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Abstract: In the distributed detection system with multiple sensors, there are two ways for
local sensors to deliver their local decisions to the fusion center (FC): a one-bit hard decision
and a multiple-bit soft decision. Compared with the soft decision, the hard decision has worse
detection performance due to the loss of sensing information but has the main advantage of smaller
communication costs. To get a tradeoff between communication costs and detection performance,
we propose a soft–hard combination decision fusion scheme for the clustered distributed detection
system with multiple sensors and non-ideal communication channels. A clustered distributed
detection system is configured by a fuzzy logic system and a fuzzy c-means clustering algorithm.
In clusters, each local sensor transmits its local multiple-bit soft decision to its corresponding cluster
head (CH) under the non-ideal channel, in which a simple and efficient soft decision fusion method
is used. Between clusters, the fusion center combines all cluster heads’ one-bit hard decisions into a
final global decision by using an optimal fusion rule. We show that the clustered distributed system
with the proposed scheme has a good performance that is close to that of the centralized system,
but it consumes much less energy than the centralized system at the same time. In addition, the
system with the proposed scheme significantly outperforms the conventional distributed detection
system that only uses a hard decision fusion. Using simulation results, we also show that the
detection performance increases when more bits are delivered in the soft decision in the distributed
detection system.

Keywords: distributed detection system; soft decision; hard decision; clustering; fuzzy logic system;
fuzzy c-means algorithm

1. Introduction

Multiple-sensor data fusion has attracted significant attention in the information fusion field.
It can be mainly divided into two types, namely centralized data fusion and distributed data fusion.
In a centralized data fusion system, sensing information (raw sensing data) observed by local sensors
is delivered directly to the fusion center (FC) through single hop or multiple hops. The FC collects
all the data while carrying out the computations and makes a final decision. A centralized data
fusion system can get optimal detection performance due to the small loss of information. However,
it is at the cost of a large bandwidth and a heavy computing burden of the FC, which increases the
system’s communication costs and shortens the system’s lifetime. Communication costs mainly include
the cost for the sensors used in the sensing system, the communication bandwidth required by the
system, which determines the number of bits that could be transferred by sensors, and all the energy
consumption of data transmission. Compared with centralized data fusion, distributed data fusion

Sensors 2018, 18, 4370; doi:10.3390/s18124370 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8435-007X
http://dx.doi.org/10.3390/s18124370
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/12/4370?type=check_update&version=2


Sensors 2018, 18, 4370 2 of 18

has been studied more for several decades because it bears the advantages of higher reliability, smaller
communication costs, higher survivability, and shorter decision time than centralized data fusion. In a
distributed fusion system, each local sensor makes a local decision based on its own observation and
transmits it to the FC. Then, the FC combines all local decisions into a final global decision by using an
optimal decision rule or a suboptimal decision rule [1,2].

There are three basic fusion topology architectures in the distributed detection system, namely
parallel topology [3,4], serial topology [5–7], and tree topology [8]. For the serial topology and tree
topology, the main disadvantage of them is that any local sensor’s failure would result in the whole
system’s failure. However, for parallel topology, one or several local sensors’ failure would not affect
other local sensors because that each local sensor works independently. Therefore, we adopt the
distributed detection system with the structure of parallel topology, whose typical structure is shown
in Figure 1, in this paper.
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Figure 1. A typical distributed detection system with multiple sensors.

In the distributed detection system with multiple sensors, there are two ways for local sensors to
deliver their local decisions to the FC: a one-bit hard decision and a multiple-bit soft decision. For a
hard decision, only one bit is transmitted to the FC. Usually, Bit 0 represents the absence of the target
and Bit 1 represents the presence of the target. It needs less bandwidth and reduces the system’s
communication costs but loses a lot of sensing data information and restricts the improvement of
the system’s detection performance [9–11]. In fact, a multiple-bit soft decision can be transmitted
within the system’s communication capability. A Bayesian model has been proposed in Reference [12],
in which each local sensor delivers a probability that represents its confidence in its decision to the
FC. Then, the FC combines all the probabilities into a global decision. Thomopoulos et al. proposed
a soft decision scheme in which a two-bit soft information was delivered by each local sensor to the
FC [13]. The two-bit soft information not only contains one-bit hard decision information regarding
the presence of the target but also contains one-bit of quality information. In Reference [14], Lee and
Chao proposed a multiple-bit soft fusion scheme based on subpartitioning of the local decision space.
In Reference [15], Aziz proposed a multilevel quantization and fusion approach based on fuzzy
techniques. However, most of those proposed methods are computationally complex, especially with
multilevel quantization, and they did not take the non-ideal communication channel into consideration.
In Reference [16], the author optimized the number of reporting bits to maximize the network’s
throughput in quantized cooperative spectrum sensing. In Reference [17], the number of reporting bits
and the combining weight were jointly optimized to maximize the probability of detection. Therefore,
inspired by References [14,15], we propose a simple, easy to calculate, and efficient soft decision
fusion method based on the subpartitioning of the local decision space and considers the non-ideal
communication channel. In addition, to get a tradeoff between communication costs and detection
performance, we also propose a soft–hard combination decision fusion scheme (SH-DFS) for the
distributed detection system.

