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Neuroblastoma (NB) is the commonest solid tumor outside the central nervous system in
infancy and childhood with a unique biological heterogeneity. In patients with advanced,
metastasizing neuroblastoma, treatment failure and poor prognosis is often marked by
resistance to chemo- or immunotherapy. Thus, identification of robust biomarkers seems
essential for understanding tumor progression and developing effective therapy. Here, we
have studied the expression of human endogenous retroviruses (HERV) as potential
targets in NB cell lines during stem-cell medium-induced microenvironmental change.
Quantitative PCR revealed that relative expression of the HERV-K family and HERV-W1
ENV were increased in all three NB cell lines after incubation in stem-cell medium. Virus
transcriptome analyses revealed the transcriptional activation of three endogenous
retrovirus elements: HERV-R ENV (ERV3-1), HERV-E1 and HERV-Fc2 ENV (ERVFC1-1).
Known malignancy markers in NB, e.g. proto-oncogenic MYC or MYCN were expressed
highly heterogeneously in the three investigated NB cell lines with up-regulation of MYC and
MYCN upon medium-induced microenvironmental change. In addition, SiMa cells
exclusively showed a phenotype switching from loosely-adherent monolayers to low
proliferating grape-like cellular aggregates, which was accompanied by an enhanced
CD133 expression. Interestingly, the overexpression of HERV was associated with a
significant elevation of immune checkpoint molecule CD200 in both quantitative PCR and
RNA-seq analysis suggesting tumor escape mechanism in NB cell lines after incubation in
serum-free stem cell medium.
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INTRODUCTION

In the course of evolution, a large number of retroviral elements
have entered the genome of vertebrates. Since integration
occurred by infection of the germ line with their exogenous
relatives, the resulting proviruses of the so-called endogenous
retroviruses (ERV) can be transmitted vertically as a host allele
(1, 2). The human genome is comprised of approximately 8% of
such elements (3, 4). During their long persistence in the
genome, the proviruses suffered from multiple inactivation or
silencing mechanisms that lead to disruption of open reading
frames (ORF) by mutations and to defective protein products in
nearly all human HERV (5). Nevertheless, there are few HERV
with almost complete ORF, which are able to form functional
proteins even if their intracellular trafficking seems to be
inefficient (6).

As most controversially discussed HERV, the envelope (ENV)
of the HERV-W locus on chromosome 7 (NCBI accession no.:
NP_001124397.1; also known as ERVWE-1) can be mentioned.
The encoded protein called syncytin-1 is expressed in the
placenta, where it mediates cytotrophoblast fusion to the
syncytiotrophoblast layer based on its fusogenic properties (7,
8). On the other hand, activation of HERV-W ENV has been
associated with neurological disorders like multiple sclerosis
(MS) due to its localization in brain lesions and detection of
anti-HERV-W antibodies in sera of MS patients (9–11). In
addition to the usual increase in autoreactive antibodies in the
course of activation of the immune system (12), abnormally
expressed HERV-W ENV has been shown to trigger
inflammatory cascades including polyclonal activation of T
lymphocytes [reviewed in (13)]. Another HERV that was
associated more recently with autoimmune disorders is the
ENV of HERV-Fc1 (NCBI accession no.: XM_011531085.2)
(14, 15). Interestingly, the HERV-Fc family has an only limited
expansion with six known proviruses in the human genome (16).
Among the HERV families, HERV-K (HML-2) is the most active
family, which comprises several complete members due to still
ongoing fixation in the human population (17–19). Stronger
expression of HERV-K family members including their group-
specific antigens (GAG) has been mainly identified in tissues and
cell lines established from different types of tumors including
germ cell tumors, lymphoma, sarcoma and melanoma (20–25).
Like melanoma, neuroblastoma (NB) is a tumor originating from
cells of the neural crest and unique for its heterogeneity. NB is
the most frequent solid tumor outside the central nervous system
in infants and children with an incidence of approximately 10
cases per million children under 15 years of age (26). An
important prognostic marker is MYCN amplification, which is
associated with deregulated growth and proliferation and can be
found in 30–40% of high risk NB (27). MYCN is a member of the
MYC family of transcription factors. Another family member, c-
myc (MYC), shares oncogenic ability to sustain multiple
pathways leading to malignancy, but is reported to be
expressed only in a small group of advanced NB showing poor
clinical outcome identical to that of patients with amplification of
the MYCN gene (28, 29). Although overall outcome of patients
have been improved in the last decades, survival for patients with
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high risk NB (stages 3 and 4 by the International Neuroblastoma
Stating System INSS) remains poor due to chemotherapy failure
or unresponsiveness to checkpoint blockade immunotherapy
(30–32). In the course of focusing on individualized targeted
therapy for more effective treatment, modulation of tumor
microenvironment seems to be crucial (33, 34). In this context,
lack of immunotherapeutic targets, like programmed cell death
ligand-1 (PD-L1), in CD24 overexpressing NB, as well as
amplification of multidrug resistance-associated genes and
overexpression of immune checkpoint molecule CD200 in NB
is of particular interest (35–38).

