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To study the relationship between brain network and shooting performance during shooting aiming, we collected electroen-
cephalogram (EEG) signals from 40 skilled shooters during rifle shooting and calculated the EEG functional coupling, functional
brain network topology, and correlation coefficients between these EEG characteristics and shooting performance. Our result
shows a significant negative correlation between shooting performance and functional coupling between the prefrontal, frontal,
and temporal regions of the right brain in the Beta1 and Beta2 frequency bands. Global and local brain network topology
characteristics were also significantly correlated with shooting performance.,ese findings indicate that under these experimental
conditions, shooters with higher shooting performances exhibit lower functional coupling, higher global, and lower local in-
formation integration efficiency during shooting. ,ese conclusions may provide a theoretical basis of the EEG brain network for
studying the mental status of shooters while shooting.

1. Introduction

In the field of motor neuroscience, the neural efficiency
hypothesis is a crucial research hotspot; this hypothesis was
initially applied to the study of cognitive tasks, and then
extended into the field of sports Science [1–4]. Hatfield and
Kerick detailed how the neural efficiency is reflected in
psychomotor behavioral and suggested that less complexity in
the processes associated with motor control or a reduction in
the degrees of freedom of relevant neural network actions
may lead to greater consistency of the resultant motor per-
formance [5]. Consequently, more skilled athletes tend to
have lower levels of brain activity than novice during the
motor behavior. In addition, as athletes become more skilled,
these processes couldmediate the reduction in the widespread
activity in regions mapping executive control; and could
result in a shift toward more automated processing [6].
,is phenomenon could be attributed to the neuroplasti-
city caused by long-term professional skill training, that is,

marked changes in the structure and function of the brain of
the skilled athletes compared with the ordinary untrained
subjects [7]. ,us, the neural efficiency hypothesis can be
reflected in neural signals (such as electroencephalogram
(EEG), forming some specific neural markers that are closely
associated with the motor performance; the most common
EEG markers include band power characteristics and vent-
related desynchronization/event-related synchronization
(ERD/ERS) characteristics [8, 9].

By studying these neural markers closely related to motor
performance, we can evaluate the level of athletes and guide
the training, resulting to improve motor performance. For
example, elite gymnasts and karate athletes exhibit lower
amplitude of frontoparietal Alpha ERD during movement,
compared to novices [10]. During eyes closed resting states,
elite karate athletes exhibit higher amplitude parietal and
occipital Alpha1 band power compared to novices [11]. In the
field of shooting, Hatfield et al. found that when the firing
time approached, the Alpha band power in the left temporal
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regions of experts continued to increase [12, 13]. Del Percio
et al. found that the ERD amplitude in the Alpha and Beta
bands, during the aiming phase, was significantly lower than
that observed in novices [14]. Hung et al. found that skilled
shooters had increased power in the Alpha1, Alpha2, and
Beta1 bands during actual aiming compared to a postural
control condition [15]. Furthermore, di Fronso et al. divided
the shooting movement into four types based on the shooting
performance and level of action control and investigated the
EEG ERD/ERS activity during different types of shooting
aiming. ,is method provides more accurate support and
more targeted neural markers for the study of motor per-
formance [16]. In addition to the traditionally analysis, some
scholars studied EEG changes during shooting from the
perspective of brain functional coupling. Deeny et al. analyzed
differences in EEG coherence and phase shift characteristics
between experts and novices and found that Alpha and Beta
band coherence between the right frontal, and other brain
regions, was lower in expert shooters, compared to novices
[17, 18]. Del Percio et al. proposed the concept of Event
Related Coherence (ERCoh), and they found that the experts’
intrahemispheric Alpha1 (parietal-temporal and parietal-
occipital regions), Beta2, and Gamma (parietal-temporal
regions) ERCoh exhibited more stable amplitude than nov-
ices during the preparation of pistol shots [19].