Clustering techniques have been widely studied and used in the distributed detection system [18–23].
They can not only reduce the system’s energy consumption but also extend local sensors’ and the system’s
lifetime. In the clustered distributed detection system, every cluster has a cluster head (CH) and each
local sensor belongs to a cluster. First, each local sensor delivers its decision to its corresponding CH.
Then, each CH makes its own decisions according to the received data and delivers it to the FC. Finally,
the FC fuses the received information and makes a final decision. There are numerous methods for CHs
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selection and clusters formation proposed by previous studies. In Reference [24], the authors proposed
an easy method for CHs selection, in which each local sensor has an equal probability to be CH. In the
cluster head election mechanism using fuzzy logic (CHEF), CHs are selected based on two parameters,
which are proximity distance and energy [25]. In Reference [26], the energy efficient structured clustering
algorithm (EESCA) is proposed, in which CH is elected based on average communication distance and
lingering energy. In Reference [27], the author proposed adaptive dynamic clustering (ADC) to minimize
the cluster head and improve the network’s routing problem. In this paper, we select CHs by using a
fuzzy logic system (FLS), in which the remaining energy and distance to the FC are considered to compute
the likelihood to be a CH for each local sensor. After selecting CHs, clusters are formed by using the fuzzy
c-means clustering algorithm because that the fuzzy c-means clustering algorithm has a more accurate
and natural description of data [11].

In this paper, we propose a soft–hard combination decision fusion scheme for the clustered
distributed detection system with multiple sensors. First, an FLS is designed to select a CH, in which
the remaining energy and distance to the FC are considered to compute the likelihood to be a CH for
each local sensor. Then, the fuzzy c-means clustering algorithm is used for forming clusters. In every
cluster, soft decision fusion based on the subpartitioning of the local decision space is applied. Every
local sensor delivers its multiple-bit decision, which not only contains its decision but also contains its
degree of confidence on that decision to its corresponding CH. CH combines all received data into
a one-bit hard decision under the Neyman–Pearson criterion. Between clusters, the FC combines
all cluster heads’ one-bit hard decisions into a final global decision by using an optimal fusion rule.
In comparison with previous approaches, the novelty and contributions of this paper are summarized
as follows:

• We propose a soft–hard combination decision fusion scheme, which not only makes use of soft
decision fusion but also makes uses of hard decision fusion. This scheme can get a tradeoff
between communication costs and detection performance.

• In every cluster with soft decision fusion, a simple, easy to calculate, and efficient soft decision
fusion method based on the subpartitioning of the local decision space is applied. Multiple bits
that not only contain a local sensor’s decision but also contain its degree of confidence on that
decision are delivered. At the same time, compared with References [14,15], our soft decision
fusion method simplifies the calculation of CHs.

• The non-ideal communication channel is taken into consideration.
• In the FC, an optimal fusion rule is applied to fuse all decisions form all clusters.

The paper is organized as follows. Section 2 shows the design scheme of the clustered distributed
detection system. Then, the soft decision fusion scheme in clusters based on the subpartitioning of the
local decision space is presented in Section 3. Section 4 shows the hard fusion scheme with an optimal
fusion rule. Simulation results and performance evaluations are presented in Section 5. Section 6
concludes this paper.

2. The Design of Clustered Detection System

We consider a distributed detection system consisting of N local sensors. We design the FLS
to select CHs and use the fuzzy c-means clustering algorithm for clusters formation. In addition,
the clustered distributed detection system can be dynamically reconfigured in every round.

2.1. The Design of Fuzzy Logic System

In the distributed detection system, CHs not only need to fuse multiple-bit soft information in
clusters but also need to send one-bit hard information to the FC. Therefore, CHs must have sufficient
energy and be close to the FC. Therefore, two antecedents, including every local sensor’s remaining
energy and distance to the FC, are considered to design the FLS. Therefore, two antecedents of a local
sensor are considered in our designed FLS:
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• Antecedent 1: every local sensor’s remaining energy.
• Antecedent 2: every local sensor’s distance to the FC.

The linguistic variables used to represent antecedent 1 are divided into three levels: low, moderate,
and high; and those to represent antecedent 2 are also divided into three levels: near, moderate, and
far. Two antecedents use the same kind of membership functions (MFs), and in this paper, MFs
for normalized antecedents are shown in Figure 2. Two antecedents as the input of MFs have been
normalized to [0, 10]. The linguistic variables, which are used to represent the consequent and denote
the possibility that a local sensor will be selected as a CH, were divided into five levels: very small,
small, medium, large, and very large. In this paper, MFs for normalized consequents are shown
in Figure 3.
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Based on the fact that an ideal CH should have sufficient energies and be close to the FC, we
design our FLS using rules for every input (x1, x2) like:

Rl: IF the remaining energies of a local sensor (x1) is Fl
1, and its distance to the FC (x2) is Fl

2, THEN
the possibility that this local sensor will be selected as a CH(y) is Gl, where l = 1, . . . , 9. Nine rules are
summarized in Table 1.

Table 1. Rules in FLS.

Rule Antecedent 1 Antecedent 2 Consequent

1 low near medium
2 low moderate small
3 low far very small
4 moderate near large
5 moderate moderate medium
6 moderate far small
7 high near very large
8 high moderate large
9 high far medium
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For every input (x1, x2) of each local sensor, the output is computed using:

Y(x1, x2) =
∑9

l=1 µFl
1 (x1)

µFl
2 (x2)

cl

∑9
l=1 µFl

1 (x1)
µFl

2 (x2)

(1)

According to the output, which is the probability of a local sensor selected as a CH, we can
select M local sensors with the highest probabilities as CHs. M is the number of CHs, and it can be
obtained using:

M = f loor(p×N) (2)

where p is a constant ratio decided by people and represents the proportion of CHs in all sensors, and
N is the total number of local sensors in the distributed detection system.

2.2. The Fuzzy c-Means Clustering Algorithm

After selecting CHs by using FLS, the fuzzy c-means algorithm for clustering is used for forming
clusters. Compared with hard clustering, in which every local sensor only belongs to one cluster, FCM
has a more accurate and natural description of data. Let {xi, i = 1, 2, . . . , N} be the set of N local sensors,
and xi represents the ith local sensor. M is the number of CHs computed by Equation (2) and is also
the number of clusters in the system.

