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Abstract

Sublethal exposure to an insecticide may alter insect feeding, mating, oviposition, fecundity,

development, and many other life history parameters. Such effects may have population-

level consequences that are not apparent in traditional dose-mortality evaluations. Earlier,

we found that a routinely used combination insecticide that includes a pyrethroid and a neo-

nicotinoid (Temprid® SC) had deleterious effects on multiple bed bug (Cimex lectularius, L.)

behaviors. Here, we demonstrate that sublethal exposure impacts physiology and reproduc-

tion as well. We report that sublethal exposure to Temprid SC has variable aberrant effects

on bed bugs depending on the strain, including: a reduction in male mating success and

delayed oviposition by females. However, after sublethal exposure, egg hatch rate consis-

tently declined in every strain tested, anywhere from 34%-73%. Conversely, impact on fifth

instar eclosion time was not significant. While the strains that we tested varied in their

respective magnitude of sublethal effects, taken together, these effects could reduce bed

bug population growth. These changes in bed bug behavior and fecundity could lead to

improved efficacy of Temprid SC in the field, but recovery of impacted bugs must be consid-

ered in future studies. Sublethal effects should not be overlooked when evaluating insecti-

cide efficacy, as it is likely that other products may also have indirect effects on population

dynamics that could either aid or inhibit successful management of pest populations.

Introduction

Sublethal exposure to an insecticide may affect many life history parameters for insects, includ-

ing: reductions in feeding or searching time, diminished life span, alterations in development

time, and diminished mating and/or fecundity [1–6]. Declines in fecundity may occur through

a variety of mechanisms, including alterations of spermatogenesis, sperm motility, oogenesis,

ovulation, or egg fertilization after exposure [7]. Changes in life span, development, mating,

fecundity, and feeding after sublethal exposure may have important population-level conse-

quences [8]. The evaluation of insecticide efficacy based solely on acute toxicity, which is a
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standard practice, might overlook population level consequences caused by sublethal effects.

Applying the information gleaned from standardized acute toxicity laboratory assays at the

population-level can be problematic if there are large differences in the insecticide concentra-

tions or exposure times leading to lethal versus sublethal effects [5]. Thus, there is the potential

for a substantial gap in our knowledge of the sublethal effects of insecticide exposure for many

arthropod pest populations. Agricultural systems are an exception, where there has been inter-

est in the sublethal effects of insecticides on beneficial species such as the honey bee, Apis melli-
fera, non-target arthropods, and the major agricultural pests causing economic loss [1,9,10–

12]. However, there are far fewer studies on sublethal effects for urban and household pests.

Bed bugs (Cimex lectularius, L.) are an urban pest that is becoming increasingly difficult to

manage due to widespread insecticide resistance [13–16]. Since insecticides remain the most

common tool for treating infestations [17], understanding both lethal and sublethal effects of

pesticides on populations is important.

Bed bugs (C. lectularius) are flightless, hematophagous insects with public health relevance

since all life stages feed on human blood [18]. Their bites often cause itchy, painful wheals and

occasionally more severe reactions [19, 20]. Additionally, infestations of bed bugs can have

negative psychological outcomes from anxiety to depression, and even suicidal thoughts [21].

Because bed bugs are cryptic, and the majority of their activity occurs at night when the host is

sleeping [22], they are hard to detect until an infestation is well established [23]. Missed bugs

or survivors of insecticidal or non-chemical approaches could lead to further population

growth and treatment failure. Thus, many pest management professionals prefer insecticides

with residual activity to deter reinfestation.

Many recent studies have focused on insecticide resistance to pyrethroids and combination

products [24,25]. However, very few studies have identified sublethal effects that could lead to

various effects on bed bug populations. Two studies have explored the sublethal effects of Acti-

veGuard™ (permethrin-impregnated fabric) on bed bugs; exposure to the fabric alters behavior

and negatively impacts their feeding and fecundity [26,27]. For instance, significantly fewer

females laid eggs after sublethal exposure to ActiveGuard, and exposure times as short as one

minute were enough to induce a decline in fecundity and feeding attempts [27]. These results

indicate a potential for detrimental population-level consequences due to sublethal exposure.

