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Abstract. The insulin-like growth factor binding pro- 
teins (IGFBPs) are a family of six secreted proteins 
which bind to and modulate the actions of insulin-like 
growth factors-I and -II (IGF-I and -II). IGFBP-5 is 
more conserved than other IGFBPs characterized to 
date, and is expressed in adult rodent muscle and in the 
developing myotome. We have shown previously that 
C2 myoblasts secrete IGFBP-5 as their sole IGFBP. 
Here we use these cells to study the function of IGFBP-5 
during myogenesis, a process stimulated by IGFs. We 
stably transfected C2 cells with IGFBP-5 cDNAs under 
control of a constitutively active promoter. Compared 
with vector-transfected control cells, C2 myoblasts ex- 
pressing the IGFBP-5 transgene in the sense orienta- 
tion exhibit increased IGFBP-5 levels in the extracellu- 
lar matrix during proliferation, and subsequently fail to 
differentiate normally, as assessed by both morphologi- 
cal and biochemical criteria. Compared to controls, 

IGFBP-5 sense myoblasts show enhanced survival in 
low serum medium, remaining viable for at least four 
weeks in culture. By contrast, myoblasts expressing the 
IGFBP-5 antisense transcript differentiate prema- 
turely and more extensively than control cells. The inhi- 
bition of myogenic differentiation by high level expres- 
sion of IGFBP-5 could be overcome by exogenous 
IGFs, with des (1-3) IGF-I, an analogue with decreased 
affinity for IGFBP-5 but normal affinity for the IGF-I 
receptor, showing the highest potency. These results 
are consistent with a model in which IGFBP-5 blocks 
IGF-stimulated myogenesis, and indicate that seques- 
tration of IGFs in the extracellular matrix could be a 
possible mechanism of action. Our observations also 
suggest that IGFBP-5 normally inhibits muscle differ- 
entiation, and imply a role for IGFBP-5 in regulating 
IGF action during myogenic development in vivo. 

T 
HE involvement of growth factors in the regulation 
of myoblast proliferation and differentiation is well 
established (for review see references 16, 32). Un- 

like most growth factors, the insulin-like growth factors 
(IGFs) 1 stimulate both mitogenesis and myogenesis in 
vitro (14), an apparent paradox since terminal differentia- 
tion requires withdrawal from the cell cycle. The mecha- 
nisms by which IGFs stimulate myogenesis are unclear, 
but may involve regulation of the helix-loop-helix tran- 
scription factors myf-5 and myogenin (17, 28), whose 
forced expression is sufficient for conversion of fibroblasts 
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into myoblasts (4, 10), and which regulate many muscle- 
specific genes (26). Recently, the importance of IGF action 
in muscle formation and differentiation has been docu- 
mented in vivo. Mice lacking the IGF-I receptor have im- 
paired muscle formation and die shortly after birth (27). 
Therefore, regulation of IGF activity during development 
may be critical for proper muscle formation. 

One mechanism by which IGF activity is modified is 
through high affinity interactions with insulin-like growth 
factor-binding proteins (IGFBPs). The IGFBPs are com- 
prised of a family of six secreted proteins which share 
~50% amino acid sequence identity (for review see refer- 
ences 3, 22). Postulated mechanisms by which IGFBPs 
modulate growth factor activity include (1) protecting 
IGFs from proteolytic degradation, (2) targeting IGFs in 
serum to specific tissues, and (3) regulating local IGF 
availability to receptors by sequestration in extracellular 
storage pools. IGFBPs have been shown to both enhance 
and inhibit IGF-mediated cellular proliferation (22), but 
their effects on IGF-stimulated cellular differentiation re- 
main largely unknown. 

Recently, we cloned the cDNA encoding murine IGFBP-5 
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from myoblast cell lines and showed that it is the most con- 
served IGF-binding protein identified to date (21). In ro- 
dents, IGFBP-5 is expressed in the developing myotome 
(19) and in adult smooth and skeletal muscle (21). In addi- 
tion, we have identified multiple skeletal muscle cell lines 
which secrete IGFBP-5 in a differentiation-dependent 
manner (21, 29, 37, 39, 41). Therefore, IGFBP-5 is a likely 
candidate to regulate IGF activity in muscle development 
and differentiation. 

To investigate directly the role of IGFBP-5 during myo- 
genic differentiation, we transfected C2 myoblasts with 
expression plasmids containing a murine IGFBP-5 coding 
region cDNA in either the sense or antisense orientation. 
Unlike some myoblast cell lines (29, 39), C2 cells produce 
no other IGFBPs (21, 41), rendering them a useful model 
in which to study IGFBP-5 function without potential 
interference from other IGFBPs. Constitutive expression 
of the IGFBP-5 cDNA in the sense orientation resulted in 
increased IGFBP-5 protein expression during myoblast 
proliferation, a diminished capacity to differentiate, and 
enhanced survival in reduced serum medium. These phe- 
notypic changes could be reversed by addition of exogenous 
IGFs. By contrast, constitutive expression of the IGFBP-5 
cDNA in the antisense orientation led to precocious bio- 
chemical and morphological differentiation. Our results 
show that IGFBP-5 can contribute to the regulation of 
muscle differentiation through a mechanism which in- 
volves modulation of IGF activity. 