The fuzzy c-means algorithm is an improvement of the c-means algorithm [28]. The
c-means algorithm is based on minimizing the following objective function, which represents the
mean-square error:

minJe =
M

∑
i=1

∑
y∈Cj

||y−mi||2 (3)

where Cj represents the cluster of j, mi is the center of Ci, and y(y∈Cj) represents all local sensors in
Cj. Different from the c-means algorithm, the fuzzy c-means algorithm is based on minimizing the
following objective function under one restriction function:

minJ f =
M
∑

j=1

N
∑

i=1

[
µj(xi)

]b||xi −mj||2

st.
M
∑

j=1
µj(xi) = 1, i = 1, 2, . . . , N

(4)

where mj is the center of cluster j, µj(xi) is the membership of the ith local sensor in cluster j, and
b is a constant that can control the degree of blurring of clustering results. If b→1, clusters formed
by the fuzzy c-means algorithm is similar to those formed by c-means. If b = ∞, the fuzzy c-means
algorithm will get a completely fuzzy solution, which means every node belongs to each cluster with
equal probability, but it does not bear the meaning of clustering. Generally, let b = 2. In addition, the
fuzzy c-means algorithm requires that the sum of the memberships of one node for each cluster is 1,
which is illustrated by Equation (4).

The solution of Equation (4) can be obtained by optimizing µj(xi) and update mj according to
Equation (5) through an iterative method:

µj(xi) =
(1/||xi−mj||2)

1/(b−1)

∑M
k=1(1/||xi−mk||2)

1/(b−1)

mj =
∑n

i=1[µj(xi)]
b
xi

∑n
i=1[µj(xi)]

b

(5)

The specific description of clusters formed by FCM is illustrated in Algorithm 1.
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Algorithm 1 Clusters formation by FCM

Input: xi, i = 1, 2, . . . , n; M; b; µj(xi); max_iteration_num
M: the number of clusters and obtained by Equation (2).
b: b = 2.
µj(xi), j = 1, 2 . . . , M, and i = 1, 2 . . . , N: the initialized membership values.
max_iteration_num: the maximum number of iterations.

Output: µk
j (xi), which is the membership of each node belonging to each cluster for the kth iteration.

Iteration Process:

while
{(

µk
j (xi)− µk−1

j (xi)
)
> e and k < max_iteration _num

}
do

mj =
∑n

i=1[µj(xi)]
b
xi

∑n
i=1[µj(xi)]

b ∀ j = 1, 2, . . . , M

µj(xi) =
(1/||xi−mj||2)

1/(b−1)

∑M
k=1(1/||xi−mk||2)1/(b−1) ∀ i = 1, 2, . . . , n; j = 1, 2, . . . , M

end while

3. Soft Decision Fusion Based on the Subpartitioning of the Local Decision Space in Clusters

We consider the binary detection in the clustered distributed detection system. In binary detection,
there are two hypotheses: H0 represents the absence of the target (the signal) and H1 represents the
presence of the target (the signal). The FC makes a global binary decision (0 or 1) by processing local
decisions received from all local sensors. It is the hard decision fusion when each local sensor makes
a binary hard decision (0 or 1) and delivers it to the FC. Conversely, it is the soft decision fusion
when each local sensor delivers a multiple-bit decision to the FC. In this paper, we apply soft decision
fusion in clusters formed by Section 2 and apply hard decision fusion between clusters. The proposed
clustered detection system is shown in Figure 4.
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We assume that there are N local sensors in the distributed detection system. By using the FLS
and the fuzzy c-means clustering algorithm in Section 2, M clusters are formed. In the mth cluster,
there are nm local sensors and cm is the CH in it. N = n1 + n2 + . . . + nM. We take the mth cluster
for example.

In the mth cluster, let y1, y2, . . . , ynm be the statistically independent observations of nm local
sensors and have known probability distributions under both hypotheses (H0 and H1). For the kth
local sensor in the mth cluster, Tk is the sensor’s threshold determined by the probability of false alarm
of the kth local sensor, and Lk(yk) is the likelihood ratio test at the kth local sensor, which is given by:

Lk(yk) =
P(yk|H1)

P(yk|H0)
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If a local decision uk is a one-bit hard decision, then the associate decision space Ωk is partitioned
into two exclusive regions, Ωk

0 and Ωk
1, such that:{

uk = 1, i f yk ∈ Ωk
1

uk = 0, i f yk ∈ Ωk
0

(6)

Furthermore, we have a probability of detection (Pdk) and a probability of false alarm (Pfk) for the
kth local sensor: {

Pdk = P{ui = 1|H1}.
Pf k = P{ui = 1|H0}.

(7)

To improve the detection performance, a b-bit (b ≥ 2) soft decision can be obtained, in which b is
determined by the communication capability of the system. Its essence is the subpartitioning of the Ωk

0
and Ωk

1 space. For illustration purposes, the 2-bit soft decision case is considered.
In the 2-bit soft decision case, Ωk

0 and Ωk
1 are partitioned into two exclusive regions respectively.

The quantization rule and decision rule

uk =


00(decision is H0 with higher con f idence, so f t decision value : 0), yk ∈ Ωk

00
01(decision is H0 with lower con f idence, so f t decision value : 1), yk ∈ Ωk

01
10(decision is H1 with lower con f idence, so f t decision value : 2), yk ∈ Ωk

10
11(decision is H1 with higher con f idence, so f t decision value : 3), yk ∈ Ωk

11

(8)

where: 
Ωk = Ωk

0 ∪Ωk
1, Ωk

0 ∩Ωk
1 = ∅

Ωk
0 = Ωk

00 ∪Ωk
01, Ωk

00 ∩Ωk
01 = ∅

Ωk
1 = Ωk

10 ∪Ωk
11, Ωk

10 ∩Ωk
11 = ∅

(9)

The subpartitioning in the 2-bit decision case is shown in Figure 5.
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Corresponding to Equation (7), we also have:
Pd10k = P{uk = 10|H1}
Pd11k = P{uk = 11|H1}
Pf 10k = P{uk = 10|H0}
Pf 11k = P{uk = 11|H0}

(10)

To simplify the calculation, we let the subpartition satisfy Equation (11) according to the
probability of detection and the probability of false alarm:{

Pd10k = Pd11k =
Pdk
2

Pf 10k = Pf 11k =
Pf k
2

(11)
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According to the knowledge of the kth local sensor’s probability of false alarm and the
signal-to-noise ratio (SNR), which is defined as the ratio of signal power to the noise power, we
can get Pdk and the range of sub-spaces.