In a previous study, we demonstrated a negative impact of sublethal exposure to Temprid SC,

the most widely used insecticide for bed bug management in the USA, on bed bug feeding and

locomotion, but not on aggregation in daytime harborages [28]. Here we expand on those

behavioral studies by addressing whether sublethal exposure to Temprid SC affects mating effi-

cacy, as well as physiological parameters such as bed bug fecundity and development. Temprid

SC contains two active ingredients, imidacloprid (a neonicotinoid), and β-cyfluthrin (a pyre-

throid). We do not attempt to separate the individual impacts of these components; instead we

examine the overall impact of this combination product as it is labeled for use. We hypothe-

sized that at sublethal exposure times, treated insects would show decreased mating success, a

reduction in fecundity, and prolonged development.

Materials and methods

Insects

Three strains of bed bugs (Cimex lectularius, L.) were used in each experiment. The progeni-

tors of the CIN-1 colony were collected from Cincinnati, OH in 2005. The original colony was

highly resistant to pyrethroids, but after generations in culture is now more susceptible [13].

NY-1 was collected from New York City, NY in 2007 and is moderately resistant to pyre-

throids [13]. LEX-8 was collected from Lexington, KY in 2012, and is resistant to pyrethroid
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insecticides [16]. Pest management professionals collected insects from apartments during

routine treatments. Permission was granted by landlords and tenants for collection. Bed bugs

are not a protected or endangered species.

Bugs were reared in an incubator (Percival Scientific, Perry, IA) (27˚C, 70% RH, 14:10 L:D)

and weekly blood meals were administered with an artificial blood feeding system [29]. In this

system, defibrinated rabbit blood (HemoStat, Dixon, CA and Quad Five, Rygate, MT) was

delivered into glass mosquito feeders (Kimble Chase Custom Glass Shop, Vineland, NJ) and

heated to 39˚ C with a circulating water bath. Parafilm lined the bottom of the mosquito

feeder, and served as a barrier between bugs and the blood. Bed bugs contained in 59 mL plas-

tic jars (Consolidated Plastics, Stow, OH) sealed with organza had to pierce the organza and

the parafilm membrane to feed. Each adult was seven days past eclosion and had not yet taken

a blood meal as adults when exposed to Temprid SC (unless stated otherwise).

Residual deposit mortality bioassays

An LT10 (lethal time of exposure resulting in 10% mortality) was determined independently

for each strain using a residual deposit bioassay [13,28]. Adult bed bugs were held individually

in 24-well plates (Costar, Corning, NY) with wells measuring 1.6 cm in diameter. Each well

was lined with Whatman1 #2 filter paper (Whatman, Maidstone, England) cut to a diameter

of 1.7 cm. Each filter paper was saturated with 50 μL (0.075% a.i., with a 2:1 ratio of imidaclo-

prid, and β- cyfluthrin) of the combination product diluted in water at the label rate, or water

alone (as a control). Filter papers were given 24 hours to air dry prior to the mortality bioassay.

At this time, a bed bug was confined to the treated surface in one well and scored for mortality

at 5, 15, and 30 minutes; 1, 4, 12, and 24 hours; 3, 7 and 14 days (if necessary). Mortality was

scored at each time point by gently turning bugs onto their dorsal side with soft forceps. If

the insect could not recover by turning over to the ventral side, it was considered moribund.

Three replicates with 10 bugs per replicate were conducted. These methods are identical to

those previously described [28].

Mating

We were interested in whether sublethal exposure impacts mating behavior in such a way that

the fecundity of adults may be reduced. We performed two experiments to test the relative

mating success of treated versus untreated bed bugs. Our first copulation choice test was con-

ducted to determine whether females exposed to Temprid SC at the LT10 had an altered or

reduced mating frequency compared to untreated females (when presented with an untreated

male). The second, reciprocal choice test examined the same effect for treated versus untreated

males (when presented with an untreated female). For this experiment, we defined successful

copulation (or a copulatory event) as prolonged mounting of a female by the male, with curv-

ing of the male’s abdomen. Each experiment was replicated fifteen times. There were no

instances in which copulation did not occur (i.e. no non-responders). The insects that copu-

lated successfully were recorded.