Studies from an Italian group strongly suggest that the stem
cell-like CD133 positive subtype of melanoma cells is promoted
by HERV-K activation in response to microenvironmental
change (39). It remains unknown, whether such effects also
occur in other neural crest-derived tumor cells. Therefore, we
investigated the expression of above mentioned NB malignancy
markers and selected HERV in three NB cell lines in standard
and stem cell-promoting media with or without serum by
quantitative real time PCR (RT-qPCR). For the RT-qPCR
analysis, we focused on the ENV of human HERV-W1 and
HERV-Fc1 due to their strong association with neurological
disorders. In addition, the GAG region (HERV-K GAG) of the
HERV-K (HML-2) family was investigated, because of its
putative role in the progression of several tumor malignancies
(19). In accordance, we previously reported a robust HERV-K
GAG expression in soft tissue sarcoma patients, which was
significantly correlated with clinicopathological features, such
as shortened relapse-free survival, and hypoxia-related gene
expression (24). In addition, the targeting of HERV-K GAG is
beneficial as it allows the detection of numerous members of the
most biologically active HERV-K (HML-2) family, which might
be hampered by the presence of intact (type 1) and non-intact
ORF (type 2) in the ENV region (18). Considering the broadest
distribution across HERV families and the overall high sequence
similarity, the detection of additional HERV-K families (e.g.
HML-6) is not excluded by our study. In addition, we analyzed
activation of retroviral sequences by mapping RNA-seq reads
against a synthetic virus metagenome.
MATERIALS AND METHODS

Cell Lines
In this study the human NB cell lines SH-SY5Y (40), IMR-32
(41) and SiMa (42) were used (all from the German Collection of
Microorganisms and Cell Cultures GmbH, Braunschweig,
Germany). All cell lines were cultured as adherent or loosely-
adherent (SiMa) cells in DMEM medium supplemented with
10% (v/v) heat-inactivated fetal bovine serum (FBS) and
penicillin-streptomycin at 37°C in a humidified 5% CO2

atmosphere (all reagents by Life Technologies, Carlsbad, CA,
USA). Twice weekly the cells were passaged after detachment
with 0.05% trypsin/EDTA solution (Life Technologies, Carlsbad,
CA, USA) for 30–60 s at room temperature and were seed out at
3x106 cells per 75 cm2

flask (SH-SY5Y cells and IMR-32 cells) or
at 5 × 106 cells per 75 cm2

flask (SiMa cells), respectively.
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To investigate the medium-induced microenvironmental
changes, the three NB cell lines were seed out at 1 × 106 cells
(SH-SY5Y cells and IMR-32 cells) or at 3 × 106 cells (SiMa cells)
per 25 cm2

flask and cultured either in DMEM complete
medium, stem-cell medium Panserin 401 (PAN-Biotech
GmbH, Aidenbach, Germany) supplemented with 10% FBS
and penicillin–streptomycin or Panserin 401 medium with
penicillin–streptomycin for 72 h at 37 °C in a humidified 5%
CO2 atmosphere. Morphological analyses were performed by
phase contrast microscopy using Keyence microscope BZ-X810
and BZ-X800 Analyzer software version 1.1.1.8 (Keyence, Itasca,
IL, USA).