Materials and Methods 

Materials 
Enzymes, including restriction enzymes, ligases and polymerases were 
from Life Technologies (Gaithersburg, MD), Perkin-Elmer/Cetus (Nor- 
walk, CT), New England Biolabs (Beverly, MA), and United States Bio- 
chemical (Cleveland, OH). DNA linkers were also purchased from New 
England Biolabs. Ribonucleotide triphosphates and deoxyribonucleotide 
triphosphates were purchased from Pharmacia-Biotechnology (Piscat- 
away, N J). Radionuclides were from Dupont-New England Nuclear (Bos- 
ton, MA). Plasmid bluescript was from Stratagene (La Jolla, CA) and 
pcDNAlneo was from Invitrogen (San Diego, CA). The pBAT vector 
was obtained from Dr. Arnd Annweiler (Heidelberg, Germany) (1) and 
pEMSVscribe~2 was from the late Dr. Harold Weintraub (Seattle, WA). 
Tissue culture media, sera and geneticin were purchased from Life Tech- 
nologies. Creatine kinase enzymatic reagents and secondary antibodies 
were obtained from Sigma Chem. Co. (St. Louis, MO). BCA protein 
quantitation reagents were purchased from Pierce Chemical (Rockford, 
IL). The enhanced chemiluminescence (ECL) Western blot detection kit 
was obtained from Amersham Corp. (Arlington Heights, IL). Recombi- 
nant IGF-II and des (1-3) IGF-I were purchased from GroPep (Adelaide, 
Australia). Recombinant IGF-I was obtained from Dr. Chris Morrison at 
Ciba-Geigy (St. Aubin, Switzerland). 

Construction and Purification of Expression Plasmids 
pBAT/mIGFBP-5, a plasmid containing 55 bp of the B-globin leader se- 
quence and ~1.2 kb of mIGFBP-5 cDNA in the HindIII/PstI sites, was 
linearized with KpnI, blunt ended with T 4 DNA polymerase, ligated with 
EcoRI linkers, and digested with EcoRI to liberate the insert and unmask 
the restriction site. The insert was then ligated into pEMSVscribea2 in the 
sense and antisense orientations relative to the MSV LTR (see Fig. 1). 
Plasmids used in transfections were purified by centrifugation through 
CsCI 2 density gradients (38). 

Stable Transfection and Isolation of Colonies 
C2 cells were plated at 150,000 cells/100-mm-gelatin-coated tissue culture 

plate (41). On the following day, the cells were washed and transfected with 
5 Ixg of DNA at a 10:1 molar ratio (pEMSV/mIGFBP-5 :pcDNAlneo) by 
a modified calcium phosphate precipitation procedure (6). On day 3, cells 
were washed and split onto three 150-mm plates in growth media contain- 
ing 400 Ixg/ml of active geneticin. Selection proceeded for 16 d; media was 
changed every 4 d. Individual colonies were isolated by trypsinization and 
expanded in selection medium. 

Cell Culture 
Transfected cells were routinely plated at 104 cells/ml on gelatin-coated 
plates in Dulbecco's modified Eagle medium supplemented with 10% 
FCS, 10% newborn calf serum, and 200 txg/ml of active geneticin. Differ- 
entiation was induced when the cells were ~80% confluent. Growth me- 
dium then was removed, the cells washed with EBSS, and incubated in 
Dulbecco's modified Eagle's medium plus 2% horse serum. Photomicro- 
graphs were taken with a 10× objective. 

RNA Isolation and Analysis 
Total RNA was isolated using guanidinium thiocyanate (7, 8). RNA quan- 
tity and quality were assessed by agarose-gel electrophoresis followed by 
ethidium bromide staining. Ribonuclease protection assays were per- 
formed as described (36). IGFBP-5 transgene expression was detected using 
a 3~p-labeled antisense riboprobe derived from the KpnI-SacI fragment of 
pBAT/mIGFBP-5 (including the 13-globin leader sequence) transcribed 
using either T7 or T3 RNA polymerase (30) to detect coding or anticoding 
mRNAs,  respectively (see Fig. 3). Endogenous IGFBP-5 m R N A  was de- 
tected using a 268-nt antisense strand riboprobe derived from the 3' un- 
translated region of the cDNA (21) which is not included in the transgene. 
Myogenin m R N A  expression was detected using an antisense probe de- 
rived by subcloning the 168-nt EcoRI-SacI fragment of pEMSV/myoge- 
nin (10) into pBluescript and transcribing using T7 RNA polymerase. 

Analysis of Secreted Proteins by Western 
or Ligand Blo~'ng 
Cell-conditioned media were harvested from differentiated cells and 
treated with EDTA to a final concentration of 2 mM. Aliquots were elec- 
trophoresed through SDS polyacrylamide gels in the absence of reducing 
agents, transferred to 0.2 i~m nitrocellulose filters, and blocked with 3% 
BSA in tris-buffered saline (TBS) for at least 1 h. For Western blot analy- 
sis, filters were incubated with a 1:1,000 dilution of antiserum raised 
against human IGFBP-5, as described previously (37) and detected using 
ECL. For ligand blot analysis, filters were incubated overnight at 25°C 
with 4 × 106 cpm of 125I-IGF-II in TBS containing 1% BSA and 0.1% 
Tween-20 (20), washed with TBS plus 0.1% Tween-20, and exposed to 
x-ray film at -80°C with two intensifying screens. 