Fecundity with sublethal exposure before mating

This experiment was designed to examine fecundity of mixed mating pairs of bed bugs after

sublethal exposure (LT10) to the label rate of Temprid SC, with exposure occurring prior to

mating. Males and females were separated from one another shortly after adult eclosion. At

seven days post-emergence they were exposed to either water (control) or the combination

insecticide (treatment). Bed bugs from each strain were randomly assigned to one of four mat-

ing pairs: a control female with a control male, a control female with a treated male, a treated
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female with a control male, and a treated female with a treated male (complete factorial). Each

pair was placed in a 59 mL plastic jar covered with organza, fed with rabbit blood once per

week, and the numbers of viable offspring (hatched eggs) were counted after six weeks. This

experiment was replicated eight times.

Because there was a short period when unfed teneral adult males and females were housed

together before the treatment occurred, we repeated this experiment using insects that were

never exposed to the opposite sex as adults to ensure that no mating events had occurred

before pairing (although mating in unfed teneral adults are not likely) [30]. Only the control

female/control male and treated female/treated male pairs were reevaluated using this ap-

proach. To obtain bed bugs with ensured virginity, we placed fifth instars that had recently fed

into individual wells of a 96-well plate (Costar, Corning, NY) until eclosion. Seven days after

these adults had emerged they were exposed to treatment or control condition for the LT10. At

24 hours after the initiation of exposure, healthy survivors were assigned to treatment. Each

pair was placed in a 59 mL plastic jar covered with organza, fed with rabbit blood once per

week, and the numbers of nymphs (and thus the number of eggs that hatched) were counted

after six weeks. This experiment was replicated eight times.

Fecundity with sublethal exposure after mating

Prior to the start of this experiment, two day old virgin adult bed bugs were permitted to take a

blood meal. After feeding, engorged bugs were removed, and males and females were placed

in 59 mL plastic jars covered with organza for three days to allow mating to occur. On day

three, when they were five days post emergence, we exposed only adult females to their strain-

specific sublethal dose of Temprid SC, or to water. After 24 hours, surviving female bed bugs

were placed individually into wells of a 24-well plate (Costar, Corning, NY) lined with What-

man1 filter paper (Sigma-Aldrich, St. Louis, MO). Once per day (at the same time each day)

for ten days, the numbers of eggs laid by each female were recorded. In addition, we recorded

the number of eclosed first instars each day. Every 24 hours, the female was moved to an

unoccupied well of a 24-well plate for accurate counts of egg germination time. Females were

not fed again throughout the course of this experiment. Each female was followed until she

stopped laying eggs, and until all eggs had sufficient time to hatch. Thus this assay gives infor-

mation on the number of eggs laid, the time course of egg-laying, the timing of egg hatch and

how these variables are affected by sublethal exposure to Temprid SC. Twelve replicates were

performed for each strain.

Development

This experiment was conducted to test whether sublethal exposure (LT10) to the label rate of

Temprid SC affected development time from fifth instar to adult. Directly following exposure

(at two days post molt), juvenile bed bugs were kept in an incubator for recovery (27˚C, 70%

RH, 14:10 L:D). One day after exposure, three day old control and treatment fifth instar bed

bugs were permitted to take a blood meal from the artificial feeding system. Juveniles that took

a blood meal were placed in individual wells of a 96-well plate (Costar, Corning, NY) and

monitored until molting occurred. Because we only used juveniles that had taken a full blood

meal, any impact of the insecticide on feeding was excluded. The day of molting was recorded.

Fifteen replicates of this experiment were conducted per strain.

Data analysis

Probit analysis was used for the calculation of strain-specific LT10 values [Minitab1 15] [31].

Binomial tests were used to evaluate differences in mating success in the behavioral mating

Sublethal exposure to a combination product impacts bed bug mating and fecundity
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assay [Statistix 10.0] [32]. A one-way analysis of variance (ANOVA) was used to compare the

number of hatched eggs from the fecundity assay where multiple mating pairs were tested [Sta-

tistix 10.0] [32]. All count data were square-root transformed prior to analysis because the

original values were not normally distributed. Paired t-tests were used to analyze data from the

fecundity assay when only two mating pairs were compared [Statistix 10.0.] [32]. A two sample

t-test was used to look for differences in development time between insects exposed to the

combination product versus those exposed to water [Statistix 10.0] [32]. Because strain-specific

exposure times to insecticide were used, all analyses were conducted only within strain.