Let t0 be the threshold between Ωk
00 and Ωk

01, t1 be the threshold between Ωk
01 and Ωk

10, and
t2 be the threshold between Ωk

10 and Ωk
11, then the calculation of the kth local sensor’s thresholds

(t0, t1, t2) in the 2-bit soft decision case is summarized using two steps. Step 1: Given the false alarm
probability of the kth local sensor Pfk, then t1, which is not only the threshold between Ωk

01 and Ωk
10

but also the threshold between Ωk
0 and Ωk

1, can be obtained under the Neyman–Pearson criterion. Pdk
can be obtained using t1.

Step 2: Then, we can calculate t0 by making Pf10k = Pf11k = Pfk/2, and calculate t2 by making
Pd10k = Pd11k = Pdk/2.

Considering that the communication channel is non-ideal without memory, we assume that the
bit error rate of the kth local sensor is Pek , which is the same for every bit. Then, for the kth local sensor,
the probability of the bit being transmitted correctly is 1 − Pek. In the 2-bit decision case, the station
transition diagram is shown in Figure 6. We can obtain that the probability of a 2-bit soft decision being
transmitted correctly by the kth local sensor is (1 − Pek)2, the probability of one bit being transmitted
wrongly is Pek(1 − Pek), and the probability of two bits all being transmitted wrongly is (Pek)2. Then,
we can get the possible transition matrix of Figure 6:

PTk =


(1− Pek)

2

(1− Pek)Pek
(1− Pek)Pek

(Pek)
2

(1− Pek)Pek

(1− Pek)
2

(Pek)
2

(1− Pek)Pek

(1− Pek)Pek

(Pek)
2

(1− Pek)
2

(1− Pek)Pek

(Pek)
2

(1− Pek)Pek
(1− Pek)Pek

(1− Pek)
2

 (12)

Sensors 2018, 18, 4370 8 of 18 

 

According to the knowledge of the kth local sensor’s probability of false alarm and the 

signal-to-noise ratio (SNR), which is defined as the ratio of signal power to the noise power，we can 

get Pdk and the range of sub-spaces. 

Let t0 be the threshold between ���
�  and ���

� , t1 be the threshold between  ���
�  and  ���

� , and t2 

be the threshold between  ���
�  and  ���

� , then the calculation of the kth local sensor’s thresholds  

(t0, t1, t2) in the 2-bit soft decision case is summarized using two steps. Step 1: Given the false alarm 

probability of the kth local sensor Pfk, then t1, which is not only the threshold between ���
�  and ���

�  

but also the threshold between ��
�  and ��

�, can be obtained under the Neyman–Pearson criterion. Pdk 

can be obtained using t1. 

Step 2: Then, we can calculate t0 by making Pf10k = Pf11k = Pfk/2, and calculate t2 by making  

Pd10k = Pd11k = Pdk/2. 

Considering that the communication channel is non-ideal without memory, we assume that the 

bit error rate of the kth local sensor is Pek , which is the same for every bit. Then, for the kth local 

sensor, the probability of the bit being transmitted correctly is 1 − Pek. In the 2-bit decision case, the 

station transition diagram is shown in Figure 6. We can obtain that the probability of a 2-bit soft 

decision being transmitted correctly by the kth local sensor is (1 − Pek)2, the probability of one bit 

being transmitted wrongly is Pek(1 − Pek), and the probability of two bits all being transmitted 

wrongly is (Pek)2. Then, we can get the possible transition matrix of Figure 6: 

��� =

⎣
⎢
⎢
⎡

(1 − ���)2

(1 − ���)���

(1 − ���)���

(���)2

(1 − ���)���

(1 − ���)2

(���)2

(1 − ���)���

 

(1 − ���)���

(���)2

(1 − ���)2

(1 − ���)���

(���)2

(1 − ���)���

(1 − ���)���

(1 − ���)2 ⎦
⎥
⎥
⎤

 (12)

 

Figure 6. The station transition diagram in the 2-bit decision case. 

Let Um = (u1, u2, …, unm) be the decision vector of all local sensors in the mth cluster. The optimal 

decision rule for the CH in the mth cluster (cm) is as follows: 

L(��)

=
�(��|��)

�(��|��)
�

> ��      �������� �� ��                                                                     
< ��      �������� �� ��                                                                     

= ��    �������� �� �� ���ℎ �� λ and decision is  �� ���ℎ ��  (1 − �)                                

(13

)

where Tm is the mth cluster’s threshold and is determined by the probability of the CH’s false alarm 

and λ is a randomization parameter.  

Assuming independence between local sensors, the likelihood ratio in the mth cluster is  

given using: 

L(��) =
�(��|��)

�(��|��)
=

����, ��, … , ���
����

����, ��, … , ���
����

= �
�(��|��)���

�(��|��)���

��

���

 (14)

where: 

Figure 6. The station transition diagram in the 2-bit decision case.