In recent years, neuroscientists have suggested that the
brain is an efficient, sparse, small-world network of regions
that perform different functions. When performing different
tasks, discrete brain areas coordinate with each other to
complete a series of simple or complex jobs [20–22]. In-
vestigatory methods based on brain networks have several
advantages in terms of their practical application: they can
both analyze the cooperative work of different functional
areas of the brain and reveal dynamic changes in topology
characteristics in participants performing tasks. ,erefore,
research based on this concept has attracted much attention
[23–27].

In summary, although EEG dynamics during shooting
aiming has been previously investigated, a comprehensive
study using brain network methods to analyze EEG data is
lacking. To date, the dynamics of the brain network during
the aiming period and whether the functional brain network
during the aiming period is related to shooting performance
are unknown. At the same time, we also do not know which
specific frequency bands, brain regions, connection, and
network topology characteristics are most closely related to
shooting performance. ,erefore, we hypothesize that the
brain network, especially functional coupling characteristics
and brain network topological characteristics, is closely
linked to shooting performance in skilled shooters. To test
this hypothesis, we collected EEG signals from 40 shooters
over the entire shooting process and performed a correlation
analysis between EEG functional coupling, characteristics of
brain network topology, and shooting performance.

2. Materials and Methods

2.1. Subjects. ,e experiment was conducted at an armed
police training base in China Xi’an; 40 healthy subjects

(Chinese armed police officers, men, age: 20 ± 2 years) took
part in this experiment. Individuals were eligible to par-
ticipate if they

(i) had no neurologic disorders, such as epilepsy,
(ii) had never experienced a major head injury resulting

in coma or craniotomy,
(iii) pulled the trigger with the right hand and aimed

with the right eye.

All subjects were trained for 2 years and attended at least
two shooting sessions each week for 2 hours. According to
the study time and training intensity, the shooting level can
be judged as skilled shooters [28]. ,is experiment un-
derwent review by the university ethics committee. Partic-
ipants voluntarily took part in this research, understood the
experimental process and purpose, and provided written
informed consent to participate.

2.2. Experimental Procedures. EEG acquisition was divided
into two parts: the resting state and the shooting stage. During
the resting state, the subjects sat in a comfy seat, kept their
eyes closed and eyes opened for an acquisition time of 5min.
During the shooting state, the subjects used a type 95 rifle with
5.8-mm caliber bullets, aiming at the outside of a target 100m
away.,e target size is 52 × 52 cm with 10 ring diameter of 10
cm. Each extension of 5 cm from the edge of the 10 ring is 9, 8,
7, 6 ring (as shown in Figure 1). Every shooter takes a prone
position, single firingmode, after firing the feedback score, the
shooter adjusts the aiming point by themselves according to
the score, and then performs the next shot. All subjects
performed 60 shots at their own pace. Each shot time is
recorded by a sound sensor and transmitted to the EEG
acquisition device as the firing time tag (>90 dB). According
to the rules of uniform shooting performance assessment of
the Chinese armed police officers, target hits were scored from
6 to 10, while a miss being scored as 0.

2.3. EEG Acquisition and Preprocessing. In this study, we
used a portable Holter-16D EEG amplifier (Symtop In-
strument, Beijing, China). Electrode placement was in ac-
cordance with the international 10–20 system, comprising
16 electrodes. Detailed electrode placement is illustrated in
Figure 2(a). Data were recorded sampled at 1000Hz and
filtered online with a notch filter of 50Hz.

After acquisition, EEG signals were first subjected to
a band-pass filter of 0.1–50Hz band-pass filtering by
EEGLAB toolbox [29]. According to the position of the
firing time, the EEG data of 6 s before firing and 2 s after
firing was selected. It was recorded as a trial. Remove the
trails that affected by EMG or body movements influence
(remove rate ≈ 17%). Finally, 38 subjects (two subjects were
removed) and 1904 usable trials were obtained (each subjects
have about 50 trials).