RNA Extraction, cDNA Generation and
Quantitative Real-Time PCR
Cells were harvested after 72 h and total cellular RNA was
isolated using NucleoSpin RNA kit (Machery-Nagel GmbH &
Co. KG, Düren, Germany) following the manufacturer’s
instructions. Transcription into cDNA was performed using
1 mg total RNA in 16 ml nuclease-free water and 4 ml qScript
cDNA 5× SuperMix (QuantaBio, Beverly MA, USA). The mix
was incubated for 5 min at 25°C, followed by 30 min at 42°C and
finally for 5 min at 82°C.

For quantitative real-time PCR (RT-qPCR) each reaction
contained 0.5 µl of cDNA, 500 nM of forward and reverse
primer, 5 µl PowerUP SYBR Green 2× Master Mix (Applied
Biosystems by Thermo Fisher Scientific, Waltham MA, USA) and
4 µl of nuclease-free water. All used primers were purchased from
Invitrogen Thermo Fisher Scientific (Waltham, MA, USA) and
were listed in Table 1. The amplification protocol included an
initial denaturation step at 95°C for 10 min, followed by 40 cycles
with denaturation at 95°C for 15 s and primer annealing,
amplification and extension at 60°C for 60 s. Two technical
Frontiers in Oncology | www.frontiersin.org 3
replicates were measured for each sample in three independent
experiments (biological replicates). The analysis was performed
using QuantStudio3 and QuantStudio Design and Analysis
Software v.1.4.3 (Thermo Fisher Scientific). The quantification of
relative mRNA levels was performed using the 2−DDCt method
(44). Hypoxanthine phosphoribosyltransferase 1 (HPRT1) was
used as reference gene for normalization and the median of all
samples was set as 1.

Statistics
For comparison of relative mRNA levels measured with RT-
qPCR, two-way ANOVA followed by Tukey test was performed
using GraphPad Prism (version 8.0.0 for Windows, GraphPad
Software, San Diego, California USA). Statistical significance was
indicated by asterisks (**, p <0.01; ***, p <0.001; ****, p <0.0001).

RNA-seq
Generation of RNA-seq data was performed by Novogene UK Co.,
Ltd. (Cambridge, United Kingdom) using Illumina Novaseq6000
system.The quantification of human transcriptsmapping to genome
version GRCh38/hg38 was calculated as Fragments Per Kilobase per
Million reads (FPKM) by Novogene. RNA-seq data can be
downloaded from the NCBI Short Read Archive (SRA) under
BioProject PRJNA684790. For quantification of ERV expression,
reads were mapped against a synthetic virus metagenome, which
consists of 119 individual human endogenous viral sequences
including three endogenous bornavirus-like elements with almost
completeORF for theirGAG,POL andENV genes, four sequences of
housekeeping genes and 124 sequences from unrelated exogenous
viruses or non-human endogenous viruses used as spacers. The
HERV-K (HML-2) family hasmore than100 integrated copies in the
human genome, of which we added the 92 full-length sequences to
our virus metagenome. All sequences were collected from the
nucleotide database from the National Center for Biotechnology
Information (NCBI). For detailed information, refer to Engel et al.
(45).TheGalaxy server at usegalaxy.org (46)wasused formappingof
the paired-end reads by Bowtie2 analysis and quantification of all
uniquely mapped reads using FeatureCounts (47). To obtain the
HERV family specific FPKM, the fragment read counts and the gene
length of a family was calculated by summarization of individual
family members.

Flow Cytometry
Cells were harvested after 72 h under medium-induced
microenvironmental changes. Therefore, loosely-adherent or
suspensory cells were loosened by gentle pipetting. Adherent
cells were harvested by detachment with 0.05% trypsin/EDTA
solution. For antibody staining, cells were resuspended in ice-
cold PBS with 2 mM EDTA and 5 ml of the antibody solution was
added. Cells were stained using CD200-APC (Miltenyi Biotech,
Bergisch Gladbach, Germany) or IgG1-APC control (BD
Biosciences, Franklin Lakes, NJ, USA) for 30 min at 4°C in the
dark. Unbound antibody was removed with 1 ml PBS/EDTA
solution and centrifugation for 10 min at 300 ×g. Finally, cells
were suspended in 0.5 ml PBS/EDTA solution and analyzed on a
LSRII cytometer using the FACSDiva software version 8.0.1 (BD
Biosciences, Franklin Lakes, NJ, USA).
TABLE 1 | Primers used for quantitative real time PCR.

