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Purpose of review

Cerebral impairment and acute kidney injury (AKI) are independent predictors of mortality in both adults
and children with severe falciparum malaria. In this review, we present recent advances in understanding
the pathophysiology, clinical features, and management of these complications of severe malaria, and
discuss future areas of research.

Recent findings

Cerebral malaria and AKI are serious and well recognized complications of severe malaria. Common
pathophysiological pathways include impaired microcirculation, due to sequestration of parasitized
erythrocytes, systemic inflammatory responses, and endothelial activation. Recent MRI studies show significant
brain swelling in both adults and children with evidence of posterior reversible encephalopathy syndrome-like
syndrome although targeted interventions including mannitol and dexamethasone are not beneficial. Recent
work shows association of cell-free hemoglobin oxidation stress involved in the pathophysiology of AKI in
both adults and children. Paracetamol protected renal function likely by inhibiting cell-free-mediated oxidative
stress. It is unclear if heme-mediated endothelial activation or oxidative stress is involved in cerebral malaria.

Summary

The direct causes of cerebral and kidney dysfunction remain incompletely understood. Optimal treatment
involves prompt diagnosis and effective antimalarial treatment with artesunate. Renal replacement therapy
reduces mortality in AKI but delayed diagnosis is an issue.
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Severe malaria incidence is approximately two million
cases with nearly 430,000 deaths annually [1]. It is a
medical emergency characterized by multisystem dis-
ease with different clinical manifestations between
adults and children. However, recent studies show
that cerebral involvement, kidney dysfunction, and
acidosis are independent predictors of mortality in
bothadultsandchildren(Fig.1) [2,3].This issupported
by a meta-analysis of children with severe malaria that
found prognostic indicators with the strongest associ-
ation with death to be acute kidney injury (AKI) (odds
ratio5.96,95%confidenceinterval,CI:2.9–12.11)and
coma (4.83, 95% CI: 3.11–7.5) [4

&&

].
Cerebral malaria is a clinical syndrome of

impaired consciousness associated with malaria in
the absence of hypoglycemia, convulsions, drugs,
and nonmalarial causes characterized by unrousable
coma defined by a Glasgow Coma Score less than11
(adults) [5] or Blantyre Coma Score less than 3
uthor(s). Published by Wolters Kluwe
Asian adults and African children with severe malaria
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KEY POINTS

� Coma and kidney dysfunction are independently
associated with death in both adults and children with
severe falciparum malaria.

� Sequestration is central to the pathophysiology of both
coma and AKI.

� Heme-mediated oxidative stress and endothelial
activation are additional mechanisms contributing to
the pathogenesis of AKI.

� There are no proven effective adjunctive medical
treatments to treat coma or kidney dysfunction, apart
from RRT, in severe AKI.

� Adjunctive therapies being evaluated include sevuparin
(to reduce microvascular obstruction) and paracetamol
(to inhibit cell-free hemoglobin mediation oxidative
stress).

CNS infections
found that54% of adult and 34% of pediatric patients
had cerebral malaria [9,10]. AKI in severe falciparum
malaria is caused by acute tubular necrosis and
defined as a creatinine more than 265 mmol/l or urea
more than 20 mmol/l [6]. In adults with severe
malaria, AKI develops in up to 40% of patients,
whereas in children, the incidence is historically
reported at approximately 10% [9,10]. As the WHO
definition does not define AKI adequately for pediat-
ric malaria, the reported incidence of AKI in children
FIGURE 1. Venn diagrams of mortality of adults and children ass
Surface areas represent relative prevalence in severe malaria. Urem
children and more than 48mg/dl in adults. Acidosis defined as ba
�3 mmol/l in adults. Coma score defined as Blantyre Coma Score
in adults. Reprinted from Tropical Medicine and International Healt
Malaria. Page 16. Copyright (2014).
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is likely underestimated. The recent Kidney Disease:
Improving Global Outcomes (KDIGO) classification
standardizes AKI for clinical practice and research
[11]. In adult severe malaria, 58% had AKI as defined
by KDIGO, of whom 40% died, accounting for 71% of
overall mortality [12