Alpha power in the closed eye resting-state EEG was
computed by the occipital area to define each subject’s in-
dividual alpha frequency (IAF). After being tested in ac-
cordance with the definition of each IAF frequency range:
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theta frequency ranges as IAF − 6Hz to IAF − 4Hz, alpha1 as
IAF − 2Hz to IAF, alpha2 as IAF to IAF + 2Hz, Beta1 2 as
IAF + 2Hz to 20Hz, and Beta2 as 20 to 30Hz [29]. Due to
shoot is a fine movement, neural activity before aiming
changes rapidly.,erefore, we define the firing time tag as 0 s
and divide the EEG before firing time tag into three time
windows. Each two second time window was defined as
Win1 (−6 s to −4 s), Win2 (−4 s to −2 s), and Win3 (−2 s to
0 s) (Figure 2(b)).

,e analysis process is presented in Figure 1. First, the
most suitable for the analysis frequency band and time
window were determined. ,en, EEG characteristics were
extracted in the selected frequency band and the time
window, including the coupling strength, global brain
network topology, and local brain network topology. Final,
correlation analysis between the EEG characteristics and
shooting performance was performed, and the statistical
results were obtained.

2.4. Functional Coupling Analysis. In this article, we use the
phase locking value (PLV) method to calculate the func-
tional coupling of each EEG signals pairs [31, 32]. ,e
calculation process comprises the following steps [33].
First, depending on the IAF and band division of each
subject, Butterworth band-pass filters with different

frequency bands are constructed respectively. ,en,
EEG signals of each subject are band-pass filtered, and
the filtered EEG signals are obtained at a given frequency
band. Second, perform the Hilbert transformation to the
filtered EEG. ,en, the phase value of the signal is com-
puted according to the original signal and the transformed
conjugate signal. Finally, according to the phase values of
the two sets of signals, the average value of the phase
difference between two signals is calculated [34]. ,e above
calculation process was also implemented within the
MATLAB 2014 platform.

,e EEG data format after preprocessing was 38 × 50 ×

16 × 6000, representing 38 subjects, 50 trails, 16 channels,
and 6000 data samplings. In this paper, we mainly study the
EEG signals during Win3 window in the Beta1 and Beta2
bands (the detail seen result section). Finally, the connection
matrices of subjects are obtained, and the data format is 16 ×

16 × 2 × 38, representing the 38 subjects, 2 frequency bands,
and the 16 × 16 is the connectivity matrices.

2.5. Topology Characteristics of Brain Network. For the
functional coupling characteristics calculated, we re-
spectively analyzed the following topology characteristics.

Coupling strength, the original connection value ob-
tained from the PLV method, was averaged by the coupling
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Figure 1: (a) ,e parameter selecting: frequency bands and time windows which most closely related to shooting performance were
determined. (b) Signal processing: PLV values between each two EEG channels were calculated in the selected frequency band (Beta1 and
Beta2) and the time window (Win3). (c) Correlation analysis: the correlation between PLV network characteristics and shooting per-
formance was calculated. ,e above is the correlation analysis between the coupling strength and shooting performance. ,e median is the
correlation analysis between the brain network global topology characteristics and shooting performance. ,e down is correlation analysis
between brain network local topology characteristics and shooting performance.
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values of all available trials for each subject. ,en, based on
the functional coupling matrix of each subject, without
threshold, coupling value between all nodes was reserved,
and the brain function weight network was obtained. We
additionally performed the brain network topology analysis
under this brain network condition.

Central to brain network analysis is graph theory
analysis, which considers different regions of the brain as
nodes and considers the connection relations as edges, and
then uses graph theory to compute the global or local to-
pological characteristics of the network [35].

In the global characteristics analysis, four characteristics
are chosen: the clustering coefficient (C), mean local effi-
ciency (El), characteristic path length (Lc), and global effi-
ciency (Eg).

,e clustering coefficient is

C �
1
n

􏽘
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where C is the clustering coefficient of all nodes and the
clustering coefficient of each node (Ci) represents the
probability of a connection to a given neighboring node.

,e mean local efficiency is
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where El,i represents the local efficiency of node i and
djh(Ni) represents the length of the shortest path between j

and h that contains only neighbors of i. ,e mean local
efficiency represents the average efficiency of all sub-
networks (subnets) in the brain network and each subnet
consists of all nodes directly connected to a given node [36].