Target Exemplary
accession number

(reference)

Sequence of forward (f)
and reverse (r) primer (5’-3’)

ABCC5 NM_001023587 f: CGAAGGGTTGTGTGGATCTT
r: TCTCCCCTCCCTCAGATTTTT

CD24 NM_013230 f: ACCCACGCAGATTTATTCCA
r: ACCACGAAGAGACTGGCTGT

CD133 NM_006017 f: GCCACCGCTCTAGATACTGC
r: TGTTGTGATGGGCTTGTCAT

CD200 NM_005944 f: AAGTGGTGACCCAGGATGAAA
r: AGGTGATGGTTGAGTTTTGGAG

HERV-Fc1 ENV XM_011531085 f: CTCCCCATCTCTCTGGTGC
r: TGAGGAGGCTGGTTTCTACTAAG

HERV-K GAG JN675025 (23) f: GGCCATCAGAGTCTAAACCACG
r: CTGACTTTCTGGGGGTGGCCG

HERV-W1 ENV NM_014590 (43) f: TGCTAACCGCTGAAAGAGGG
r: CGAAGCTCCTCTGCTCTACG

HPRT1 NM_000194 f: ACCAGTCAACAGGGGACATAA
r: CTTCGTGGGGTCCTTTTCACC

MYC NM_002467 f: GGCTCCTGGCAAAAGGTCA
r: CTGCGTAGTTGTGCTGATGT

MYCN NM_001293228 f: TGATCCTCAAACGATGCCTTC
r: GGACGCCTCGCTCTTTATCT
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RESULTS

Trancriptional Activation of Tumor
Progression Markers and HERV by
Medium-Induced Microenvironmental
Changes in Neuroblastoma Cell Lines
In order to investigate the expression of selected HERV and
cellular markers involved in NB tumor progression or
invasiveness under microenvironmental modifications, the
three NB cell lines SH-SY5Y, IMR-32 and SiMa were cultured
in serum-supplemented DMEM standard medium or serum-
supplemented stem cell medium (Panserin 401), or Panserin
without serum. Using RT-qPCR analyses, the transcript levels of
all investigated HERV were shown to be up-regulated upon
exposure to serum-free stem cell medium (Figure 1). Both,
elevation of HERV-K GAG in SH-SY5Y cells (p < 0.0001) and
IMR-32 cells (p < 0.01), as well as activation of HERV-W1 ENV
in SH-SY5Y cells (p < 0.001) were statistically significant. In
SiMa cells, a tendency for increase of the relative HERV
expression was observed (black bars). No significant regulation
was observed for HERV-Fc1 ENV, while the expression was
comparatively low with CT values around 30. Concordantly,
enhanced expressions of CD24 and CD200 were observed in all
three NB lines following cultivation in stem cell media, which
was highly significant (p < 0.0001) for CD200 compared to both
serum-supplemented incubations. An increased CD200
expression at protein level was confirmed in all three NB cell
lines by flow cytometry analyses (Supplementary Figure 1).
Furthermore, relative expression of ABCC5, also known as
multidrug resistance-associated protein 5, was increased in
SiMa cells and significantly increased in SH-SY5Y cells,
whereas no effect was observed in IMR-32 cells. The members
of the proto-oncogene MYC family, MYCN and MYC, were
expressed heterogeneously in the three studied NB lines. High
expression of MYCN was seen in SiMa cells and IMR-32 cells, but
not in SH-SY5Y cells.Uponmedium-inducedmicroenvironmental
changes, MYCN levels were increased by factor 1.6 in IMR-32 cells
only. In contrast, MYC expression was exclusive for SH-SY5Y cells
and increasedby at least factor 4 (p<0.0001) in serum-free stemcell
medium. Interestingly, SiMa was the only NB cell line that
underwent morphological changes from loosely-adherent
monolayers to low proliferating grape-like cellular aggregates upon
exposure to serum-free stemcellmedium(SupplementaryFigure2),
accompaniedbyhighly significant (p<0.0001) enrichmentofCD133
expression. TheNBcell lines SH-SY5Yand IMR-32did showneither
phenotype switching nor transcriptional activation of CD133 during
medium-induced microenvironmental changes.