&

]. Among children with severe
malaria 46% had AKI as defined by KDIGO, of whom
12–24% died with increasingly severe AKI [13

&

]. In
two large multicenter studies, approximately 25% of
children with severe malaria had increased blood
urea nitrogen, accounting for roughly 50% of total
deaths [10,14]. These studies imply that AKI compli-
cating pediatric severe malaria has been previously
underdiagnosed [13

&

].
Notably, the majority of patients surviving these

complications have complete recovery after appro-
priate treatment. The direct cause of coma and AKI
complicating severe malaria are incompletely under-
stood but likely share common pathophysiological
mechanisms. This review will highlight recent devel-
opments in our understanding of the pathophysio-
logic and pathologic processes associated with
cerebral malaria and malaria-associated AKI in addi-
tion to the clinical presentation, diagnosis and treat-
ments of these complications.
PATHOGENESIS

Severe malaria is predominantly caused by Plasmo-
dium falciparum because of its ability to induce
infected red blood cell (RBC) cytoadherence to the
ociated with prognostic manifestations of severe malaria [2,3].
ia defined as blood urea nitrogen more than 20mg/dl in

se excess less than �8mmol/l in children and less than
less than 3 in children and Glasgow Coma Score less than 11
h 19, Supplement 1, World Health Organization, Severe
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vascular endothelium and consequent end-organ
dysfunction. Other plasmodium species can cause
severe disease and AKI [15], although their ability to
cause coma is debated [6].
Microvascular obstruction

Parasites developing within the infected RBC trans-
port P. falciparum erythrocyte membrane protein 1
(PfEMP1) to the RBC membrane functioning as a key
ligand for cytoadherence [16]. PfEMP1 is expressed
on RBC protrusions, or ‘knobs’, that confer points of
attachment to the endothelium. PfEMP1 is strain
specific, encoded by a highly variable var gene fam-
ily, which provides antigenic variation for immune
evasion and differential endothelial receptor bind-
ing. CD36 is an endothelial receptor constitutively
expressed on most vascular beds [17]. The key endo-
thelial receptor in the brain is intercellular adhesion
molecule-1 [18]. Recent studies have identified
endothelial protein C receptor as an important
receptor in the brain that binds to a specific PfEMP1
domain (CIDRa1) [19

&

,20–22]. Cytoadhesion
results in sequestration of parasitized RBCs in the
capillaries and postcapillary venules causing hetero-
geneous blockage of the microcirculation and tissue
hypoxia [23]. In addition to flow obstruction by
sequestered parasitized RBCs, microcirculatory flow
is thought to be further compromised by increased
rigidity of both infected and uninfected RBCs and
clumping of infected RBCs (platelet-mediated
autoagglutination) and uninfected RBCs adhering
to infected RBCs (rosette formation) [24].

Direct visualization of microvascular obstruc-
tion is observed in the retina of adults and children
with cerebral malaria, termed ‘malaria retinopathy’
[25,26]. Cerebral blood flow is not decreased in
adults [27,28]. Intracranial pressure is often
increased in children, but less so in adult patients
[29,30]. Indirect assessment of sequestration via
estimated total parasite biomass, measured by P.
falciparum histidine rich protein 2, was shown to
contribute to AKI in adults with severe malaria [31].
Autopsy studies of adults and retinopathy-positive
children dying from cerebral malaria show promi-
nent sequestration in the brain microvasculature
compared to adults with fatal noncerebral malaria
and retinopathy-negative children [32,33]. Post-
mortem studies report sequestration of parasitized
RBCs in renal glomerular and peritubular capillaries
in adults and children [32,34].
Endothelial activation