Results and discussion

Residual deposit mortality bioassays

As expected, the LT10 values for bed bugs exposed to Temprid SC at the label rate(0.075% a.i.,

with a 2:1 ratio of imidacloprid, and β- cyfluthrin) differed depending on the initial level of

pyrethroid resistance for each strain. The LT10 values were 0.95 ± 0.65, 1.0 ± 0.48, and 5.0 ± 1.98

hours (mean ± s.e.m.) for CIN-1, NY-1, and LEX-8 adults, respectively. All subsequent experi-

ments using adult bed bugs were performed using these LT10’s. These values have been previ-

ously reported [28]. Because strains may revert back to susceptibility as they are maintained in

the laboratory, we also re-evaluated the LT10 values during the course of experiments. The LT10

values obtained from a secondary evaluation were 0.45 ± 0.14, 0.90 ± 0.33, and 4.35 ± 1.30

hours (mean ± s.e.m.) for CIN-1, NY-1, and LEX-8 adults, respectively. The very close associa-

tion between the data in the two separate mortality bioassays supported our decision to use the

first (and previously tested) set of exposure times in all current experiments.

LT10 values were determined independently for fifth instar bed bugs of each strain. The LT10

values were 0.98 ± 0.22, 0.97 ± 0.30, and 3.33 ± 1.02 hours (mean ± s.e.m.) for CIN-1, NY-1, and

LEX-8, respectively. These data, for both adults and juveniles, are summarized in Table 1.

Mating

For this experiment, we defined successful copulation (or a copulatory event) as prolonged

mounting of a female by the male, with curving of the male’s abdomen. These behaviors are

Table 1. Probit analysis of residual exposure of three populations of bed bugs to a combination product containing β-cyfluthrin and imidacloprid.

Straina Statusb,c LT10 (95% C.I.) LT50 (95% C.I.) Slope (± SEM)

CIN-1 Adult 2014d 0.95 (0.46–1.57) 8.43 (5.64–13.07) 0.59 ± 0.07

CIN-1 Adult 2015 0.45 (0.21–0.77) 5.37 (3.68–8.03) 0.52 ± 0.06

CIN-1 Nymph 2015 0.98 (0.58–1.44) 4.41 (3.29–5.88) 0.85 ± 0.09

NY-1 Adult 2014d 1.14 (0.43–2.11) 29.42 (16.48–70.91) 0.39 ± 0.06

NY-1 Adult 2015 0.90 (0.36–1.64) 19.13 (11.57–38.29) 0.42 ± 0.06

NY-1 Nymph 2015 0.97 (0.46–1.63) 10.10 (7.47–17.21) 0.53 ± 0.07

LEX-8 Adult 2014d 5.00 (1.90–8.93) 64.15 (34.26–200.29) 0.50 ± 0.10

LEX-8 Adult 2015 4.35 (1.95–7.09) 45.39 (27.31–106.79) 0.55 ± 0.10

LEX-8 Nymph 2015 3.33 (1.48–5.50) 37.52 (23.05–80.87) 0.53 ± 0.09

Each of the three bed bug strains were exposed to Temprid SC at the label rate (50 μL, 0.075% a.i., with a 2:1 ratio of imidacloprid, and β- cyfluthrin). Lethal

times (h) and 95% fiducial confidence intervals and slopes are shown.
a 30 bed bugs were tested per strain using previous methods [13].
b Two assays were performed to ensure consistency in resistance status throughout time course of experiments.
c 5th instars represent ‘nymphs’ and were evaluated using the same methods as adult bed bugs.
d Values and methods also listed in reference 28.

https://doi.org/10.1371/journal.pone.0177410.t001
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known to be associated with mating in this insect [18]. Using this definition, untreated males

copulated with both treated and untreated females at equal frequencies in all three strains (Fig

1. Binomial Tests: CIN-1: p = 0.11, NY-1: p = 0.38, LEX-8: p = 0.70). However, when males

from the moderately resistant and resistant strains were exposed to Temprid SC, they per-

formed significantly fewer copulatory events on average (Binomial Tests: CIN-1: p = 0.15, NY-