Differential Gene Expression Pattern
in HERV-Expressing Neuroblastoma
Cell Lines
Secondly, we investigated the overall gene expression in
medium-induced HERV-transcriptional active NB cell lines.
Therefore, RNA-seq data were collected in duplicates from all
three NB cell lines in serum-supplemented standard and stem
cell media or stem cell medium without serum. After mapping
Frontiers in Oncology | www.frontiersin.org 4
against the human genome GRCh38/hg38, the 2−DDCT-values
were used to filter for transcripts that showed either a high
positive (r ≥0.7) or negative (r ≤−0.7) correlation to expression of
HERV-K GAG. The strongest up- and downregulated genes are
presented in Figure 2. The list of all 198 up- and downregulated
genes can be found in the supplement of this manuscript
(Supplementary Tables 1, 2). Figure 2A shows that stem cell
medium led to a shift in gene expression of all three NB cell lines,
accompanied by the formation of individual expression
signatures. No differences in the overall expression pattern
were observed between the serum-supplemented standard and
stem cell media incubated cells, indicating serum deprivation as
the major factor affecting transcription. This, together with
increasing levels of CD200 and ABCC5 in serum-free medium,
shows that the RNA-seq analysis is in line with our previously
observed RT-qPCR results (Figure 2B). Furthermore, TAR
(HIV-1) RNA Binding Protein 1 (TARBP1) was increased by
1.46 times in NB incubated in serum-free stem cell medium,
which might be of interest regarding potential host interaction
partners of the activated HERV. As two of the 78 strongest up-
regulated genes, the long non-coding RNA (lncRNA) Myocardial
Infarction Associated Transcript (MIAT) by fold change of 2.11
and the transcription factor Myeloid Zinc Finger 1 (MZF1) by
fold change of 1.87 were observed (Figure 2B and
Supplementary Table 2). In addition, enhanced expression of
the P21 Activated Kinase (PAK) 3 (fold change: 1.51) and PAK5
(fold change: 1.79) were observed. In contrast, 120 genes were
found to be down-regulated by serum-free medium and
correlated negatively with HERV expression (Figure 2A and
Supplementary Table 2). Hereby, Inhibitor of DNA Binding
Protein (ID) 1 and ID2 that are typically expressed by cells of the
neural crest were both among the strongest decreased genes.
Furthermore, vimentin (VIM), a known regulator of tumor
suppressor p21, was reduced in all three NB cell lines after
exposure to serum-free media.

Identification of Additional Stem Cell
Medium-Induced HERV Members by Using
a Virus Metagenome
To study viral transcription and their potential activation in a
pathogenic context using RNA-seq, we designed a combined virus
metagenome including a collection of exogenous viruses,
endogenous retrovirus elements and other endogenous viral
elements (EVE), e.g. endogenous bornavirus sequences. Using this
virus metagenome, we were able to investigate the differential
expression pattern of 115 HERV elements representing 14 HERV
families and three EVE of the bornavirus family (EBLN-1, EBLN-2
and EBLN-3P) in the three NB cell lines under medium-induced
microenvironmental change. We found that overall expression of
EVEwas low. But half of studied endogenous virus families were up-
regulated upon removal of serum supplementation in stem cell
medium (Figure 3A). Interestingly, three HERV elements showed
strongest differential expressionacross all threeNBcell lines: theENV
of HERV-R (ERV3-1; NCBI accession no.: NC_000007.14:6499
0356-65006687), the full-length HERV-E1 (NCBI accession no.:
AB062274.1) and the ENV of HERV-Fc2 (NCBI accession no.:
AC073236.8:162447-165176). As shown in Figure 3B, HERV-E1
May 2021 | Volume 11 | Article 637522