,e characteristic path length is

Lc �
1
n

􏽘
i∈N

Li �
1
n

􏽘
i∈N

􏽐j∈N,j≠idij

n− 1
, (3)

where Lc is the average of the shortest path for all pairs of
nodes. In the weight matrix, the length of the edge con-
nection is the reciprocal of the connectivity value and the
characteristic path of each pair of nodes (Li) is the shortest
of all paths from node i to node j [37]. ,e characteristic
path length measures the overall routing efficiency of the
network.
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Figure 2: (a),e placement of electrodes using the standard 10–20 system (16 channels: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,
T4, T5, and T6. Forehead: ground, left, and right mastoid processes: references). (b) ,e experimental process.
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,e global efficiency,

Eg �
1
n

􏽘
i∈N

􏽐j∈N,j≠i dij􏼐 􏼑
−1

n− 1
, (4)

is the average of the inverse of the shortest path for all pairs
of nodes. If the shortest path between nodes is smaller, global
efficiency is higher. Alternatively, lower global efficiency
indicates a longer, shortest path between nodes [36].

For local characteristics, choose the average coupling
strength, local efficiency, eigenvector centrality, and the local
clustering coefficient as four analysis characteristics.

,e average coupling strength is the accumulate sum of
the element of the matrix row or column. ,e calculation
formula is

Si � 􏽘
N

j�1
CVi(i, j), (5)

where i and j represent the node i and node j, and N

represents the total number of nodes.
,e local clustering coefficient reflects the probability

of the connection between neighboring nodes connected to
this node. ,e computational formula is shown as Ci in
Formula (1).

,e eigenvector centrality can reflect the importance of
object degree synthetically. ,e formula is shown in

Di � u 􏽘
n

j�1
aijxj,

Ax � λx or equivalently,

x �
1
λ

Ax,

(6)

where Di represents the eigenvector centrality of node i, A

represents the adjacency matrix, λ represents the max ei-
genvalue, x represents the eigenvector, and u represents 1/λ.
,e eigenvector centrality of node i can be represented as the
weighted sum of the eigenvector of the other nodes.

,e local efficiency of the brain network reflects the
transmission efficiency of the node graph. ,e computa-
tional formula is shown as Ei in Formula (2).

2.6. Statistical Analysis. We hypothesized that the functional
coupling and network topology characteristics during Win3
window in Beta1 band and Beta2 band are correlated with the
shooting performance of the subjects. To verify this hypothesis,
we use the statistical analysis to analyze the correlation between
characteristics and shooting performance. Each subject’s
shooting performance is evaluated by the average of 55 times
shot’s score.,e average shooting performance of subjects was
8.8 ± 0.41. EEG characteristics and shooting performance were
assessed for Gaussian distribution using the Kolmogorov–
Smirnov test. ,e results show that shooting performance
followed the Gauss distribution (P> 0.05), but not all EEG
characteristics subjected the Gauss distribution. So, we choose
the Spearman rank correlation analysis to perform the cor-
relation analysis and calculate the correlation coefficients (r).

In order to decrease the influence of outliers, the outlier
removal strategy was as follows. First, the linear regression
equation of EEG characteristics and shooting performance
was calculated for all the samples, according to the above
rules. ,en the distances between each sample point and the
regression equation were calculated, and we removed the
sample points of the 10% maximum distance (three points)
from the regression equation. Finally, we calculated the
correlation coefficients of the sample after removing the
outliers, and the final correlation coefficients were obtained.

3. Results

3.1. Frequency Band and Time Window for Analysis. To
determine the frequency band and time window most
suitable for the analysis of brain network activity during
aiming, we analyzed correlations between the mean PLV and
shooting performance in six frequency bands (,eta to
Beta2) and three time windows (Win1 to Win3). As showed
in Table 1, correlation coefficients were strongest in the
Beta1 band and slightly weaker in the Beta2 band (r � −0.45,
P< 0.01 in Beta1; r � −0.38, P< 0.05 in Beta2). Correlation
coefficients during Win3 were the highest among the three
time windows. Consequently, we mainly evaluated the
coupling strength and brain network topology in the Beta1
and Beta2 bands during Win 3.