Microvascular obstruction-induced tissue hypoxia is
compounded by microvascular dysfunction [35,36]
0951-7375 Copyright � 2018 The Author(s). Published by Wolters Kluwe
and increased oxygen demand [36,37]. In adults
with cerebral malaria, there is endothelial and astro-
glial activation in the brain [18], with variable
inflammatory responses [38] and mild functional
change to the blood–brain barrier [39,40]. In chil-
dren with strictly defined retinopathy-positive cere-
bral malaria, breakdown of the endothelial barrier is
observed particularly in areas of sequestration [32].
Patterns of histopathological change within the
brain in cerebral malaria vary between adults and
children, with less inflammatory cellular infiltrates
and edema in adult cases [41,42]. A recent pediatric
autopsy study found that HIV coinfection influen-
ces histopathology, increasing the degree of platelet
and monocyte infiltration around damaged micro-
vasculature [43].

In a recent MRI study of similarly defined chil-
dren, 35% had evidence of brain swelling most
commonly in fatal cases implicating brainstem
herniation as the cause of death [44]. Another
recent serial MRI study in India including adults
and children found that 50% of patients had evi-
dence of brain swelling with posterior vasogenic
edema and vascular congestion in the basal nuclei
[45

&

]. All patients had rapid clinical improvement
and radiological reversibility with hallmarks sug-
gestive of posterior reversible encephalopathy syn-
drome. The exact cause of the brain swelling is
yet unclear.

Studies of patients with severe malaria having
AKI show reduced renal cortical blood flow [46],
increased kidney size [47], and endothelial changes
in both glomerular and peritubular capillaries on
histopathology [34]. Cell-free hemoglobin and lipid
peroxidation markers are strongly associated with
AKI and renal replacement therapy (RRT) require-
ment in adults with severe malaria [12

&

]. In children
with severe malaria, an elevated heme-to-hemo-
pexin ratio was associated with hemoglobinuria,
stage 3 AKI, and 6-month mortality [48

&

].
Cytokines

There is an imbalance of proinflammatory and anti-
inflammatory responses in severe malaria [49]. The
role of cytokines and chemokines in cerebral
malaria has been recently reviewed [50]. However,
many of these studies are in the murine experimen-
tal cerebral malaria model, the relevance of which
has been questioned [51]. Conflicting evidence has
emerged from human studies as to the association
between cerebral malaria and levels of numerous
cytokines such as tumor necrosis factor a (TNFa)
[49,52–56]. Although cytokines and/or chemokines
are clearly involved in the pathogenesis of malarial
fever and may be associated with disease severity
r Health, Inc. www.co-infectiousdiseases.com 71



FIGURE 2. Malaria retinopathy in a Bangladeshi child with cerebral malaria. (A) Composite fundus photograph. (B)
Fluorescein angiogram of same fundus image. Images show widespread retinal whitening and patchy hypoperfusion with a
white-centered hemorrhage. Typical malarial retinopathy can include four findings: first, macular (perifoveal) and peripheral
retinal whitening, second, retinal vessel whitening/discoloration, third, white-centered hemorrhages, and fourth, papilledema.
The former two features (first and second) are specific for malaria and the latter two features (third and fourth) are also found
in nonmalarial conditions. Reproduced with permission from BMJ Publishing Group Ltd [97].

CNS infections
and/or cerebral malaria, it is not established that
they are a cause of coma.

The role of cytokines and chemokines in the
pathophysiology of AKI in severe malaria was
recently highlighted. Plasma-soluble urokinase-type
plasminogen activator receptor, a marker of
immune activation, was independently associated
with AKI and RRT requirement [31]. Previously, it
was shown that TNFa, but not inteleukin (IL)6 or
IL6:IL10 ratio, was associated with AKI suggesting
that TNFa may induce localized renal tubular cell
injury [57].
CLINICAL FEATURES

The clinical presentation of cerebral malaria is dif-
fuse symmetrical encephalopathy with fever and
absent or few focal neurological signs. In children,
coma can rapidly develop after fever onset (mean,
2 days) [7]. In adults, coma is typically gradual with
increasing drowsiness, confusion, obtundation, and
high fevers (mean duration, 5 days). Convulsions
are present in approximately 15% of adults and
80% of children with severe malaria [9,10] and
frequently herald development of coma. Patients
may recover full consciousness after a convulsion,
thus transient postictal coma must be excluded [6].
Multiple convulsions are common and up to 50% of
comatose children have subclinical seizures or status
epilepticus. Ocular funduscopic findings include
vessel color change, macular and extramacular whit-
ening, and white-centered retinal hemorrhages [58]
(Fig. 2).