Analysis of Extracellular Matrix-associated IGFBPs 
Cells were plated on 24-well cluster plates and proteins associated with 
the extracellular matrix (ECM) were isolated at ~80% confluence and at 
1, 2, 4, 8, and 20 h after initiation of differentiation. Cells were washed 
with PBS and then lysed with PBS containing 1% Triton X-100 followed 
by incubation with 25 mM ammonium acetate (pH 9) to remove cellular 
membranes (24, 25). ECM proteins in each well were scraped into 50 ~l of 
Laemmli sample buffer (24). IGFBP expression was assessed by ligand or 
Western blot as described above using one-half of a matrix preparation. 

Analysis of Myosin Heavy Chain Expression 
30 Ixg of total cytoplasmic proteins were reduced with 13-mercaptoethanol, 
electrophoresed through 7.5% SDS-polyacrylamide gels and transferred 
to 0.2 t~m nitrocellulose filters. Filters were blocked overnight at 4°C with 
3% BSA in TBS and then incubated with a 1:200 dilution of anti-chicken 
MHC monoclonal antibody MF20 (18). Proteins were detected using ECL 
following incubation with HRP-conjugated anti-mouse IgG. 

Cytoplasmic Lysates and Analysis of Creatine 
Kinase Activity 
Ceils were grown on 60-mm gelatin-coated dishes, and harvested while 
undifferentiated, and at 12, 24, 48, 72, and 96 h after incubation in differ- 
entiation medium. Cells were washed with phosphate-buffered saline 
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Figure 1. Schematic representation of the pEMSVscribe(x2/ 
mlGFBP-5 expression plasmids. The pEMSVscribeet2/IGFBP-5 
sense (top panel) and antisense (bottom panel) expression plas- 
mids were constructed as described in Materials and Methods. 
The white boxes represent cDNAs corresponding to IGFBP-5 
mRNA untranslated sequences. The black boxes indicate the IG- 
FBP-5 coding sequences, while the hatched boxes represent the 
55-bp rabbit 13-globin 5' untranslated sequence from the pBAT 
vector. The Moloney sarcoma virus promoter (MSV LTR) and 
SV40 polyadenylation sequences are marked by arrows. 

(PBS) and lysed by incubation with 0.5 ml of 50 mM Tris-MES, pH 7.8, 
1% Triton X-100 (TMT buffer) for 10 min at 25°C. Samples were stored at 
-80°C and assayed for enzymatic activity within 1 wk, as per manufac- 
turer's instructions (Sigma procedure 47-UV). Creatine kinase activity 
was normalized to total protein content as determined by the BCA assay, 
performed in microtiter plates as per manufacturer's instructions. All data 
points represent the mean of duplicate determinations of representative 
experiments; each experiment was performed 2-4 times. 

IGF Dose-response Assay 

Transfected cells were plated in six-well cluster dishes and grown as 
above, but induced to differentiate in Dulbecco's modified Eagle's me- 
dium containing 2% horse serum and graded concentrations of either 
IGF-II, IGF-I, or des (1-3) IGF-I. Cells were allowed to incubate for 72 h 
before harvesting cytoplasmic lysates in 400 Ixl TMT buffer, followed by 
assays for creatine kinase activity and total protein content. 

Results 

Stable Transfection of  C2 Myoblasts 
with An  IGFBP-5 cDNA 

The pEMSVscribect2 vector, which contains the Moloney 
sarcoma virus LTR, was chosen to express IGFBP-5 trans- 
genes since it has been used previously to direct expres- 
sion of a variety of cDNAs in myoblasts (9, 10). The trans- 
gene contains 55 bp of the 13-globin 5' untranslated sequence, 

Kpn I ATG Sac II 

prop • 388 nt 

protectedt~ands "sense" transgene mRNA 366 nt 

endogenous mRNA 311 nt 

Figure 2. Two independent colonies express IGFBP-5 transgene 
mRNA. The top panel is an autoradiograph of a ribonuclease 
protection experiment using 10 I~g of total cellular RNA isolated 
from cells stably transfected with the IGFBP-5 transgene (cell 
lines $3 and $4) and grown to ~80% confluence in DME contain- 
ing 20% serum. Total RNA from parental C2 cells (C2), or cells 
transfected with the empty expression vector (V3), were included 
as positive controls for the endogenous IGFBP-5 mRNA. Migra- 
tion of the bands protected by the transgene, the endogenous 
gene, or the undigested probe are indicated by the arrows on the 
right. Autoradiographic exposure was for 18 h at -80°C with two 
intensifying screens. The bottom panel is a schematic representa- 
tion of the riboprobe derived from the transgene which was used 
in this experiment to discriminate between mRNAs which con- 
tain the [3-globin sequence and those which do not. 

23 bp of IGFBP-5 5' UTR,  the entire coding sequence, 
and ~350 bp of 3' UTR,  followed by the SV40 polyadeny- 
lation signal (Fig. 1). Cotransfection of sense or antisense 
IGFBP-5 expression plasmids with p c D N A l n e o ,  which 
encodes the neomycin resistance gene, each resulted in 
several colonies which were resistant to geneticin. Two 
sublines expressing the IGFBP-5 sense transgene, and four 
expressing the antisense transcript, were characterized in 
detail. Cell lines transfected with the empty expression 
vector and selectable marker  also were characterized. All 
cells proliferated normally in serum-containing media, 
with doubling times of ~15  h (data not shown). 