Let Um = (u1, u2, . . . , unm) be the decision vector of all local sensors in the mth cluster. The optimal
decision rule for the CH in the mth cluster (cm) is as follows:

L(Um) =
P(Um|H1)

P(Um|H0)


> Tm decision is H1

< Tm decision is H0

= Tm decision is H1 with Pr λ and decision is H0 with Pr (1− λ)

(13)

where Tm is the mth cluster’s threshold and is determined by the probability of the CH’s false alarm
and λ is a randomization parameter.

Assuming independence between local sensors, the likelihood ratio in the mth cluster is
given using:

L(Um) =
P(Um|H1)

P(Um|H0)
=

P(u1, u2, . . . , unm |H1)

P(u1, u2, . . . , unm |H0)
=

nm

∏
k=1

P(uk|H1)PTk
P(uk|H0)PTk

(14)
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where: 
Pd10k = P{uk = 10|H1} = Pd11k = P{uk = 11|H1} = Pdk

2
Pm10k = P{uk = 00|H1} = Pm01k = P{uk = 01|H1} = 1−Pdk

2

Pf 10k = P{uk = 10|H0} = Pf 11k = P{uk = 11|H0} =
Pf k
2

P10k = P{uk = 00|H0} = P11k = P{uk = 01|H0} =
1−Pf k

2

Therefore, the probability of a false alarm and the probability of detection of the CH can be
obtained using:

Pf cm = ∑
L(Um)>Tm

P(Um|H0)PT + λ ∑
L(Um)=Tm

P(Um|H0) (15)

and:
Pdcm = ∑

L(Um)>Tm

P(Um|H1) + λ ∑
L(Um)=Tm

P(Um|H1) (16)

According to the probability of a false alarm of local sensor cm (CH), we can obtain Tm and λ.
Then, the probability of detection of the CH can be obtained using Equation (16).

To get a binary decision in the mth cluster when knowing Tm and λ after calculation, we can follow:{
ucm = 1, i f L(Um) > Tm or λ ≥ 0.5 when L(Um) = Tm

ucm = 0, i f L(Um) < Tm or λ < 0.5 when L(Um) = Tm
(17)

In the same way, for a b-bit soft decision, bn = 2(b−1) − 1, the quantization rule and decision rule:

uk =



Binary(0)(decision is H0 with higher con f idence), yk ∈ Ωk
00

Binary(1)(decision is H0 with con f idence less than 00), yk ∈ Ωk
01

· · ·
Binary

(
2b−1 − 1

)
(decision is H0 with the lowerwst con f idence), yk ∈ Ωk

0bn

Binary
(

2b−1
)
(decision is H1 with the lowest con f idence), yk ∈ Ωk

10

Binary
(

2b−1 + 1
)
(decision is H1 with higher con f idence than 10), yk ∈ Ωk

11

. . .

Binary
(

2b − 1
)
(decision is H1 with the highest con f idence), yk ∈ Ωk

1bn

(18)

where Binary() is the data in binary form and:
Ωk = Ωk

0 ∪Ωk
1, Ωk

0 ∩Ωk
1 ∩ . . . ∩Ωk

bn = ∅ .

Ωk
0 = Ωk

00 ∪Ωk
01 ∪ . . . ∪Ωk

0bn
, Ωk

00 ∩Ωk
01 ∩ . . . ∩Ωk

0bn
= ∅

Ωk
1 = Ωk

10 ∪Ωk
11 ∪ . . . ∪Ωk

1bn
, Ωk

10 ∩Ωk
11 ∩ . . . ∩Ωk

1bn
= ∅.

(19)

Corresponding to Equation (11), we let the subpartition satisfy Equation (19) according to the
probability of detection and the probability of false alarm:{

Pd10k = Pd11k = . . . = Pd1bnk =
Pdk
bn

Pf 10k = Pf 11k = . . . = Pf 1bnk =
Pf k
bn

(20)
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The possibility transition matrix is as follows:

PTk =



(1− Pek)
bn+1

(
nbn + 1

1

)
(1− Pek)

bn Pek . . .

(
nbn + 1

bn

)
(Pek)

bn(1− Pek) (Pek)
bn+1(

nbn + 1
1

)
(1− Pek)

bn Pek (1− Pek)
bn+1 · · ·

...
...

...
...

. . .
...

...

(Pek)
bn+1

(
nbn + 1

bn

)
(Pek)

bn(1− Pek) · · ·
(

nbn + 1
1

)
(1− Pek)

bn Pek (1− Pek)
bn+1


4. Hard Decision Fusion

For the mth cluster, we can get its binary decision ucm∈{0, 1} according to Equation (16) and its
corresponding probability of false alarm Pfcm and the probability of detection Pdcm. For M clusters, U =
[uc1, uc2, . . . , ucM] is the decision vector of all CHs. Then, the FC combines all binary decisions from
all clusters into a final decision. The likelihood ratio test at the FC is:

L(U) =
P{U|H1 }
P{U|H0 }

=
P{uc1 , uc2 , . . . , ucM |H1}
P{uc1 , uc2 , . . . , ucM |H0}

H1

>

<

H0

T0 (21)

where T0 is determined using the global desired probability of false alarm at the FC.
Here, the optimal decision rule of the FC can be derived as [2]:

M

∑
m=1

wmucm

H1

>

<

H0

T0 (22)

and the coefficients {wm} are determined using the probability of false alarm Pfcm and the probability
of detection Pdcm:

wm =

 log Pdcm
Pf cm

i f ucm = 1, m = 1, 2, . . . , M

log 1−Pdcm
1−Pf cm

i f ucm = 0, m = 1, 2, . . . , M

5. Simulation and Results

In this section, we present the performances of the clustered distributed system with the proposed
SH-DFS using Monte Carlo simulation results. We assumed that local sensors with random initial
energy from 0.1 to 0.5 J/battery were randomly deployed in an area with dimensions 100 m × 100 m.
The FC was at (50 m, 50 m). In addition, we made the kth local sensor’s probability of false alarm Pfk ~
U(0.0, 0.2). The probability of error bit Pek in the non-ideal channel was assumed to be 0.05, and it was
the same for each local sensor for convenience.