1: p = 0.05, LEX-8: p = 0.01). Sublethal exposure could impact the number of offspring a male

produces if behavioral alterations lead to a reduction in mating attempts compared to his

untreated counterparts. This is common; sublethal effects often reduce mating success in

insect populations [33,34]. Insecticides can adversely affect male insects that rely on phero-

mones for mate-location, impacting their ability to detect sex pheromones and/or reducing

behaviors crucial for mate finding—such as flight [33,34]. Unlike many other insects, the role

of sex pheromones in bed bug reproduction is also ambiguous; no sex pheromone has been

identified to date. It is possible, however, that a disruption in the ability of male bed bugs to

detect alarm pheromone could lead to a reduction in fitness as superfluous homosexual mating

Fig 1. Mating success of treated and untreated males or females when an untreated member of the other sex is present. Males mated equally with

treated and untreated females. However, when males had sublethal exposure (LT10)to the label rate of Temprid SC, there were significant reductions in

successful mating events in the NY-1 and LEX-8 strains (Binomial Tests, n = 15, significant effects of treatment denoted with asterisks, *p<0.05). There

were no non-responders.

https://doi.org/10.1371/journal.pone.0177410.g001
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attempts increase, since alarm pheromone has been shown to prevent these interactions [35].

This idea should be tested further by other researchers. However, because male bed bugs make

multiple copulatory attempts over their lifetime [18], the impact of short-term reduction in

these attempts may not translate into reductions in paternity or overall fitness.

Fecundity with sublethal exposure before mating

Two different experimental designs were used to test whether sublethal exposure decreased the

number of hatched offspring produced by male and female mating pairs after sublethal expo-

sure. The first experiment relied on bed bugs that were selected shortly after adult emergence,

while the second experiment used adults that emerged in isolation from other bed bugs. There-

fore, in the second experiment, we could ensure that the insects were unmated before the

experiment started. We did not expect results to change between the two designs, as other

reports state that mating between teneral males and females is unlikely [30].

In the first experiment, after six weeks, in two of the strains there was a significant reduc-

tion in the number of hatched eggs after insecticide exposure (Fig 2, CIN-1: F3,28 = 13.15,

p<0.0001; NY-1: F3,28 = 1.66, p = 0.20; LEX-8: F3,28 = 4.73, p<0.01).In CIN-1, an independent

impact of the insecticide on both males and females was apparent, because there was a signifi-

cant drop in the number of eggs that hatched when both males and females were treated in

comparison to when only one sex was treated (Fig 2A, 69% reduction in egg hatch). Similarly,

in LEX-8, treatment of both males and females resulted in a decrease in the number of hatched

eggs versus the control group (Fig 2C, 35% reduction in egg hatch). The overall trend was a

sharp decline in the number of eggs that hatched when both male and female bed bugs were

exposed to insecticide, and an intermediate reduction in hatched when either the male or the

female (but not both) experienced sublethal exposure (Fig 2). Although not statistically signifi-

cant, we observed the same trend for the moderately resistant strain (NY-1) as well.

Due to our concern that rare mating events occurred between teneral males and females in

the previous design, we repeated aspects of the experiment with bugs known to be virgin. Prior

mating events before the experiment start could potentially confound results of the study.

However, in this experiment there was also a significant reduction in the number of eggs

hatched after six weeks between mating pairs in all three strains (Fig 3, Paired t-test, CIN-1:

T = 3.59, df = 7, p<0.01; NY-1: T = 2.78, df = 7, p<0.05; LEX-8: T = 3.89, df = 7, p<0.01). The

number of eggs that hatched decreased substantially, by 34%-73%, when both the male and

female in the mating pair had sublethal (LT10) exposure to the label rate of Temprid SC prior

to mating (i.e., the effect of sublethal exposure can be additive). Because the overall trend in

both experiments was a sharp decline in the number of hatched eggs, we believe that sperm

storage or previous mating events are not likely to change the results shown here. Mating pairs

with sublethal exposure tend to consistently show stark drops in the number of viable eggs

they produce, regardless of strain or mating status.