3.2.5e Relationship between Coupling Strength and Shooting
Performance. Figure 3 shows the correlation analysis be-
tween the functional coupling strength in Beta1 and Beta2
bands and shooting performance. ,e link in the figure
represents the functional connection that showed a signifi-
cant correlation with the shooting performance (P< 0.05,
uncorrected). ,e functional coupling strength during the
aiming period was negatively correlated with the shooting
performance. ,e lower the functional coupling strength in
the Beta1 and Beta2 bands, the better the shooting perfor-
mance. Furthermore, correlations were the strongest in the
right hemisphere (right prefrontal, right frontal, and right
temporal regions). ,us, there was an obvious laterality:
weaker functional coupling in right brain was associated
with better shooting performance.

3.3. 5e Relationship between Network Topology Character-
istics and Shooting Performance. Table 2 shows means,
standard deviations, and correlation coefficients of the global
brain network topological characteristics in Beta1 and Beta2
frequency bands duringWin3. As Table 2 shows, the clustering
coefficient and the characteristic path length in the Beta1 band
significantly correlated with the shooting performance. In the
Beta2 band, the clustering coefficient, the characteristic path
length, global efficiency, andmean local efficiency significantly
correlated with the shooting performance.

Regarding local brain network topology, we analyzed
four characteristics: the average coupling strength, local
efficiency, eigenvector centrality, and local clustering co-
efficients (Figure 4).
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In the Beta1 band, average coupling strength, local
efficiency, and local clustering coefficients in almost all
brain areas significantly negatively correlated with shooting
performance. Regarding eigenvector centrality, the O1 and
O2 nodes showed significant positive correlations, while
the F8 node in the right frontal region showed significant
negative correlations with shooting performance.

In the Beta2 frequency band, all four local brain net-
work characteristics negatively correlated with shooting
performance. For average coupling strength, local effi-
ciency, and clustering coefficient, only the Fp1, Fp2, F8, P4,
T6, O1, and T5 nodes showed significant negative corre-
lations with shooting performance. For eigenvector cen-
trality, only the Fp2 and F8 nodes in the right frontal region

showed significant negative correlations with shooting
performance.

4. Discussion

We collected and analyzed shooting performance data and
EEG signals of 40 skilled shooters and found that the shooting
performance significantly correlated with the characteristics
of EEG brain network during aiming. Particularly, we ob-
served a correlation between the mean PLV and shooting
performance only in Beta1 and Beta2 frequency bands.
Moreover, functional coupling, global topology, and local
topology were also significantly correlated with shooting
performance.,ismay indicate that the neural activity during

Table 1: Mean value (M), standard deviation (SD), and correlation coefficient (r) betweenmean PLV and shooting performance in different
frequency bands and different windows. Win1, Win2, Win3, respectively, represents the three time windows during shooting aiming. Win1
represents −6 s to −4 s, Win2 represents −4 s to −2 s, Win3 represents −2 s to 0 s, and 0 s represent the firing time. ,e above were M ± SD.
,e down were r.

,eta Alpha1 Alpha2 Beta1 Beta2

Win1 0.63 ± 0.06 0.65 ± 0.10 0.65 ± 0.11 0.59 ± 0.10 0.58 ± 0.10
−0.02 −0.06 −0.31 −0.41∗ −0.28

Win2 0.61 ± 0.06 0.64 ± 0.09 0.65 ± 0.11 0.59 ± 0.10 0.58 ± 0.10
−0.06 −0.04 −0.30 −0.42∗ −0.26

Win3 0.60 ± 0.16 0.64 ± 0.10 0.66 ± 0.12 0.60 ± 0.11 0.58 ± 0.11
−0.05 −0.08 −0.33 −0.45∗∗ −0.38∗

∗P< 0.05, ∗∗P< 0.01.
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Figure 3:,e correlation analysis between functional coupling strength and the shooting performance in Beta1 and Beta2 bands.,e color-
based lines in the figure represent the correlation coefficient of the significantly correlated connection pair (P< 0.05, uncorrected) between
each link and shooting performance. ,e color bar on the right represents the relationship between the correlation coefficient (r) and the
color. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.