For the kth local sensor, its observation yk followed a Gaussian distribution:
f (yk|H1) =

1√
2πσ

exp
{
− (yk−E(S+N))2

2σ2

}
f (yk|H0) =

1√
2πσ

exp
{
− (yk−E(N))2

2σ2

} (23)

where E(N) is the mean value of noise, E(S + N) is the mean value of signal and noise, and σ2 is the
variance of the Gaussian noise.
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5.1. Energy Consumption

Figure 7 illustrates the energy consumption of the distributed systems with the conventional
hard decision, SH-DFS, the conventional soft decision, and the centralized system. In this paper, the
conventional hard decision was that each local sensor made a one-bit hard decision according to
its observation and transmitted it to the FC under the non-ideal channel; then, the FC combined all
decisions from local sensors into a global decision. In addition, the conventional soft decision in this
paper was that each local sensor made a multi-bit decision according to its observation and transmitted
it to the FC under the non-ideal channel; then, the FC combined all decisions from local sensors into
a global decision. Figure 7 shows the comparisons of four different systems by using the number of
alive nodes with the round increasing, in which Con/Hard represents the distributed system with
the conventional hard decision, SH-DFS represents the distributed system with the proposed method
in this paper, Con/Soft represents the distributed system with conventional soft decision, and the
Centralized represents the centralized system.

Sensors 2018, 18, 4370 11 of 18 

 

system with the conventional hard decision, SH-DFS represents the distributed system with the 

proposed method in this paper, Con/Soft represents the distributed system with conventional soft 

decision, and the Centralized represents the centralized system. 

 

Figure 7. The number of alive nodes versus the round. 

We can find that the centralized system consumes the most energy because raw information 

was transmitted by all local sensors to the FC, although it has the optimal detection performance 

because there was little loss of information. Conversely, the system with a conventional hard 

decision consumed the least energy because the least information (a one-bit decision) was 

transmitted by all local sensors to the FC. The energy consumption in the proposed method mainly 

included the energy consumption for clustering in every round and the energy consumption for bits 

transmission. However, the conventional soft decision fusion mainly included energy consumption 

for bits transmission. On the surface, the proposed method consumed extra energy for clustering. 

However, Figure 7 shows that the system with conventional soft decision fusion (a three-bit decision) 

consumed more energy than the system with the proposed method (a three-bit decision in the soft 

decision, M = 4). This is reasonable for two reasons. The first reason is that, in the system with the 

conventional soft decision fusion, every local sensor needed to transfer a soft decision to the FC. 

However, in the clustering network system with the proposed method, every local sensor only 

needed to transfer a soft decision to its corresponding CH, which had a shorter distance. In addition, 

those CHs only needed to transfer one bit to the FC in the proposed method. These help the system 

with the proposed method consume less energy for bits transmission. The second reason is that the 

cluster was reconfigured using FLS and the fuzzy c-means clustering algorithm in every round, 

which helped the system share the overload in all local sensors. Furthermore, it made the number of 

alive nodes in the proposed method be more than that in the conventional soft decision fusion 

method in every round.  

5.2. Different SNRs 

Performances were analyzed by using the probability of detection versus SNR. Here, let the 

desired global probability of false alarm at the FC be 0.01 

Figure 8 shows the comparison of the performances of the distributed systems with the 

conventional hard decision, SH-DFS, the conventional soft decision, and of the centralized system. 

Here, let the number of local sensors be 30. We found that the centralized system had the best 

performance because there was little loss of information in it. The system with SH-DFS (a two-bit 

decision, M = 4) significantly outperformed the system which only used a hard decision fusion 

(Con/Hard). In addition, although the system with the SH-DFS had similar performance with the 

system that only used soft decision fusion (a two-bit decision), it was better than the system with 

Con/Soft because it consumed less energy according to Figure 7. 

Figure 7. The number of alive nodes versus the round.

We can find that the centralized system consumes the most energy because raw information
was transmitted by all local sensors to the FC, although it has the optimal detection performance
because there was little loss of information. Conversely, the system with a conventional hard decision
consumed the least energy because the least information (a one-bit decision) was transmitted by all
local sensors to the FC. The energy consumption in the proposed method mainly included the energy
consumption for clustering in every round and the energy consumption for bits transmission. However,
the conventional soft decision fusion mainly included energy consumption for bits transmission. On
the surface, the proposed method consumed extra energy for clustering. However, Figure 7 shows
that the system with conventional soft decision fusion (a three-bit decision) consumed more energy
than the system with the proposed method (a three-bit decision in the soft decision, M = 4). This is
reasonable for two reasons. The first reason is that, in the system with the conventional soft decision
fusion, every local sensor needed to transfer a soft decision to the FC. However, in the clustering
network system with the proposed method, every local sensor only needed to transfer a soft decision
to its corresponding CH, which had a shorter distance. In addition, those CHs only needed to transfer
one bit to the FC in the proposed method. These help the system with the proposed method consume
less energy for bits transmission. The second reason is that the cluster was reconfigured using FLS and
the fuzzy c-means clustering algorithm in every round, which helped the system share the overload in
all local sensors. Furthermore, it made the number of alive nodes in the proposed method be more
than that in the conventional soft decision fusion method in every round.
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5.2. Different SNRs

Performances were analyzed by using the probability of detection versus SNR. Here, let the
desired global probability of false alarm at the FC be 0.01.