Among survivors, the median time to coma
recovery is roughly 24 h in children and 48 h in
adults [9,10]. Retinal abnormalities resolve with
72 www.co-infectiousdiseases.com
no residual visual deficit. Neurologic sequelae occur
in less than 1% of adults but up to 12% of children in
the quinine-therapy era, including hemiplegia, cor-
tical blindness, aphasia, and cerebellar ataxia [59].
Studies suggest that neurologic deficits may reflect
slow neurological recovery [10,60]. Postmalaria neu-
rological syndrome is self-limiting [61]; however,
longer term neurological sequelae, including cogni-
tive deficits and epilepsy, are reported among chil-
dren [62,63

&

].
The majority of malaria patients have risk fac-

tors for developing AKI, including volume deple-
tion, hypoalbuminemia, male sex, previous AKI,
concomitant bacterial sepsis, blackwater fever
(BWF), or comorbidity, such as, diabetes. Severe
intravascular hemolysis and hemoglobinuria in
severe malaria, with or without AKI, is known as
BWF. Although oliguria clinically indicates
decreased function with a prerenal component,
up to 80% of patients with malaria have nonoliguric
AKI [64–66]. Thus, the clinical diagnosis will cap-
ture established anuric AKI but will underdiagnose
moderate AKI and delay diagnosis. AKI complicat-
ing severe malaria can be categorized into four
groups:
(1)
 Few severity criteria with prerenal AKI that
resolves with fluids.
(2)
 Several severity criteria including AKI that
resolves without RRT.
(3)
 Progressive AKI that resolves with antimalarial
treatment and RRT.
(4)
 Multiorgan dysfunction, often with anuric AKI
and cerebral malaria, who die prior to or during
RRT with hemodynamic shock and/or respira-
tory failure.
Volume 31 � Number 1 � February 2018
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DIAGNOSIS

Any comatose patient with a history of fever and/or
travel to malaria-endemic regions must be consid-
ered to have cerebral malaria until proven other-
wise. In children, febrile convulsions should be
distinguished from cerebral malaria, wherein coma
will persist beyond 1 h after anticonvulsive treat-
ment is administered. Absence of fever does not rule
out malaria. Antimalarial treatment should not be
delayed in severely ill patients if diagnostics are
unavailable or delayed.

Parasitological diagnosis is by microscopy of
stained thin and thick blood smears. A rapid diag-
nostic test for parasite antigens can be performed if
microscopy is unavailable. Patients may have a low
circulating parasitemia because of sequestration,
thus a low parasitemia is not reassuring [67]. In
high-transmission settings, children with partial
immunity tolerate higher parasitemia without
severe symptoms and may be asymptomatic at
low parasitemia. A parasitemia of more than
1 000 000/ml in African children with cerebral
malaria is associated with fatal outcomes [7].