Colonies $3 and $4 Express the IGFBP-5 
Sense Transgene 

R N A  was harvested from sense cells that had grown to 
~ 8 0 %  confluency and analyzed by ribonuclease protec- 
tion assay. Fig. 2 shows that R N A  from colonies $3 and $4 

James et al. 1GFBP-5 in Muscle Differentiation 685 



UO 1 2 l 8 20 

Time in OiTfetentiltion Medium 

o] "::' I l 

2 

0 
12 24 48 72 96 

Tirr~ in Oifl lr lnti l t lOn Medium 

Figure 3. Analysis of IGFBPs produced by $3 and $4 myoblasts. (Left panel) IGFBP-5 expression in the ECM. (A) Extracellular matrix 
proteins from vector-transfected (V) cells (top) or $3 cells (bottom) were isolated from undifferentiated cells (UD) and at 1, 2, 4, 8, and 
20 h after initiation of incubation in differentiation medium. Proteins from one-half of each sample were separated by electrophoresis 
on 12.5 % SDS-PAGE, transferred to a nitrocellulose filter, and incubated with 125I-IGF-II. The V-UD and 20-h samples were repeated 
in the bottom panel to allow for direct comparison of IGFBP expression. Autoradiographic exposure was for 4 d at -80°C with two in- 
tensifying screens. (B) Autoradiographs shown in A were scanned by densitometry to determine the intensity of IGFBP-5. Values were 
normalized to the vector sample at 20 h (V-20), which was arbitrarily set at 1. Open boxes represent values from vector-transfected cells, 
while hatched boxes indicate results from $3 cells. (Right panel) Accumulation of IGFBP-5 in cell-conditioned media. (C) Autoradio- 
graphs of ligand blots of media (50 i~l/lane) conditioned by vector (top), $3 (middle), or $4 (bottom) cells. Media were collected at 12, 24, 
48, 72, and 96 h after initiation of incubation in differentiation medium, and analyzed as in A. Autoradiographic exposure was for 48 h at 
-80°C with two intensifying screens. (D) Autoradiographs shown in C were scanned by densitometry to determine the intensity of IG- 
FBP-5. Values were normalized to the external control, which was arbitrarily set at 1. Black boxes represent values from vector-trans- 
fected cells, while open boxes and hatched boxes indicate media conditioned by $3 and $4 cells, respectively. DM, nonconditioned dif- 
ferentiation medium; C, external control medium from parental C2 ceils included for quantititation. The migration of IGFBP-5 (con- 
firmed by Western blot) is marked by arrows on the right; molecular mass standards are on the left. 

p ro tec ted  a 366-nt band der ived from the transgene.  This 
band was not  seen in vector- t ransfected or  parenta l  C2 
ceils. Levels of accumulat ion of the transgene were sever- 
alfold higher than endogenous  IGFBP-5  m R N A ,  indicated 
by the 311-nt band. 

IGFBP-5 Is Detected in the ExtraceUular 
Matrix of  Myoblasts 

IGFBP-5  has been shown to accumulate  in the E C M  de- 

posi ted by fibroblasts in culture (24). To de termine  
whether  IGFBP-5  was found in the matr ix of myoblasts  
during prol i ferat ion or differentiation,  E C M  prepara t ions  
from vector- t ransfected control  cells and $3 myoblasts  
were examined by ligand blot for the presence of IGF-  
binding activity (Fig. 3, A and B), and by Weste rn  blot  for 
an t i - IGFBP-5  immunoreact ive  prote ins  (data  not  shown). 
In contrast  to control  cells, where IGFBP-5  is minimally 
detected in the matr ix during the initial 20 h after the 
switch to low serum medium,  IGFBP-5  levels in the E C M  
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Figure 4. Minimal biochemical differentiation in myoblasts ex- 
pressing the IGFBP-5 sense transgene. (A) Reduced creatine ki- 
nase activity in transfected cells. Lysates from cell lines which ex- 
press the transgene ($3 and $4) were analyzed for expression of 
the muscle-specific isoform of creatine kinase, and specific activ- 
ity was determined relative to total protein concentration. Cells 
were harvested at 80% confluence, and at 12, 24, 48, 72, and 96 h 
after incubation in differentiation medium. IGFBP-5 $3 cells 
(open squares) and $4 cells (open circles) show markedly reduced 
CK activity compared to vector-transfected control cells (filled 
squares). (B) Lack of expression of myosin heavy chain (MHC) 
by transfected IGFBP-5 sense myoblasts. Cytoplasmic proteins 
(30 p~g) from vector-transfected cells (top panel) and $3 cells (bot- 
tom panel) were separated by SDS-PAGE, transferred to nitro- 
cellulose filters, and analyzed for MHC expression by Western 
blot using anti-chicken MHC monoclonal antibody MF-20. Pro- 
teins were detected using ECL and quantitated by densitometry. 
Vector lysates harvested at 96 h (V96) were included in the bot- 
tom panel to allow direct comparison between the two experi- 
ments. MHC expression is not detected in the cytoplasm of $3 
myoblasts during the 96-h time course. 

of $3 cells were high before the onset of differentiation 
and remained constant throughout the same 20-h time 
course. By contrast, when compared to an external con- 
trol, similar levels of IGFBP-5 were seen in conditioned 
medium from both control and sense myoblasts during the 
initial 24 h in differentiation medium (Fig. 3, C and D). As 
shown previously for C2 cells (21), IGFBP-5 levels in con- 
ditioned differentiation medium from vector-transfected 
myoblasts increased markedly during the subsequent 72 h 
(Fig. 3, C and D). 