Figure 8 shows the comparison of the performances of the distributed systems with the
conventional hard decision, SH-DFS, the conventional soft decision, and of the centralized system.
Here, let the number of local sensors be 30. We found that the centralized system had the best
performance because there was little loss of information in it. The system with SH-DFS (a two-bit
decision, M = 4) significantly outperformed the system which only used a hard decision fusion
(Con/Hard). In addition, although the system with the SH-DFS had similar performance with the
system that only used soft decision fusion (a two-bit decision), it was better than the system with
Con/Soft because it consumed less energy according to Figure 7.Sensors 2018, 18, 4370 12 of 18 
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Figure 8. The probability of detection of four different methods versus SNR.

Figure 9 shows the comparison of the performances of the clustered distributed systems with
SH-DFS (M = 4, b = 2, Pe = 0.05), but with a different number of local sensors. The number of local
sensors was fixed at 5, 15, 25, and 35. From Figure 9, we found that the number of local sensors had
a smaller influence at a low SNR than that at a high SNR. Furthermore, the probability of detection
increased with the number of local sensors increasing.
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Figure 9. The probability of detection of the clustered distributed system with SH-DFS at a different
number of local sensors versus SNR.

Figure 10 shows the comparison of the performances of the clustered distributed systems with
SH-DFS (N = 30, b = 2, Pe = 0.05), but with a different number of clusters. We observed that with the
rise of the cluster number, the probability of detection increased.



Sensors 2018, 18, 4370 13 of 18

Sensors 2018, 18, 4370 12 of 18 

 

s  

Figure 8. The probability of detection of four different methods versus SNR. 

Figure 9 shows the comparison of the performances of the clustered distributed systems with 

SH-DFS (M = 4, b = 2, Pe = 0.05), but with a different number of local sensors. The number of local 

sensors was fixed at 5, 15, 25, and 35. From Figure 9, we found that the number of local sensors had a 

smaller influence at a low SNR than that at a high SNR. Furthermore, the probability of detection 

increased with the number of local sensors increasing. 

Figure 10 shows the comparison of the performances of the clustered distributed systems with 

SH-DFS (N = 30, b = 2, Pe = 0.05), but with a different number of clusters. We observed that with the 

rise of the cluster number, the probability of detection increased. 

 

Figure 9. The probability of detection of the clustered distributed system with SH-DFS at a different 

number of local sensors versus SNR. 

 

Figure 10. The probability of detection of the clustered distributed system with SH-DFS and different 

clusters versus SNR. 

Figure 11 shows the comparison of the performances of the clustered distributed systems with 

SH-DFS (N = 30, M = 4, Pe = 0.05), where b is fixed at 2, 3, and 4. With b increasing, which means more 

Figure 10. The probability of detection of the clustered distributed system with SH-DFS and different
clusters versus SNR.

Figure 11 shows the comparison of the performances of the clustered distributed systems with
SH-DFS (N = 30, M = 4, Pe = 0.05), where b is fixed at 2, 3, and 4. With b increasing, which means more
information was transmitted, the performance of the system with SH-DFS also increased. Compared
with the centralized system, we found that the performance of the system with SH-DFS was close to
the performance of the centralized system when b was 3 or 4. Therefore, two-bit soft fusion or three-bit
soft fusion can be applied to improve the performance of the Con/Hard, where only a one-bit decision
is transmitted. At the same time, when we need to get a tradeoff between communication costs and
detection performance, it is meaningless to let b (the number of bits in b-bit soft fusion) be more than 4.
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Figure 11. The probability of detection of the clustered distributed system with SH-DFS (b = 2, 3, 4)
and the centralized system versus SNR.

Figure 12 shows the comparison of the performances of the clustered distributed systems with
SH-DFS (N = 30, M = 4, b = 2), where Pe = 0 and Pe = 0.05 respectively. It was clear that the non-ideal
communication channel had a negative influence on the clustered distributed system. It was necessary
to take the non-deal communication channel into consideration.

Sensors 2018, 18, 4370 13 of 18 

 

information was transmitted, the performance of the system with SH-DFS also increased. Compared 

with the centralized system, we found that the performance of the system with SH-DFS was close to 

the performance of the centralized system when b was 3 or 4. Therefore, two-bit soft fusion or  

three-bit soft fusion can be applied to improve the performance of the Con/Hard, where only a  

one-bit decision is transmitted. At the same time, when we need to get a tradeoff between 

communication costs and detection performance, it is meaningless to let b (the number of bits in b-bit 

soft fusion) be more than 4. 

 

Figure 11. The probability of detection of the clustered distributed system with SH-DFS (b = 2, 3, 4) 

and the centralized system versus SNR. 

Figure 12 shows the comparison of the performances of the clustered distributed systems with 

SH-DFS (N = 30, M = 4, b = 2), where Pe = 0 and Pe = 0.05 respectively. It was clear that the non-ideal 

communication channel had a negative influence on the clustered distributed system. It was 

necessary to take the non-deal communication channel into consideration. 

 

Figure 12. The probability of detection of the clustered distributed system with SH-DFS, where Pe = 0 

and Pe = 0.05. 

5.3. Different Probabilities of the Desired Global False Alarm at the FC 

Performances were analyzed by using the probability of detection versus the global desired 

probability of false alarm at the FC. Here, let SNR be 10 dB.  

Figure 13 shows the comparison of the performances of the distributed systems with the 

conventional hard decision, SH-DFS, the conventional soft decision, and of the centralized system. 

Here, let the number of local sensors be 30. We found that the centralized system had the optimal 

performance. The system with SH-DFS (a two-bit decision, M = 4) significantly outperformed the 

system which only used hard decision fusion (Con/Hard). In addition, the system with the SH-DFS 

had a similar performance with the system that only used soft decision fusion (a two-bit decision). 

Figure 12. The probability of detection of the clustered distributed system with SH-DFS, where Pe = 0
and Pe = 0.05.