Funduscopy for malaria retinopathy improves
specificity for diagnosis of cerebral malaria and is
prognostic in patients with severe malaria [26,68,69]
(Fig. 2). Alternative causes of coma must be ruled out
including hypoglycemia, and bacterial, fungal, or
viral meningoencephalitis. Lumbar puncture does
not increase mortality in stable, comatose children
with suspected cerebral malaria even when MRI
brain swelling or papilledema is present [70

&

].
There is no robust prognostic risk model or

biomarker that can predict AKI or RRT requirement
[71,72

&

]. All patients with malaria should be consid-
ered at risk of developing AKI. To improve out-
comes, early diagnosis and management is critical.
AKI diagnosis requires quantification of creatinine
(or urea) or observing low urine volume (<0.5 ml/
kg/h) for 6 h (Fig. 3) [6,11]. Urine output is difficult
to accurately assess in malaria endemic countries
and may delay diagnosis. As the WHO creatinine
threshold is not applicable to children, the diagnosis
of AKI must be considered using all available patient
data. The KDIGO AKI definition of a creatinine rise
at least 1.5 times baseline is the current standard,
and baseline creatinine can be back-calculated using
the Modified Diet in Renal Disease (>19 years) or
Swartz equation (�18 years) [11,73].
TREATMENT

The two key pillars of severe malaria treatment are
prompt antimalarial treatment and supportive man-
agement. Adjunctive therapies targeted at the
underlying pathophysiology are unproven.
0951-7375 Copyright � 2018 The Author(s). Published by Wolters Kluwe
Antimalarial treatment

Two landmark trials in patients with severe malaria
definitively showed that intravenous artesunate
reduced mortality by 35 and 23% in adults and
children, respectively, compared to quinine [9,10].
Intravenousartesunate is nowthe first-line treatment
for severe malaria as recommended by the WHO.
Artemether and quinine are the second-line therapies
[74]. The mechanism of improved survival over qui-
nine is the rapid cidal activity of artesunate on young
ring forms, preventing parasite maturation and
sequestration [75]. Once the patient is able to take
oral medication, and after a minimum of 24 h of
artesunate, an oral artemisinin-based combination
therapy can be initiated to complete the treatment.
Supportive treatment

Despite the best available artemisinin therapy for
malaria, mortality remains unacceptably high and
supportive management is key to reducing this.
Comatose patients require endotracheal intubation
with mechanical ventilation for airway protection.
Rapid sequence intubation should be performed to
prevent transient hypercapnia and increased intra-
cranial pressure. Routine care should be implemented
including regular turning, lateral positioning (‘recov-
ery position’), and catheterization. Nasogastric tube
insertion and suctioning may protect against aspira-
tion, however, enteral feeding in nonintubated
patients should be delayed (>60 h) because of
increased risk of aspiration pneumonia [76].

The majority of children with cerebral malaria
experience convulsions. Glucose replacement to
ensure euglycemia and fever control with paraceta-
mol are important. Prophylactic anticonvulsant
therapy is not recommended. A randomized con-
trolled trial (RCT) of phenobarbital in pediatric cere-
bral malaria showed increased mortality, likely
caused by respiratory depression [77].

Fluid management and nephrotoxic drug avoid-
ance are cornerstones for management of malaria-
associated AKI. Cautious fluid management is
important, as patients with AKI are not necessarily
hypovolemic and are at high risk of developing
pulmonary edema [78–81]. Rapid infusions may
exacerbate intracranial hypertension and precipi-
tate cerebral herniation. The large multicenter Fluid
Expansion as Supportive Therapy study of African
children with severe febrile illness showed a relative
risk for death of 1.59 (95% CI: 1.10–2.31) with fluid
bolus therapy among those with malaria [14]. The
WHO recommends individualized restrictive fluid
management, keeping the patient slightly dry, using
slow infusion of isotonic crystalloids [74]. Patients
with BWF require creatinine and hemoglobin
r Health, Inc. www.co-infectiousdiseases.com 73