Diminished Myogenic Differentiation of  Transfected 
IGFBP-5 Sense Myoblasts 

Transfected myoblasts were incubated in standard differ- 
entiation medium containing 2% horse serum and exam- 
ined for biochemical and morphological changes associ- 
ated with muscle differentiation. Fig. 4 A shows results of 
analysis of the muscle-specific isoform of creatine kinase 
(CK). Vector-transfected cells showed a time-dependent 
rise in CK activity. Enzymatic activity was first detected by 
48 h, and increased throughout the ensuing 48 h, to a level 
of ~4,000 U/g total protein at 96 h. By contrast, a minimal 
rise in CK was seen in $4 and $3 cells, to 600 and 200 U/g, 
respectively, at 96 h. The same cytoplasmic lysates were 
analyzed for myosin heavy chain (MHC) expression by 
Western blot (Fig. 4 B). In vector-transfected control cells, 
MHC was detectable at 48 h and increased in a differentia- 
tion-dependent manner. In contrast, no MHC was ex- 
pressed in $3 cells. 

Morphological differentiation also was impaired in 
IGFBP-5 sense myoblasts. As seen in Fig. 5, vector-trans- 
fected control cells formed myotubes within 48-72 h after 
onset of incubation in differentiation medium, a time 
course that was slightly delayed compared with parental 
C2 cells (21). In contrast, after 96 h in low serum medium, 
$3 cells appeared healthy but undifferentiated. The major- 
ity of cells were mononucleate myoblasts; multinucleated 
myotubes were rarely seen. At 96 h, the $4 cell line also 
showed substantially less myotube formation than control 
cells (data not shown). 

The failure of $3 cells to differentiate also correlated 
with prolonged survival in low serum--containing medium. 
As noted previously, at 96 h postmedium change, the $3 
cells remained alive and healthy in contrast to vector cells 
which were beginning to detach from the plate. We inves- 
tigated the effects of prolonged incubation in medium con- 
taining 2% horse serum on cell viability and on biochemi- 
cal differentiation, as measured by creatine kinase assay. 
As shown in Fig. 6, $3 cells maintained low levels of CK 
expression for 3 wk in low serum medium. In other experi- 
ments, myoblasts survival persisted for up to 4 wk (data 
not shown). 

Diminished Biochemical and Morphological 
Differentiation of  Sense Myoblasts Correlates with 
Subnormal Levels of  Myogenin Gene Expression 

Myogenin is a muscle-specific transcription factor that is 
expressed early during myoblast differentiation and which 
contributes to the regulation of muscle-specific genes (for 
review see reference 11). Myogenin has also been impli- 
cated as a target of IGF action during myogenesis (13, 15). 
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Figure 5. Lack of morphological differentiation of $3 myoblasts. Control cells (vector-transfected, top panel) and $3 myoblasts (bottom 
panel) were induced to differentiate for 24--96 h. Phase-contrast photomicrographs were taken using a 10 × objective, before the incuba- 
tion in differentiation medium, and at 24, 48, 72, and 96 h. At 96 h, the majority of $3 cells are viable and mononucleated, whereas vector 
cells have formed myotubes by 48-72 h. 

We examined expression of myogenin  m R N A  by r ibonu- 
clease protec t ion  assay in control  and IGFBP-5  sense cells 
as a function of t ime in different iat ion medium. As  seen in 
Fig. 7, induction of myogenin  m R N A  occured by 48 h in 
vector- t ransfected cells, at which t ime transcript  levels 
were more  than 15-fold higher than in undifferent ia ted 

~ 1500 - 

UD I Week • We#xs 3 Weeks Control 48 hr 

Tlme 

Figure 6. Long-term viability of $3 myoblasts in medium contain- 
ing 2% horse serum. Parallel cultures of C2/mIGFBP-5 $3 cells 
were incubated in DME supplemented with 2% horse serum for 
up to 3 wk. Culture medium was changed twice each week and 
ceils were harvested 1, 2, or 3 wk later. Creatine kinase activity 
was determined and normalized to total protein content. The ma- 
jority of cells remained mononucleated and viable throughout the 
time course, although some cell death was evident at 3 wk. The 
bar labeled "Control 48 h" shows CK activity of vector-trans- 
fected control cells after a 2-d incubation in differentiation me- 
dium. 

cells. Myogenin  m R N A  also was first seen in $3 and $4 
cells at 48 h, but  levels were diminished compared  with 
controls. In $3 myoblasts,  myogenin  m R N A  abundance  
was < 10% of that  measured  in vector- t ransfected cells, 
while values in $4 myoblas ts  were ~ 5 0 %  of control  levels 
at 48 and 72 h t ime points. 

Exogenous IGFs Restore the Differentiated Phenotype 
to IGFBP-5 Sense Myoblasts 

To determine  if IGFBP-5  repressed differentiation through 
a mechanism dependent  upon IGFs ,  confluent $3 cells 
were incubated with graded concentrat ions of  recombi-  
nant  IGF- I I ,  IGF- I ,  or  des (1-3) I G F - I  in low serum media  
for 72 h and analyzed for creat ine kinase activity (Fig. 8) 
and myotube  format ion  (Fig. 9). Each pept ide  tested could 
restore CK activity to levels that  were ~ 5 0 %  of those in 
vector  cells at 72 h (compare  Figs. 4 and 8). As  indicated 
by the dose-response  curves, des (1-3) I G F - I  was the most 
effective agent. Half -maximal  activity was observed with 
0.37 nM des (1-3) IGF- I ,  ~ 1 0  nM IGF-I ,  and ~45  nM 
IGF-I I .  Similar dose-response  curves were observed with 
myotube  format ion (Fig. 9). 