The mechanism for the reduction in the number of eggs that hatch after sublethal exposure

is unknown, but could include physiological or behavioral factors [7]. One explanation is that

females produce fewer viable eggs after treatment because they might imbibe less blood, which

is used to produce eggs. Males may also reduce the amount of sperm they produce after suble-

thal exposure for the same reason. Alternatively (or in addition), because we did not observe

the number of successful mating attempts in this assay, there is the possibility that male bed

bugs were copulating less frequently after exposure. It should be noted, however, that in

another study, researchers observed successful copulation, yet still recorded no egg production

after sublethal exposure (1 or 10 minutes) to ActiveGuard™, a permethrin-impregnated fabric

[27]. This result points toward the potential for sublethal effects on bed bug reproductive
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Fig 2. Characterization of successful egg hatch when sublethal exposure occurred before mate

pairing. The number of hatched eggs (obtained by counting the number of juvenile bed bugs present) in all

four combinations of treated and control males and females is presented (CF = Control Female, CM = Control

Male, TF = Treated female, TM = Treated Male). Insecticide treatment via sublethal exposure (LT10) to the

label rate of Temprid had a significant impact on the number of hatched eggs over the six week evaluation in

two of three strains (ANOVA followed by Tukey HSD). When treatment groups share letters in common

they are not significantly different (Tukey HSD test with α = 0.05). There was a steep decline in viable egg

Sublethal exposure to a combination product impacts bed bug mating and fecundity
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physiology [27]. More studies will be necessary to elucidate the mechanisms that are responsi-

ble for the decreased egg output in bed bugs with sublethal exposure to insecticides.

Fecundity with sublethal exposure after mating

In this experiment, where we examined fecundity when the exposure to the insecticide

occurred after mating, there were significant declines in the total number of eggs laid on aver-

age per female in all but one strain (Fig 4, Paired t-test, CIN-1: T = 2.01, df = 11, p<0.05; NY-

1: T = 2.33, df = 11, p<0.05, LEX-8: T = 0.71, df = 11, p = 0.25). Females from the LEX-8 strain

did not show a decline in egg production after treatment. The median day of egg laying for

control strains was 5.67 ± 0.99, 5.75 ± 0.28, and 5.17 ± 0.24 days (mean ± s.e.m) for CIN-1,

NY-1, and LEX-8, respectively. The median day of egg laying for treated bed bugs within the

CIN-1 and NY-1 strains did not significantly differ from controls, with median days of egg

laying at 5.67 ± 1.84 and 5.8 ± 1.73 days (mean ± s.e.m), respectively (Paired t-test, CIN-1:

T = 0.00, df = 11, p = 1.0; NY-1: T = -0.23, df = 9, p = 0.82). However, the median day of egg

laying for treated insects from the LEX-8 strain was significantly delayed compared to the con-

trol group at 5.92 ± 1.73 days (mean ± s.e.m) (Paired t-test, T = -2.35, df = 11, p<0.05) In addi-

tion, the first day of egg laying was significantly delayed for LEX-8, in opposition to the other

production when both male and female bed bugs in the mating pair had sublethal exposure (LT10) to

insecticide, and an intermediate reduction in viable eggs when either the male or the female (but not both)

experienced sublethal exposure. NY-1 (the moderately resistant strain) showed no significant reduction in the

number of hatched eggs in this experiment.

https://doi.org/10.1371/journal.pone.0177410.g002

Fig 3. Characterization of the number of eggs hatched when sublethal exposure occurred before

mate pairing. This experiment partially replicates the first fecundity test, but starts with males and females

that had no previous contact with the other sex. There was significant reduction in the number of hatched eggs

for every strain. Hatching decreased by 73%, 34%, and 58% for CIN-1, NY-1, and LEX-8, respectively, when

both the male and female in the mating pair had sublethal exposure (LT10) to the label rate of Temprid SC

prior to mating (Paired t-test, CIN-1: T = 3.59, df = 7, p<0.01; NY-1: T = 2.78, df = 7, p<0.05; LEX-8: T = 3.89,

df = 7, p<0.01). Asterisks denote statistical significance (*p<0.05).

https://doi.org/10.1371/journal.pone.0177410.g003
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Fig 4. Cumulative egg laying for three strains when sublethal exposure occurred after mating had

taken place. The total number of eggs laid significantly declined for the susceptible and moderately resistant

strains (CIN-1 and NY-1), but not for the most resistant strain (LEX-8) (Paired t-tests, *p<0.05).

https://doi.org/10.1371/journal.pone.0177410.g004
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two strains (Fig 4, Paired t-test, CIN-1: T = -1.41, df = 9, p = 0.19; NY-1: T = -1.62, df = 9,

p = 0.14, LEX-8: T = -3.00, df = 11, p<0.05). The first day of egg laying for control LEX-8

females was 4.16 ± 0.11 days versus 4.92 ± 0.25 days for the treatment females.

