung cancer. Figure 3A is the plot of lung cancer 
unadjusted for smoking and SDI while Figure 3B is the plot 
of lung cancer incidence which is adjusted for smoking and 
SDI. Across the three-dimensional surface of the model of 
lung cancer incidence unadjusted for smoking and SDI, the 
maximum RR is 1.025 [95% confidence interval (CI): 1.023–
1.028] at RAD exposure =12,770,000 and lag =5.4 years,  
while the minimum RR was 0.968 (95% CI: 0.95–0.989) 
at RAD exposure =12,845,000 and lag =8.4 years. Across 
the three-dimensional surface of the model of lung cancer 
adjusted for smoking and SDI, the maximum RR was 1.013 
(95% CI: 1.011–1.014) at RAD exposure =12,760,000 and 
lag =5.8 years, while the minimum RR was 0.973 (95% 
CI: 0.947–0.992) at RAD exposure =12,845,000 and lag 
=8.0 years. There was a strong interaction effect between 
increases in RAD exposure and lag on RR, indicating that 
the response to changes in RAD exposure depended on the 
lag, and conversely, the effect of lag was influenced by RAD 

exposure.
Figure 4A is the cumulative exposure-response curve of 

lung cancer prevalence unadjusted for smoking and SDI in 
different RAD exposure and Figure 4B is the curve of lung 
cancer prevalence adjusted for smoking and SDI. The lag 
response curves were wave-like. In Figure 4A, we can find 
that with the increment of radiation, RR decreases first 
and then increase, at last decrease when lag =1 to 14, with 
a valley value of RR in about exp =12,670,000 and a peak 
value of RR in about exp =12,765,000 in the unadjusted 
model. While in the adjusted model, we find that RR 
increase first and then decrease to the end, with a peak value 
of RR in about exp =12,760,000 when lag =1 to 14. As for 
lag =15, the curve decreases all the time no matter Figure 4A  
or Figure 4B.

Figure 5 shows the relation between lag and RR of lung 
cancer incidence (unadjusted for smoking and SDI). As we 
can see, when exp <12,700,000, there is an approximately 
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U-shaped correlation between them and when exp 
>12,700,000, there is an approximately inverted U-shaped 
correlation between them. With the increasing of exposure, 
we can find that the confident interval is shrinking which 
means the accuracy of the estimated lag-response is 
increasing. The other turning points of these two variables 
are in Figure S28 and Figure S29. Moreover, we also 
conducted a sectional analysis of lag-response between 
radiation exposure and RR of lung cancer incidence adjusted 
for smoking and SDI and found similar trends in this model 
(see Figure S30 and Figure S31). 

Discussion

To the best of our knowledge, this study is the first research 
to investigate on the exposure-lag response of RAD exposure 
on lung cancer using a DLNM and remote sensing data 
measured by satellite on a global scale, which illustrated the 
non-linear and delayed associations between them.

The results show complicated nonlinear relationship 
between RAD and lung cancer incidence. In Figure 4, 
some might have expected that with the increment of RAD 
exposure, RR decrease all the way like the lag =15 plot 
because of the preventive effect of RAD on lung cancer (22). 
However, from lag =1 to lag =14, the curves decrease first 
to a valley value of RR, and then increase to a peak value, 
but decreases at last. In Figure 5, exp =12,700,000 is an 
important dividing point, we can find an obvious different 
tendency on the both sides of it. This may suggest a possible 
hysteresis effect, in which the protective effects of sunlight 
on lung cancer may manifest differently over varying time 
lags. However, due to the lack of relevant research on this 
specific delayed protective effect of sunlight on lung cancer, 
further studies are needed to understand these dynamics 
comprehensively. The variations observed might be due to 
differences in cumulative exposure, biological adaptation, 
or other intervening environmental or genetic factors that 
modulate the long-term risk. Further research should focus 
on these aspects to elucidate the underlying mechanisms 
driving these complex associations.