Enhanced Muscle Differentiation after Forced 
Expression of An IGFBP-5 Antisense Transcript 

Since overexpression of IGFBP-5  in sense myoblasts  led 
to diminished differentiat ion,  we pos tu la ted  that  inhibit ion 
of IGFBP-5  expression would cause accelerated differenti-  
ation. To test this hypothesis,  we p repa red  stable cell lines 
with an IGFBP-5  e D N A  in the antisense or ientat ion rela- 
tive to the MSV LTR (see Fig. 1). To assess expression of 
the transgene,  R N A  was harvested from four antisense 
lines, AS1, 3, 5, and 12, after cultures had reached N80% 

The Journal of Cell Biology, Volume 133, 1996 688 



H~nd HI ATG Sac I 

~ . . . . . . . .  t V / / / / / / / / / / / / / / / / / / / / / f , ~  ~ } -  ~ 
myoge~ncDNA 

pror~ 4 - -  202 m 

protected band 168 nt  

Figure 7. Expression of myogenin mRNA in cells transfected 
with the IGFBP-5 sense transgene. The top panel shows an auto- 
radiograph of a ribonuclease protection experiment using 10 txg 
of total cellular RNA isolated from cells stably transfected with 
the vector (center) or the IGFBP-5 sense expression plasmid (left 
and right), while undifferentiated, (UD) and after 12, 24, 48, 72, 
or 96 h of incubation in differentiation medium. Two indepen- 
dent sense colonies were analyzed, $3 (left) and $4 (right). A 
sample of yeast tRNA was included as a negative control, and an 
aliquot of undigested probe was included on the gel as a molecu- 
lar weight marker. The migration of the undigested probe and the 
myogenin mRNA are marked by arrows on the left. The gel was 
exposed to x-ray film for 24 h at -80°C with two intensifying 
screens. The middle panel shows ethidium-bromide stained aga- 
rose gels of the RNA samples used in this experiment. The bot- 
tom panel shows a schematic diagram of the riboprobe used in 
this experiment, which was derived from the 5' untranslated and 
coding regions of a mouse myogenin cDNA. 

confluency, and analyzed for the IGFBP-5 antisense 
mRNA by ribonuclease protection assay. Fig. 10 shows 
that RNA from each colony protected a 366-nt band de- 
rived from the transgene whereas vector-transfected and 
parental C2 cells did not. Levels of accumulation of trans- 
gene mRNA varied among the four stable cell lines. 

Antisense cells and controls were induced to differenti- 
ate by incubation in medium containing 2% horse serum 
and analyzed for CK activity. As seen in Fig. 11, all four 
AS lines showed accelerated differentiation. In two lines, 
AS3 and AS12, CK activity was measurable by 24 h in dif- 
ferentiation medium. By 48 h, levels were 5 to 25 times 
higher than in vector-transfected control myoblasts. 

Enhanced expression of CK in IGFBP-5 antisense cells 
was accompanied by elevated levels of MHC (data not 
shown) and by accelerated myotube formation. As shown 
in Fig. 12, control cells exhibited a typical fibroblast-like 
shape at confluence while in growth medium and for the 
initial 24 h in differentiation medium. Myotubes were first 
visible by 48 h and increased in size and abundance by 72 h. 
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Figure 8. Restoration of creatine kinase activity in $3 myoblasts 
treated with exogenous IGFs. Dose-response curve for creatine 
kinase activity in lysates harvested after a 72-h incubation in dif- 
ferentiation medium (DME plus 2% horse serum) which had 
been supplemented with graded concentrations of IGFs. IGF-II, 
filled squares; IGF-I, open squares; des (1-3) IGF-I, open circles. 
Des (1-3) IGF-I is the most potent stimulus of CK activity. 

By contrast, myoblast alignment was apparent after 12 h in 
differentiation medium for AS3 cells, myotubes were seen 
at 24 h, and extensive myotube formation had occurred by 
48 h. Similar results were observed for the other antisense 
cell lines (data not shown). 

Precocious Myogenin Expression 
Accompanies Enhanced Differentiation o f  lGFBP-5 
Antisense Myoblasts 

As noted, myogenin gene expression is induced early dur- 
ing muscle differentiation in vitro, and the protein contrib- 
utes to the activation of many muscle-specific genes which 
are expressed later in differentiation (11). In vector-trans- 
fected C2 myoblasts, myogenin mRNA increased in abun- 
dance by 48 h after incubation in ifferentiation medium 
(Fig. 13). By contrast, in AS3 and AS12 myoblasts, myoge- 
nin transcripts were present as cells approached conflu- 
ence in growth medium, and mRNA levels remained ele- 
vated throughout the time course (Fig. 13, and data not 
shown). The premature expression of myogenin in IGFBP-5 
antisense myoblasts potentially causes the precocious CK 
activity and MHC expression observed in these cells, and 
supports the hypothesis that IGFs may regulate muscle 
differentiation through myogenin. 