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wieland et al. HERV Activation in Neuroblastoma Cells
FIGURE 1 | Promotion of malignancy markers by medium-induced microenvironmental changes is accompanied by HERV induction in NB cell lines. Expression of
proposed malignancy markers in NB and three selected HERV transcripts was assessed by RT-qPCR. Relative expression of the indicated genes was represented
by 2−DDCt with normalization to HPRT1 and the overall median. The graphs show mean values and standard deviations of three individual experiments (biological
replicates) determined in duplicates (technical replicates). Statistics: two-way ANOVA with Tukey test; ****p < 0.0001; ***p < 0.001; **p < 0.01.
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expression wasmost increased by factor 2.1 in SH-SY5Y cells and by
factor 1.6 in IMR-32 cells. In SiMa cells, ERV3-1 was strongest
upregulatedwith a fold change of 1.4 and here the highest expression
of the bornavirus like-family was observed, too.
DISCUSSION

In the present study, we have investigated the expression of
HERV as potential targets in NB cell lines during stem-cell
medium-induced microenvironmental change by RT-qPCR
and RNA-seq. For RT-qPCR analyses we initially focused on
HERV-K due to its well-described relationship in a number of
cancers including neural crest-derived tumors such as melanoma
Frontiers in Oncology | www.frontiersin.org 6
(22, 39, 48–50). Our results suggest a strong correlation of
HERV-K GAG with stressful cell culture conditions by serum-
depleted stem cell medium in all three NB cell lines (Figure 1). In
this context, studies on human pluripotent stem cells (PSCs) suggest
HERV-K (HML-2) activation in early stem cell development (51,
52) and that the differentiation of PSCs into neuronal cells is
promoted by silencing of its ENV (53). It is of particular interest,
thatWang’s group were not able to demonstrate similar results with
GAG proteins. This might be a result of an only moderate HERV-K
GAG activation in PSC-like cells, as we observed for SiMa cells after
stem cell media induction. Instead, elevation was significant in SH-
SY5Y cells (p < 0.0001) and IMR-32 cells (p < 0.01) where no
BA

FIGURE 2 | Differential gene expression pattern induced by serum-free
medium in three NB cell lines. Differential gene expression of three NB cell
lines cultured in DMEM or Panserin with FBS or serum-free Panserin was
assessed by RNA-Seq. Data from two individual experiments (biological
replicates) are presented. (A) Heatmap of all genes showing a high correlation
with RT-qPCR-based expression of HERV-K GAG (Pearson coefficient: ≥0.7
or ≤−0.7), as well as a differential expression with fold-change ≥1.4 in medium
with or without FBS, respectively. The difference of the FPKM above (yellow)
and below (blue) the mean value in relation to the standard deviation is shown
as Z-score. Heatmap was generated using www.heatmapper.ca. (B) The
graphs show mean values with standard deviation of selected transcripts
from the gene panel described in (A).
A B

FIGURE 3 | Differential expression of HERV families induced by serum-free
medium in three NB cell lines. Analysis of HERV and bornavirus-like element
transcription in three NB cell lines cultured in DMEM or Panserin with FBS or
serum-free Panserin medium was assessed by RNA-seq of two individual
experiments (biological replicates). (A) Heatmaps of HERV family expression
in each cell line. FPKM of virus families were calculated with respect to the
sum of fragment counts and gene lengths of all family members. The families
were ranked from highest to lowest differential expression in serum free
medium. The difference of the sum of FPKM above (yellow) and below (blue)
the mean value in relation to the standard deviation is shown as Z-score.
Heatmap was generated using www.heatmapper.ca. (B) The graphs show
mean values with standard deviation of FPKM from selected members of the
three strongest up-regulated HERV families in all NB cell lines.
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morphological changes were observed (Figure 1 and
Supplementary Figure 2).