Sensors 2018, 18, 4370 14 of 18

5.3. Different Probabilities of the Desired Global False Alarm at the FC

Performances were analyzed by using the probability of detection versus the global desired
probability of false alarm at the FC. Here, let SNR be 10 dB.

Figure 13 shows the comparison of the performances of the distributed systems with the
conventional hard decision, SH-DFS, the conventional soft decision, and of the centralized system.
Here, let the number of local sensors be 30. We found that the centralized system had the optimal
performance. The system with SH-DFS (a two-bit decision, M = 4) significantly outperformed the
system which only used hard decision fusion (Con/Hard). In addition, the system with the SH-DFS
had a similar performance with the system that only used soft decision fusion (a two-bit decision).

Sensors 2018, 18, 4370 14 of 18 

 

 

Figure 13. The probability of detection of four different methods versus the global desired 

probability of false alarm at the FC. 

Figure 14 shows the comparison of the performances of the clustered distributed systems with 

SH-DFS (M = 4, b = 2, Pe = 0.05), but with a different number of local sensors. The number of local 

sensors was fixed at 5, 15, 25, and 35. It was clear that given the same SNR and the global desired 

probability of false alarm at the FC, the probability of detection increased along with the increase in 

the number of local sensors. Furthermore, it was also clear that given the same SNR and the number 

of local sensors, the probability of detection increased along with the increase of the global desired 

probability of false alarm at the FC.  

 

Figure 14. The probability of detection of the clustered distributed system with SH-DFS at a different 

number of local sensors versus the global desired probability of false alarm at the FC. 

Figure 15 shows the comparison of the performances of the clustered distributed systems with 

SH-DFS (N = 30, b = 2, Pe = 0.05), but with a different number of clusters. With the rise of the cluster 

number, the probability of detection was increased. However, for the system with 30 local sensors, 

when the cluster number changed from 2 to 4, its probability of detection had a more significant 

improvement than that when the cluster number changed from 4 to 8. 

Figure 13. The probability of detection of four different methods versus the global desired probability
of false alarm at the FC.

Figure 14 shows the comparison of the performances of the clustered distributed systems with
SH-DFS (M = 4, b = 2, Pe = 0.05), but with a different number of local sensors. The number of local
sensors was fixed at 5, 15, 25, and 35. It was clear that given the same SNR and the global desired
probability of false alarm at the FC, the probability of detection increased along with the increase in
the number of local sensors. Furthermore, it was also clear that given the same SNR and the number
of local sensors, the probability of detection increased along with the increase of the global desired
probability of false alarm at the FC.
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Figure 15 shows the comparison of the performances of the clustered distributed systems with
SH-DFS (N = 30, b = 2, Pe = 0.05), but with a different number of clusters. With the rise of the cluster
number, the probability of detection was increased. However, for the system with 30 local sensors,
when the cluster number changed from 2 to 4, its probability of detection had a more significant
improvement than that when the cluster number changed from 4 to 8.Sensors 2018, 18, 4370 15 of 18 
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Figure 15. The probability of detection of the clustered distributed system with SH-DFS at a different
cluster number versus the global desired probability of false alarm at the FC.

Figure 16 shows the comparison of the performances of the clustered distributed systems with
SH-DFS (N = 30, M = 4, Pe = 0.05), where b was fixed at 2, 3, and 4. When b increased, the performance
of the system with SH-DFS also increased because more information was transmitted and fused to
make a global final decision. In addition, we found that the performance of the system with SH-DFS
was close to the performance of the centralized system with the increase of b. The system could achieve
a probability of detection of about 0.8 when the probability of false alarm was fixed at 0.1.
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and the centralized system versus the global desired probability of false alarm at the FC.

Figure 17 shows the comparison of the performances of the clustered distributed systems with
SH-DFS (N = 30, M = 4, b = 2), where Pe = 0 and Pe = 0.05. It was clear that the non-ideal communication
channel had a negative influence on the clustered distributed system.
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5.4. Soft Decision Fusion with Equal Gain Combining (EGC)

Soft decision fusion with equal gain combining (SH-EGC) is a soft fusion rule, which has a good
detection performance and is easy to apply [29]. It has been studied and widely used in cooperative
spectrum sensing systems. Here, we compare our method SH-DFS with SH-EGC. Let N be 30, M be 4,
Pe be 0.05, and SNR be 2dB for all local sensors.

Figure 18 shows the comparison of the detection performances of SH-DFS and SH-EGC. We found
that SH-DFS (b = 3, 4) had a good performance as well as SH-EGC without quantization, and the little
difference between them could be ignored. Although the largest number of quantization bits was
decided by the system in practice, the two-bit quantization or the three-bit quantization used in the
proposed method could usually be accepted, which helps the system achieve a probability of detection
of about 0.8 and 0.9 when the probability of false alarm was fixed at 0.1.
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6. Conclusions

In this paper, we propose a soft–hard combination decision fusion scheme for the clustered
distributed detection system with multiple sensors and non-ideal communication channels. Simulation
results show that the performance of the clustered distributed system with the proposed SH-DFS
significantly outperforms the system with only a conventional hard decision fusion. At the same
time, the clustered distributed system with the proposed SH-DFS had a similar performance to the
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centralized data fusion system when a three-bit decision or a four-bit decision was made in SH-DFS,
but it consumed less energy than the centralized system. From the simulation results, we found that
it was meaningless to let b (the number of bits in soft decision fusion in SH-DFS) be more than 4
when we want to get a tradeoff between communication costs and detection performance. In addition,
by clustering the distributed system in every round using FLS and the fuzzy c-means clustering
algorithm, the lifetime of the system could be extended because the load could be shared in all local
sensors. The proposed method could be applied to the cooperative spectrum sensing system, to the
underwater target detection system and the radar target detection system and so on.
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