Table 2: ,e brain network global topological characteristic in Beta1 and Beta2 band. ,e above is the characteristic’s mean value and
stander deviation. ,e down is the characteristic’s correlation coefficient between the brain network characteristics and shooting per-
formance. C represents the clustering coefficient, El represents the mean local efficiency, Lc represents the global characteristics char-
acteristic path length, and Eg represents the global efficiency.

Frequency band C El Lc Eg

Beta1 M ± D
(r)

0.53 ± 0.15
0.45 (∗∗)

0.49 ± 0.13
−0.45(∗∗)

0.32 ± 0.19
−0.43(∗)

3.91 ± 2.31
0.29

Beta2 M ± D
(r)

0.50 ± 0.14
−0.49 (∗∗)

0.46 ± 0.13
−0.49 (∗∗)

0.26 ± 0.18
−0.55 (∗∗)

4.95 ± 2.77
0.47 (∗∗)

∗P< 0.05, ∗∗P< 0.01.
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aiming reflects the shooting state or that the neural activity
during aiming affects shooting performance.

4.1. Significant Frequency Band and Time Window. Before
discussing the correlation between the characteristics and
shooting performance, we first determined the most suitable
frequency band and time window for analysis.

First, in comparing correlations between the mean PLV
and shooting performance in all possibly analyzed frequency
bands, we found that a significant correlation between the
mean PLV and shooting performance during aiming on
Beta1 and Beta2 bands. No significant correlation was
discovered in the other frequency bands. In the literature, it
has been reported that the ,eta band signal appears during
sleepiness and is also associated with a negative mood; the
Alpha band signal has been reported to be related to whole
brain arousal and professional information processing; the
Beta band signal has been related to intense emotion and
excitement [38, 39]. ,erefore, previous papers had mainly
studied EEG dynamics within the Alpha band. Research on
EEG dynamics in the Beta band is relatively infrequent
[15, 17, 19, 40]. In this paper, we examined the correlation
between EEG features and shooting performance in all
frequency bands using correlation analysis. We found that
EEG characteristics in the Beta frequency band were more
closely related to shooting performance than in another
frequency band.

In previous studies on the EEG functional coupling in
shooting, Woo and Kim did not establish a significant corre-
lation between the functional coupling of Beta rhythm and the
shooting performance; however, this paper reported a significant
correlation between them [41]. ,ere may be set of two reasons
for this difference.On the one hand, the experimental conditions

of this study differed from those of previous reports. In pre-
ceding studies, shooters were mostly asked to adopt a standing
position, whereas in the present study, shooters were asked to
adopt the prone position. On the other hand, the shooters in this
study were not expert shooters, but generally skilled shooters. In
contrast, previous papers compared expert to novice shooters.
,us, it is possible that because not all shooters in this studywere
experts, tension and excitement may have been stronger in our
shooters than experts. ,is may underlie our observation of
strong correlations between the EEG characteristics in Beta
frequency band and shooting results.

Next, we compared correlation coefficients between EEG
dynamics in the Beta frequency band and shooting perfor-
mance in three time windows. We found that the correlation
coefficient in Win3 was larger than in Win1 and Win2. In
previous studies, it has been reported as the time of shooting
was approaching changes in EEG characteristics becamemore
significant. For example, Kerick et al. found that Alpha2
frequency band power increased most significantly in the left
temporal region during the Win3 window. Del Percio et al.
found that the ERD/ERS during the Win3 window was the
most significant during the aiming [12, 40, 42]. ,us, the
results of this study are in line with previous reports.
Moreover, these results also point out that not only are the
most significant changes in EEG characteristics produced
when closest to the shot, but also when the closer the re-
lationship is to the shooting performance. ,ese results show
that for the shooters, the closer the time for firing, the more
the shooters need to maintain a good mental state.