The proportion of eggs that hatched significantly decreased in treatment groups for all

three strains evaluated (Paired t-test, CIN-1: T = 2.62, df = 9, p<0.05, NY-1: T = 2.20, df = 8,

p<0.05, LEX-8: T = 2.67, df = 11, p<0.05). The proportion of eggs hatched declined from

0.98 ± 0.01 to 0.76 ± 0.08 for CIN-1, 1.0 ± 0.00 to 0.86 ± 0.05 for NY-1, and 0.99 ± 0.01 to

0.91 ± 0.03 for LEX-8 (means ± s.e.m). This observation is consistent with the results obtained

in the first two fecundity trials. It is apparent that females with sublethal exposure are capable

of laying as many eggs on average, but those eggs may not be equally viable in comparison to

control insects (as in the LEX-8 strain). Taken together, these data suggest that sublethal expo-

sure will cause significant drops in egg hatchability whether insects are exposed before or after

mating. Temporal patterns of egg laying may also shift, depending on the population of bed

bugs.

The delay in oviposition demonstrated by the most resistant strain (LEX-8) should be inves-

tigated further for other strains of bed bugs. Oviposition delays could impact the timing of fol-

low-up treatments in the field where a secondary treatment is sometimes applied to combat

the hatching of newly laid eggs. Because LEX-8 was our most resistant strain, and thus received

the longest duration of exposure to Temprid SC, it would also be worthwhile to explore

whether other strains of bed bugs also delay oviposition when lengths of exposure to insecti-

cide are extended. It is not uncommon for sublethal exposure to alter, and often delay, the pre

and post-oviposition period in other insects [36].

Development

Contrary to our hypothesis, there was no delay in development time within the three strains

we tested (Fig 5, Two sample t-test, CIN-1: T = 0.20, df = 22, p = 0.84; NY-1: T = 1.19, df = 26,

p = 0.24; LEX-8: T = 1.96, df = 26, p = 0.06). In fact, on average, development time was slightly

decreased for NY-1 and LEX-8 insects exposed to Temprid SC, however this effect was not sta-

tistically significant (Fig 5). There was some treatment mortality, but the difference was not

significant when compared to controls (Fisher’s Exact Test, p>0.05). In some insects, sublethal

exposure during a later instar can prolong development time until adulthood [37], however,

development time was not significantly affected for bed bugs. It is possible that by selecting

insects that successfully fed, we had already chosen a subset of insects that recovered more

readily from exposure than other fifth instars. Additionally, observations more frequent than

every 24 hours may have revealed more subtle differences in development time than we

detected using this methodology. These differences would not likely be relevant for manage-

ment purposes. However, future studies should address the recovery of juvenile bed bugs with

sublethal exposure to insecticides, and whether they are as likely to take blood meals as control

insects. This would impact the number of emerging adults in an infestation.

Conclusions

We designed this study to more thoroughly evaluate one popular combination product used

against bed bugs, Temprid SC, to determine whether sublethal effects had the potential to

influence bed bug populations or their management. We hypothesized that sublethal exposure

would have detrimental effects on individual bed bugs. These effects could have population-

level consequences if multiple individuals display decreased mating success, decreased egg out-

put/fecundity, and longer maturation time after sublethal exposure. In this study, we saw

changes in mating success and fecundity of bed bugs after sublethal exposure to Temprid. We
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saw no changes in development time or success for fifth instars, but effects on development of

juveniles should be characterized further due to the slight decrease in development time

observed in two populations. Nonetheless, the overall detrimental effect of sublethal exposure

(LT10) to the label rate of Temprid SC on bed bug fecundity may contribute positively to bed

bug management if many individuals are affected. However, the potential for recovery from

sublethal effects needs to be explored in depth before decisions are made based on our results

(such tests are currently in progress). Laboratory studies of development and behavior such as

those reported here should be interpreted with caution because of potential differences

between laboratory (e.g., rabbit blood presented with an artificial membrane) and real world

conditions (e.g., a human host and more complex habitat). Nonetheless, insecticide efficacy

testing that includes the evaluation of sublethal effects on behavior, development and fecun-

dity, when carefully controlled, can complement traditional mortality based assays. Incorpo-

ration of these assays during efficacy trials may help to explain the occasional incongruous

results between acute toxicity and field efficacy.
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