It is generally acknowledged that RAD is vital to our life. 
RAD not only provides us with warmth, energy, food, etc. 
but also makes it possible for us to see the world with light. 
However, lots of evidences have shown that high level of 
RAD may cause some serious diseases, such as skin cancer 
while low level RAD may cause vitamin D deficiency (61). 
Vitamin D can be produced by the body with sufficient 
exposure to sunlight. The work of Webb et al. explained 

the mechanism of sunlight on vitamin D absorption clearly. 
It documented that the first stage of vitamin D synthesis 
is the conversion of the 7-dehydrocholesterol (7-DHC) to 
the precursor of vitamin D3 within the skin, which requires 
radiation of wavelengths in the UVB (280–320 nm) portion 
of the electromagnetic spectrum (23). Furthermore, vitamin 
D and several analogs of vitamin D have been proved to 
modulate proliferation and differentiation of cancer cells 
(21,62,63), which is consistent with our research results 
that lung cancer incidence is overall negatively associated 
with RAD. Vitamin D3 is being transformed to 25-(OH)-D3 
in liver and then converted to 1,25-(OH)2-D3 in kidney. 
And 1,25-(OH)2-D3 has been proved to be significant in 
the inhibition of cell proliferation in the NCI-H82 and 
NCI-H209 small cell lung carcinoma and the EBC-1 and 
H520 non-small cell carcinoma cell lines (24,25).

There are several advantages in our study. Firstly, we 
innovatively explored the global relationship between 
RAD and lung cancer incidence using precise satellite 
measurements of RAD and the most recent data from 
the 2019 GBD study. To our knowledge, this is the first 
research using continuous high-precision remote sensing 
data alongside GBD cancer data on a global scale to 
investigate potential cancer risk factors, which can provide 
a new paradigm to analyze and identify more unknown or 
uncertain high-risk factors of diseases recommended by 
the experts. Compared with the current standard (such as 
traditional cohort study or questionnaire-based survey) to 
explore risk factors, our study not only eliminates recall 
biases, but also enables rapid and extensive screening 
of potential risk factors at a lower cost and in less time, 
significantly alleviating the financial and budgetary 
pressures faced by countries or organizations. This aids 
policymakers in making quick decisions.

There are also limitations in our study. Firstly, as for the 
radiation data, we calculated the mean value of the whole 
country, which means that for a large country with a wide 
latitude span, the value may just reflect the RAD exposure 
condition for the center of the country, hence studies with 
smaller scale are required. Secondly, another potential 
limitation of our study is the ecological fallacy, which 
arises from using aggregate data to make inferences about 
individual-level relationships. While we used country-level 
data on RAD and lung cancer incidence, this approach 
does not account for individual variations in exposure and 
susceptibility. Consequently, our findings may not directly 
reflect individual risk, further studies with individual-level 
data are needed to validate these associations. Thirdly, as we 
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all know, approximately, 50% RAD is in the visible spectral 
region (400–760 nm), 7% is in ultraviolet spectral region 
(<400 nm), 43% is in infrared spectral region (>760 nm). 
In addition, the ultraviolet spectral region part could be 
divided into 3 more parts, long-wave UVA (320–400 nm), 
medium-wave UVB (280–320 nm) and short-wave UVC 
(200–280 nm) (64,65). In order to have deeper knowledge 
into which light with certain range of wavelength has the 
exact impact on lung cancer, separate studies for each kind 
of light are required.

Conclusions

This study suggested that the exposure-response varied by 
lag period, whilst the lag-response varied by RAD exposure. 
Moreover, low exposure to RAD is one of the risk factors of 
lung cancer incidence globally while the actual effect of this 
has a certain lag period. This study is significant because it 
not only reveals the correlation between RAD and lung cancer 
incidence, but also provides a possible strategy for preventing 
lung cancer. Additionally, this study introduces a new pattern 
for investigating more potential disease risk factors.
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