4.2. Laterality and Functional Coupling during Aiming.
We analyzed correlations between coupling strength and
shooting performance. We found that coupling of Fp1-T6,
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Local
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Clustering
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Eigenvector
centrality

Local
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0.6
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–0.2

–0.4
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Figure 4:,e correlation analyses between local brain network topological characteristics and shooting performance in the Beta1 and Beta2
band. ,e black nodes indicate electrode position. ,e color-based regions in the figure represent the correlation coefficient of the
significantly correlated connection pair (P< 0.05, uncorrected) between each local network topological and shooting performance. Red
indicated positive correlations. Blue indicated negative correlations, and color depth represents the correlation coefficient strength. ,e
color bar on the right represents the relationship between the correlation coefficient (r) and the color. For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.

Computational Intelligence and Neuroscience 7



Fp2-T4, F7-F8, and F8-T6 correlated most significantly with
shooting performance. ,ese electrodes were mainly located
in the prefrontal, frontal, and right temporal region. In
previous studies, it has been reported that the prefrontal and
frontal cortices are mainly responsible for advanced task
planning and attention; the parietal region is mainly re-
sponsible for sensorimotor information processing and the
right temporal region is mainly responsible for visual-spatial
tasks [14, 43, 44]. ,erefore, the strong relationships between
these regions and shooting performance indicate that these
brain regions and the communication between these regions
play a key role in performing the shooting task. Deeny et al.
and Del Percio et al. have shown that the level of brain activity
of expert shooters during aiming is significantly lower than
that of novices, reflecting low energy consumption and high
efficiency during aiming [14, 17, 18, 45]. In the present
studies, we mainly observed significant negative correlations.
In particular, better shooting performance was linked to lower
coupling strength. Stronger coupling is involved in higher
energy consumption. ,erefore, our results are in accordance
with the conclusion that the high-level shooters show low
consumption and high efficiency phenomenon during
aiming.

Compared to functional coupling analyses performed in
previous studies, a unique contribution of the analysis per-
formed in the present study is that no regions or electrodes of
interest were set a priori. In contrast, Deeny et al. have focused
on the connection between the frontal region and other brain
regions. Del Percio et al. mainly focused on the connection
between the parietal region and other brain regions [17, 19].
In this paper, we analyzed the correlation between shooting
performance and all correlation of EEG channels. ,erefore,
the results of this paper provide a more comprehensive view
of the relationship between functional coupling and shooting
performance than previous studies. We not only confirm
previous conclusions on functional coupling, but also com-
pare these previously reported correlations with other pos-
sible functional coupling under the same experimental
conditions.We found that among all possible correlations, the
correlation between prefrontal, frontal, and right temporal
regions are the key areas involved in the shooting.

4.3.BrainNetworkCharacteristicsduringAiming. Finally, we
performed a topological analysis of functional brain net-
works. For this purpose, we analyzed the correlation co-
efficients of global and local characteristics of the brain
network and shooting performance. In the global network
topology analysis, we found that shooters with better
shooting performance had lower clustering coefficients,
lower local efficiency, shorter characteristic path length, and
higher global efficiency during aiming.

Previous brain network topology analyses have shown
that the clustering coefficient and mean local efficiency
reflect the local information transformation efficiency, while
the characteristic path length and global efficiency reflect the
global information transformation efficiency [27]. Our re-
sults indicate that increased efficiency of local information
integration during aiming results in worse shooting

performance. In contrast, increased global information in-
tegration efficiency facilitates shooting performance.

Interestingly, according to previous studies that in-
vestigated the relationship between brain network and cog-
nitive task performance, healthy subjects with higher
intelligence quotients and faster response times usually showed
higher global information integration efficiency and lower
local information integration efficiency, shorter characteristic
path length, and lower network clustering coefficients [46–48].
Although these studies investigated cognitive tasks rather than
physical activity, according to the results of the paper, it is
inferred that the brain network topology, which is significantly
related to the performance of cognitive tasks, can also be used
to reflect the shooting performance. ,is phenomenon may
indicate that shooting tasks, as a kind of fine motion, are
similar to cognitive tasks, and similar neural processes may be
shared in the execution of both tasks.