Besides up-regulation of HERV-K GAG, enhanced expression
of HERV-W1 ENV with significance in SH-SY5Y cells (p <0.001)
and to a lesser extend up-regulation of HERV-Fc1 ENV were
observed as consequence of stem cell medium induction (Figure
1). In addition, virus transcriptome analyses revealed activation
of three endogenous retrovirus elements: HERV-R (ERV3-1),
HERV-E1 and HERV-Fc2 (Figure 3). HERV-R transcripts have
broad expression in normal tissue and due to its overexpression
in the first trimester of pregnancy an immunosuppressive
function in the mother-fetus interaction was suggested (54,
55). ERV3-1 is the only copy of approximately 40 ERV3-like
elements in the human genome that has a complete ORF for its
ENV (56). Interestingly, the expression of this full-length ENV is
associated with several tumor entities including colorectal (57),
ovarian (58) and endometrial carcinoma. Of interest is that
during endometrial carcinoma progression, ERV3-1 ENV is co-
expressed with six other ENV (HERV-W1, HERV-T, HERV-Fc2,
HERV-H1-3, HERV-V1, HERV-E1) and showed significantly
increased expression in more undifferentiated grade 3 tumors
compared to differentiated grade 1 tumors (59). In accordance
with the results from endometrial carcinoma, elevated expression
of HERV-E1, HERV-R, and also HERV-K were observed in
ovarian cancer (58). Several reports suggest a putative pathogenic
role in systemic lupus erythematosus as expression of provirus
elements was found to be enhanced compared to healthy
individuals and to correlate with disease progression (60–63).
Altogether, this demonstrates the genetic variety of HERVs in the
pathogenesis of autoimmune disorders and malignancies, even in
the limited subset ofNBcell lines shownhere.HERV transcriptome
analysis of tumorbiopsy samples fromNBpatientsmight behelpful
for identification of putative HERV targets that can be used for
development of anti-HERV antibodies. Such antibodies might be
tools for amore personalized and, at best, more effective therapy, as
it is already established forHER2 in breast cancer patients (64). The
stem cell medium-induced element identified within our virus
metagenome analysis, HERV-Fc2 ENV with location on
chromosome 7q36 has not been investigated extensively in the
past. Due to its activation in all three NB cell lines upon tumor
microenvironmental change, we propose HERV-Fc2 ENV as a
putative target in NB that should be further studied.

In RT-qPCR analyses, IMR-32 cells and SH-SY5Y cells had
either a distinct MYCN (IMR-32 cells) or MYC (SH-SY5Y cells)
positive phenotype, which has been pronounced under stem cell
incubation significantly in SH-SY5Y cells (p < 0.0001). Another fact
exemplifying the heterogeneity of NB was the CD133 positive
character of the SiMa cell line and its medium-induced
morphological change from loosely adherent monolayers to low
proliferating grape-like cellular aggregates. Phenotype switching in
SiMa cells was further accompanied by significant increase of
CD133 levels assessed by RT-qPCR (p < 0.0001) and by RNA-seq
with a fold change of 1.56. Altogether, this indicates that SiMa cells
used in our study are so-called I-type NB (65). I-type cells were
shown to be significantly more malignant than N- or S-type NB
independent of MYCN amplification and suggested as cancer stem
Frontiers in Oncology | www.frontiersin.org 7
cell population according to their CD133 positive background (66,
67). Besides these differences, expression of CD24, CD200 and
ABCC5 were upregulated upon stem cell-promoting conditions
with highly significant fold changes for CD200 (p < 0.0001) in all
three NB cell lines and for CD24 (p < 0.001) and ABCC5 (p < 0.001)
in SH-SY5Y cells (Figure 1). Since overexpression of CD200 was
reported in a variety of human tumors including multiple myeloma
(68), neuroendocrine tumors (69), melanoma (70, 71), ovarian
cancer (72), and very recently also in more than 90 % of NB
samples (38), high correlation of CD200 and HERV-K GAG for the
studied NB cell lines (r = 0.92) might be of special interest (Figure
2). This raises the question, if CD200 is activated by HERV
expression upon microenvironmental change or vice versa
considering possible signaling pathways. In the case of an initial
HERV overexpression by e.g. exogenous viruses (73–75) HERV
proteins from almost complete ORFmight induce clonal deletion of
lymphocytes in a T cell receptor V-beta specific manner resembling
superantigens (13, 76). The polyclonal expansion of T lymphocytes
that has been previously shown for aHERV-Wprotein in-vitro (77),
lead to secretion of cytokines and consequently upregulation of
CD200 by activated T cells (34). Of interest, CD4 positive and CD8
positive T cells of CD200high NB were shown to produce less
interferon gamma and tumor necrosis factor alpha thereby
inhibiting anti-tumor immunity (38). Nevertheless, controversial
results have been reported according the significance and role of
CD200 expression in cancer progression indicating a certain
dependence on the tumor type (69, 78, 79). The three NB cell
lines used in this study showed an increased CD200 expression
upon medium-induced microenvironmental change, both at the
RNA level and at the surface protein level (Supplementary
Figure 1). Though CD24 was not included in the list of most
differentially expressed genes (Figure 2 and Supplementary Table
1) due to a fold change smaller than 1.4, transcriptome analysis
confirms enhanced expression in Panserin medium. Previous
studies reported CD24 as an inhibitor for neurite outgrowth in
mice and that expression was related to the differentiation state in
human NB suggesting an activation of CD24 in less differentiated
tumor samples (80, 81). This might be of interest, since
morphological changes with loss of dendritic branching was solely
observed in SiMa cells after 72 h of serum-free media incubation
(Supplementary Figure 2), but may indicate also ongoing genetic
reprogramming in SH-SY5Y cells and IMR-32 cells. In this context
it is interesting that stem-cell medium induced down regulation of
ID1 and ID2, as well as VIM, which are typically expressed by
neural crest cells (82, 83) (Figure 2 and Supplementary Table 2).
An overexpression of ID1 was associated with several cancers and
cancer-associated pathways (84). However, the reduced expression
of the ID1 and ID2 might be indicative for impaired proliferation in
serum-depleted media that we observed at least in SiMa cells.