FIGURE 3. General management of AKI in malaria based on KDIGO guidelines. 1History including preadmission
medications, comorbidities, and physical examination focusing on volume status and signs of concomitant sepsis. 2Laboratory
tests including serum creatinine, urea, electrolytes, and full blood count. 3Stage using KDIGO staging criteria. If baseline
creatinine is unknown, estimate using back-calculation of MDRD equation (>19 years) or Swartz equations (�18 years).
Urinary bladder catheterization to monitor initial urine output if unconscious. If ambulating, urine should be collected to
monitor output. Patients should be managed according to AKI stage, as stage correlates with increased morbidity and
mortality. 4Daily creatinine and urine output to monitor change in AKI stage severity and guide management. 5Additional
investigations to assess AKI etiology: urine analysis, sediment microscopy, creatinine, and sodium; renal ultrasound to assess
kidney size, presence of pyelonephritis, and inferior vena cava filling as a gauge of volume status; AKI biomarkers if
applicable. Nephrotoxic drugs, that is, aminoglycosides, should be avoided whenever possible. Discontinuation of
nephrotoxic drugs may assist with determining AKI etiology. 6If resources permit, monitor hemodynamic variables. Static
central venous pressure is of limited value but recommended target is 0 to þ5 cmH2O. Arterial pulse pressure as a dynamic
variable may be more useful to gauge response to fluid administration. 7Early referral to center with RRT, particularly if one
indication for RRT is present. Patients with multiorgan dysfunction are recommended to receive urgent dialysis within 2 h [6].
Patients should be evaluated 3 months after AKI resolution to monitor resolution of kidney function and/or development of
chronic kidney disease. AKI, acute kidney injury; KDIGO, Kidney Disease: Improving Global Outcomes; MDRD, modification
of diet in renal disease [11]; RRT, renal replacement therapy. Reprinted from Kidney International Supplements 2, Kidney
Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group, KDIGO Clinical Practice Guideline for Acute
Kidney Injury. Page 25. Copyright (2012) with permission from Elsevier.

CNS infections
monitoring as resulting severe anemia requires
whole blood transfusion.

Treatment of malaria-associated AKI with RRT
reduces mortality from 75 to 26% [64]. In general,
RRT is urgently indicated when biochemical distur-
bances and volume overload refractory to conven-
tional therapy are present. The additional thresholds
included in the WHO malaria guidelines are based on
74 www.co-infectiousdiseases.com
findings that anuria and elevated or rapidly rising
creatinine are sensitive indicators for RRT [6,64]. As
AKI in malaria rapidly progresses and is often com-
pounded by multiorgan dysfunction, early RRT is
recommended. Although intermittent hemodialysis
and continuous venovenous hemofiltration have
been shown to be superior to peritoneal dialysis in
adults with severe malaria [82], in the absence of
Volume 31 � Number 1 � February 2018
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hemodialysis, life-saving peritoneal dialysis should be
initiated if this is the only modality available [83]. RRT
hasalsobeenshowntobeeffective in themanagement
of malaria-associated AKI in pediatric patients [84].

Many adjunctive therapies have been suggested,
mainly driven by studies in murine experimental
cerebral malaria. However, none has proven benefit
in humans. Evidence for exchange transfusion and
the more recently employed RBC exchange transfu-
sion remains limited [85

&

,86,87]. Mannitol [88,89],
steroids [90,91], and monoclonal antibodies to TNF
[54,56] are not recommended as treatments in cere-
bral malaria as studies show no benefits and poten-
tial harm. Furosemide and mannitol are ineffective
in preventing and treating AKI and BWF, respec-
tively, and may be harmful [92,93]. On the basis of
the ability of paracetamol to inhibit hemoprotein-
mediated AKI [94], a recent RCT of paracetamol in
Bangladeshi adults with severe malaria found that
acetaminophen improved kidney function and
reduced the development of AKI, particularly in
patients with high cell-free hemoglobin levels at
enrollment [95

&

,96]. Larger studies of paracetamol
in adults and children with malaria are currently
ongoing to further assess this renoprotective effect.
CONCLUSION

Cerebral malaria and AKI complicating severe
malaria are prognostic for mortality in both adults
and children. Microvascular obstruction and endo-
thelial dysfunction are common mechanisms for
both of these complications. Future study of adjunc-
tive therapies should target reducing sequestration,
improving endovascular function, and reducing
hemoglobin-mediated oxidative stress.
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