Discussion 

The role of the IGF system in muscle differentiation has 
been under active investigation for many years (for review 
see reference 14). Proper functioning of all components of 
this system is essential for normal muscle development in 
vivo, since mice lacking the IGF-I receptor exhibit muscle 
hypoplasia (27). The functions of the IGFs in muscle seem 
almost contradictory: they stimulate cell cycle progression 
and induce differentiation, which requires withdrawal 
from the cell cycle (for review see reference 14). Recent 
studies using L6E9 myoblasts indicate that in muscle cells 
which have been removed from serum, IGFs initially are 
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Figure 9. Myotube formation in $3 myoblasts is induced by exog- 
enous IGFs. Phase-contrast photomicrographs of myotube for- 
mation after a 72-h incubation with differentiation medium sup- 
plemented with the specified concentration of growth factor. "No 
addition" indicates a 72-h incubation in differentiation medium 
without exogenous IGFs. The relative potency of the hormones 
for stimulating CK activity or myotube formation was the same: 
des (1-3) IGF-I > IGF-I > IGF-II. 

mitogenic, and inhibit myogenic differentiation through a 
mechanism independent of proliferation; subsequent stim- 
ulation of differentiation only occurs during more pro- 
longed (>24 h) incubation (35). It is not known how IGFs 
mediate these distinct actions, but one mechanism may be 
through use of alternative signaling pathways which are in- 
duced by different levels or different durations of receptor 
activation. Thus, regulation of IGF concentration near the 
cell surface could be an important factor in controlling dif- 
ferential effects on myoblast proliferation or differentia- 
tion. 

One mechanism by which IGF availability can be modu- 
lated is through binding to IGFBPs (for review see refer- 
ence 22). IGFBPs are expressed by several muscle cell 
lines (12, 21, 29, 37) and it has been reported that exoge- 
nous IGFBP-6 can block IGF-stimulated differentiation of 
L6A1 myoblasts (2). Recently, we demonstrated that 
IGFBP-5 also can inhibit muscle differentiation, since an 
IGF-1 analogue which cannot bind to IGFBP-5 but binds 
normally to the IGF-I receptor was more effective than 
native IGF-I in stimulating creatine kinase activity and 
promoting myotube formation in C2I myoblasts (37), a 
cell line which secretes no other IGFBPs and is dependent 
upon exogenous IGFs for terminal differentiation (33). 
The involvement of IGFBP-5 in myogenesis in vivo is fur- 
ther suggested by its localization to the myotome and to 
the muscle of the limb bud during rodent embryogenesis 
(19). In other myoblast cell lines, where IGFBP-4, -5, and -6 
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Figure 10. Four independent colonies express the IGFBP-5 anti- 
sense (AS) transgene mRNA. The top panel is an autoradiograph 
of a ribonuclease protection experiment using 10 ~g of total cel- 
lular RNA isolated from cells stably transfected with the IGFBP-5 
antisense transgene (AS1, AS3, AS5, and AS12) and grown to 
~80% confluence in DME containing 20% serum. Total RNA 
from parental C2 cells (C2) or cells transfected with the empty 
expression vector (V3) were included as negative controls. Migra- 
tion of the protected band and the undigested probe are indi- 
cated by the arrows on the right. Autoradiographic exposure was 
for 24 h at -80°C with two intensifying screens. The middle panel 
shows an ethidium-bromide stained gel of the samples used in the 
top panel. The bottom panel is a schematic representation of the 
riboprobe derived from the transgene which was used in this ex- 
periment. 

are produced (12), analogous studies have concluded that 
these proteins generally inhibit IGF-stimulated muscle dif- 
ferentiation (12, 39). 

Defining the functions of individual IGFBPs is compli- 
cated by several factors. First, many cell lines secrete mul- 
tiple IGFBPs, which may have either redundant or antago- 
nistic effects. Second, different IGFBPs have been found 
to positively and negatively modulate IGF-stimulated pro- 
cesses depending on cell type and experimental design (for 
review see references 3, 22). Third, several IGFBPs have 
been shown to have effects independent of their IGF 
ligands (for review see references 3, 22). Fourth, actions of 
IGFBPs are influenced by their extracellular localization. 
IGFBP-5 in particular has been identified on the cell sur- 
face of fibroblasts, as well as in the extracellular matrix 
and in cell-conditioned media (5, 24), and exhibits differ- 
ent IGF binding characteristics depending on its location 
(24). Finally, at least one IGFBP, IGFBP-1, when modi- 
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Figure 11. Premature biochemical differentiation by myoblasts 
expressing the IGFBP-5 antisense transgene. Lysates from cell 
lines which express the transgene were analyzed for expression of 
the muscle-specific isoform of creatine kinase, and specific activ- 
ity was determined relative to total protein concentration. Ceils 
were harvested at 80% confluence, and at 12, 24, 48, 72, and 96 h 
after incubation with differentiation medium containing 2% 
horse serum. A time course for vector-transfected cells (open 
squares) was determined as a control. IGFBP-5 AS cells (filled 
squares, circles, and triangles; open circles) show enhanced and 
early initiation of CK activity compared with control cells. 

fled by reversible phosphorylation, undergoes a reduction 
in its affinity for IGF-I  (23). In addition, many studies un- 
dertaken to determine the function of different IGFBPs 
have used recombinant proteins, which do not necessarily 
undergo normal modification or localization. Taken to- 
gether, these issues stress the need to identify model sys- 
tems in which a single IGFBP can be analyzed in the con- 

text of its natural environment, in order to determine its 
functions. 