,e results of the local network topology analysis provide
information about the key brain regions involved in the
aiming process. Similar to global network topology, the mean
connectivity, local clustering coefficient, and local efficiency of
most nodes were negatively correlated with shooting per-
formance. ,is may indicate that shooters with better
shooting performance have lower neural activity in all regions
of the brain during aiming. Eigenvector centrality, which
reflects the importance of nodes in a network, showed that the
right frontal region (F4), the right parietal region (P4), the
right frontal region (F8), the left frontal region (F3), and the
occipital region (O1 and O2) had significant negative cor-
relations with shooting performance. We speculate that these
nodes may be hub nodes and play an important role in the
process of aiming. ,ese nodes include the frontal regions,
which are regarded as related to advanced information
processing; parietal regions, which are related to sensorimotor
perception; and the occipital lobes, which related to visual
perception and visual-spatial movement [49–53]. ,e nodes
mentioned above have been proposed to be involved in the
default network, dorsal attention network, and visual pro-
cessing network [13, 54]. Taken together, our results indicate
that aiming for shooting is a joint and cooperative action of
a variety of brain networks that jointly affect shooting per-
formance. However, as a note of caution, it should be con-
sidered that our results merely show a significant correlation
of eigenvector centrality of these nodes and shooting per-
formance, not that the eigenvector centrality of these nodes is
higher than that of other nodes during the aiming period.

Using the PLV network, although we have gained some
understanding of the correlation between the EEG brain
network activity in Beta band and the shooting performance,
there still some limitations persist in this work. First, as the
experimental condition of this paper is the rifle shooting of the
prone position, it cannot be inferred whether the same result
exists for the shooting of other guns (such as pistols) or other
positions (such as the standing position). In addition, as for
experimental subjects, a significant gap exists in the shooting
level between skilled armed police shooters and shooting ex-
perts; thus, the conclusion does not necessarily apply to the
higher level of shooting athletes. Hence, in the future research,
we will investigate the correlation between the shooting
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performance and EEG network characteristics under other
experimental conditions, to obtain more accurate research
results.

5. Conclusion

In this paper, we collected EEG and shooting performance
data from 40 shooters and analyzed correlations between
EEG functional network characteristics and shooting per-
formance. Our most significant conclusions are as follows.
(1) When comparing the correlation between EEG char-
acteristics and shooting performance in different frequency
bands and time windows, the strongest correlations with
shooting performance were found in the Beta1 and Beta2
bands during the Win3 time window. ,is indicates that the
closest time window to the firing time has the strongest
relation to shooting performance. (2) ,e correlation
analysis between EEG characteristics and shooting perfor-
mance showed a significant laterality for the functional
coupling activity during aiming. ,e most significant
functional coupling related to shooting performance was to
be found in the right hemisphere, and the strongest func-
tional coupling was observed between the right prefrontal,
frontal, and the right temporal lobe. ,is indicates that
shooting behavior involves the prefrontal cortex, which is
responsible for advanced planning, and the right temporal
lobe, which is a charge of for the visual-spatial functions. (3)
We observed a significant correlation between global and
local characteristics of the functional brain network and
shooting performance. Our findings suggest that shooters
with better shooting performance have higher global brain
integration efficiency and lower local information in-
tegration efficiency. We also report key nodes that play an
important role during the aiming period. Based on this
paper, shooting coaches could try to monitor the changes of
EEG functional coupling and network topology in the
shooting aiming process and could guide shooters in aiming
to automatically adjust these EEG characteristics by the use
of neural feedback and learn to maintain a good shooting
spirit, thereby improving the shooters’ performance.

Data Availability

,e data “PLV_ Matrix.mat” is the subjects’ functional
coupling matrix-based PLV; the data format is 16 × 16 × 2 ×

40, which represents the channel × channel × frequency
band × subject; frequency bands include Beta1 and Beta2
band.,e data “Shooting Performance.mat” is each subject’s
average shooting performance of 55 shots score.

Additional Points

EEG characteristics in Beta1 and Beta2 bands during WIN3
showed the strongest correlations with shooting perfor-
mance among all frequency bands and time windows.
Functional coupling between the prefrontal, frontal, and
right temporal brain regions during the aiming period was
the most negatively correlated with the shooting perfor-
mance. Shooters with better shooting performance showed

higher global brain integration efficiency and lower local
information efficiency.
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