Furthermore, we observed overexpression of MIAT under
stem-cell promoting conditions in all studied NB cell lines
(Figure 2B and Supplementary Table 1). This nuclear
lncRNA (NCBI accession no.: NR_003491) is widely expressed
in endothelial cells, Müller glia and neurons, but dysregulation of
MIAT is associated with various heart diseases and nervous
system tumors, as it is involved in the maintenance of proper
May 2021 | Volume 11 | Article 637522
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microvascular and nervous function (85). Interestingly, silencing of
MIAT was reported to correlate with down regulation of MYC
leading to reduction of cell migration and promotion of basal
apoptosis in the NB cell line SH-SY5Y (86). In our present study,
the correlation of MYC and MIAT amplification seemed to be
exclusive for SH-SY5Y cells, as expression ofMYCwas not detected
in IMR-32 cells and SiMa cells (Figure 1). In contrast, differential
expression analyses in stage 4 NB and stage 4S NB suggested that
MIAT might be a “good survival lncRNA” which needs further
investigation (87). Overexpression of transcription factor MZF1
detected by RNA-seq (Figure 2 and Supplementary Table 1) was
in line with previous reports of MZF1 association with poor
clinical outcome in different tumor entities [reviewed in (88)] and
especially NB tumor cell progression through modulation of
tumor environment by facilitating aerobic glycolysis in NB cell
lines (89). Last but not least, co-activation of TARBP-1 and
HERV transcripts might be of special interest. Initially identified
to bind with HIV type-1 transactivation response RNA to
activate long terminal repeat (LTR) expression in the presence
or absence of the viral transactivator Tat (90), it is reasonable to
hypothesize that TARBPs might be able to activate nuclear LTR
transcription of endogenous proviruses and consequently
promote expression of HERV proteins if they possess intact ORF.

In summary, NB are very heterogeneous tumors hampering the
identification of robust biomarkers. Our results strongly suggest
enhancement of malignancy markers by medium-induced tumor
microenvironmental change in RT-qPCR and RNA-seq, which is
accompanied by activation ofHERV transcription in all studiedNB
cell lines. To our knowledge, this is the first time thatHERV-RENV
(ERV3-1), HERV-E1 and HERV-Fc2 ENV were reported to be
associated with NB and should be investigated in further studies
especially regarding their prevalence in more undifferentiated
tumor cells. In addition, significant increase of immune
checkpoint molecule CD200 indicating and possible activation of
immune escape mechanisms, as well as TARBP-1 co-activation
withHERVneeds to be further explored. The expression analysis of
HERVelements in patient specimensmight lead to identification of
new therapeutic targets, especially regarding the ongoing efforts in
the production of HERV-targeting drugs.
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