Previously, we have shown that C2 myoblasts only se- 
crete IGFBP-5 during terminal differentiation (21, 41), 
and thus are a potentially excellent model in which to 
study the function of this protein. Through stable transfec- 
tion of an IGFBP-5 eDNA under control of a constitu- 
tively active promoter, we now have generated C2 cell 
lines overexpressing IGFBP-5 while proliferating. These 
myoblasts replicate normally in growth medium, secrete 
IGFBP-5 and partition it into the extracellular matrix and 
culture medium, but fail to differentiate appropriately. Di- 
minished differentiation may be secondary to reduced 
myogenin expression, with subsequent lack of activation 
of muscle-specific enzymes and structural proteins. By 
contrast, C2 cell lines stably transfected with an IGFBP-5 
eDNA in the antisense orientation underwent accelerated 
differentiation, as evidenced by enhanced myogenin gene 
expression, precocious induction of CK activity, and early 
formation of myotubes. Based on these complementary 
results, we conclude that IGFBP-5 blocks differentiation 
of C2 myoblasts. 

How might IGFBP-5 inhibit differentiation? This is 
clearly an IGF-dependent process, since normal differenti- 
ation could be restored by addition of IGFs to IGFBP-5 
"sense" cells. The induction of differentiation by IGFs in 
these myoblasts appears to require saturation of growth 
factor-binding sites on IGFBP-5, since des (1-3) IGF-I, 
which does not bind to IGFBP-5 but has normal affinity 
for the 1GF-I receptor, was more effective than IGF-I on a 
molar basis. It thus appears that one mechanism for con- 
trolling IGF availability is through growth factor seques- 
tration, possibly in the extracellular matrix. The steps by 
which IGFBP-5 is released from the matrix to the medium 

Figure 12. Enhanced morphological differentiation of C2/mlGFBP-5 AS cells. Control cells (vector-transfected, top panel) and AS3 
myoblasts (bottom panel) were incubated in differentiation medium for 72 h. Phase-contrast photomicrographs were taken using a 10x 
objective, before the incubation in differentiation medium, and at 12, 24, 48, and 72 h during the time course. At 24 h, long, thin myotubes 
are beginning to appear in the AS3 cultures and by 72 h these myotubes have begun to detach from the plate. Vector cells begin to form 
myotubes at 48 h and remain viable throughout the time course. 
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Figure 13. Precocious myogenin mRNA expression in differenti- 
ating AS cells. The top panel shows an autoradiograph of a ribo- 
nuclease protection experiment using 10 Ixg of total cellular RNA 
isolated from myoblasts stably transfected with the empty expres- 
sion vector (center) or the IGFBP-5 antisense plasmid (left and 
right) while undifferentiated (UD) and after 12, 24, 48, 72, or 96 h 
of incubation in differentiation medium. Two independent AS 
colonies were analyzed (AS3 and AS12). A sample (10 txg) of 
yeast tRNA was included as a negative control, and an aliquot of 
undigested probe was added to the gel as a molecular weight 
marker. The migration of the undigested probe and myogenin 
mRNA are marked by arrows on the left. All samples were pro- 
cessed in one assay, and were exposed to x-ray film for 14 h at 
-80°C with two intensifying screens. The middle panel shows 
ethidium-bromide stained agarose gels of the RNA samples (2 Ixg, 
AS3 and AS12; 10 I~g, vector) used in this experiment. The bot- 
tom panel shows a schematic diagram of the riboprobe, which 
was derived from 5' untranslated and coding regions of a mouse 
myogenin cDNA. 

are not known, nor are the mechanisms by which the IGFs 
dissociate from binding proteins, An  IGFBP-5 protease 
has been identified in fibroblasts (31) and in myoblasts 
(data not shown), and may be important in these pro- 
cesses. Since we show that  C2 cells which express the 
IGFBP-5 sense transgene exhibit prolonged survival with- 
out differentiation in low serum medium, IGFBP-5 in the 
extracellular matrix may function as a source of sustained 
low level growth factor release. In other experiments, we 
have found that endogenously produced IGF-I I  prevents 
apoptotic death of C2 cells during the transition from pro- 
liferating to differentiating myoblasts (40). It is thus possi- 
ble that low level secretion of IGFs from a storage pool is 
responsible for the prolonged survival of C2 cells express- 
ing the IGFBP-5 sense transgene. 

In summary, we developed myogenic cell lines that dem- 
onstrate key roles for the IG F  system in muscle differenti- 
ation. C2 cells that prematurely express IGFBP-5 do not 
differentiate effectively, and have enhanced viability in 

low serum. By contrast, myoblasts expressing an IGFBP-5 
transgene in the antisense orientation differentiate more 
rapidly than controls. These results are consistent with a 
model in which IGFBP-5 normally inhibits IGF-stimu- 
lated myogenesis, and indicate that sequestration of IGFs 
in the extraceUular matrix could be a possible mechanism 
of action. Our  observations complement results seen with 
SV40 transformed fibroblasts, in which reduced expres- 
sion of IGFBP-5 on the cell surface correlates with en- 
hanced IGF-stimulated proliferation (34), and lead to the 
general conclusion that IGFBP-5 normally blocks IGF  ac- 
tion. 
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