REVIEW ARTICLE

Association of smoking and cardiometabolic parameters with albuminuria in people with type 2 diabetes mellitus: a systematic review and meta-analysis

Debasish Kar^{1,2} · Clare Gillies¹ · Mintu Nath¹ · Kamlesh Khunti¹ · Melanie J. Davies¹ · Samuel Seidu¹

Received: 23 November 2018 / Accepted: 23 January 2019 / Published online: 24 February 2019 © The Author(s) 2019

Abstract

Aims Smoking is a strong risk factor for albuminuria in people with type 2 diabetes mellitus (T2DM). However, it is unclear whether this sequela of smoking is brought about by its action on cardiometabolic parameters or the relationship is independent. The aim of this systematic review is to explore this relationship.

Methods Electronic databases on cross-sectional and prospective studies in Medline and Embase were searched from January 1946 to May 2018. Adult smokers with T2DM were included, and other types of diabetes were excluded.

Results A random effects meta-analysis of 20,056 participants from 13 studies found that the odds ratio (OR) of smokers developing albuminuria compared to non-smokers was 2.13 (95% CI 1.32, 3.45). Apart from smoking, the odds ratio of other risk factors associated with albuminuria were: age 1.24 (95% CI 0.84, 1.64), male sex 1.39 (95% CI 1.16, 1.67), duration of diabetes 1.78 (95% CI 1.32, 2.23), HbA1c 0.63 (95% CI 0.45, 0.81), SBP 6.03 (95% CI 4.10, 7.97), DBP 1.85 (95% CI 1.08, 2.62), total cholesterol 0.06 (95% CI - 0.05, 0.17) and HDL cholesterol -0.01 (95% CI -0.04, 0.02), triglyceride 0.22 (95% CI 0.12, 0.33) and BMI 0.40 (95% CI 0.00–0.80). When the smoking status was adjusted in a mixed effect meta-regression model, the duration of diabetes was the only statistically significant factor that influenced the prevalence of albuminuria. In smokers, each year's increase in the duration of T2DM was associated with an increased risk of albuminuria of 0.19 units (95% CI 0.07, 0.31) on the log odds scale or increased the odds approximately by 23%, compared to non-smokers. Prediction from the meta-regression model also suggested that the odds ratios of albuminuria in smokers after a diabetes duration of 9 years and 16 years were 1.53 (95% CI 1.10, 2.13) and 5.94 (95% CI 2.53, 13.95), respectively.

Conclusions Continuing to smoke and the duration of diabetes are two strong predictors of albuminuria in smokers with T2DM. With a global surge in younger smokers developing T2DM, smoking cessation interventions at an early stage of disease trajectory should be promoted.

Keywords Type 2 diabetes mellitus · Albuminuria · Smoking

Abbreviations

T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
HbA1c	Glycosylated haemoglobin
HDL	High-density lipoprotein

Managed by Giuseppe Pugliese.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00592-019-01293-x) contains supplementary material, which is available to authorized users.

Debasish Kar d.kar@sheffield.ac.uk; d.kar@nhs.net

Extended author information available on the last page of the article

LDL	Low-density lipoprotein
SBP	Systolic blood pressure

DBP Diastolic blood pressure

Introduction

Smokers with T2DM are disproportionately affected by premature cardiovascular events. A recent systematic review of over 1 million people revealed that smokers with T2DM were approximately 50% more likely to die prematurely with cardiovascular events, compared to non-smokers [1]. However, the precise underlying cause for this heightened cardiovascular mortality remains unexplored. Smoking exacerbates insulin resistance, and adversely affects some cardiometabolic risk factors in T2DM including HbA1c, HDL cholesterol and arterial blood pressure [2]. Surprisingly, however, smoking cessation does not appear to confer any substantial cardiovascular risk reduction for up to 10 years in people with diabetes, compared to 3 years in people without [3]. Indeed, the World Health Organization (WHO) Multinational Study of Vascular Disease in Diabetes (MSVDD) demonstrated that the risk of cardiovascular mortality in people with diabetes remains up to 50% higher in recent quitters (1–9 years), compared to non-smokers [4]. This incongruous relationship between smoking cessation and mortality suggests that there may be some additional risk factor/s that contribute to a higher cardiovascular risk in recent quitters, which might not be reversed by short-term abstinence from smoking.

Albuminuria is an early indicator of both micro-, and macrovascular involvements in diabetes [5, 6] and the progression of albuminuria is a reliable marker for the extent of vascular perturbation [7]. Aggressive management of traditional risk factors such as glucose, blood pressure and lipid profile has not shown consistent benefit particularly when proteinuria is already established [8]. On the other hand, multifactorial interventions including smoking cessation at an early stage of disease trajectory have shown promising potential for the reversal of microalbuminuria and improved cardiovascular outcome [9]. However, conventional risk stratification score derived from the HbA1c, blood pressure and lipid profile may underestimate the influence of life style factors such as obesity and smoking on albuminuria during this crucial stage of disease trajectory. With a global surge of younger people developing metabolic syndrome and T2DM, it is pivotal to explore how best they can be protected from albuminuria which not only heralds incipient diabetic nephropathy but also poses a higher risk for premature cardiovascular complications. The aim of this systematic review and meta-analysis is to elucidate how smoking impacts upon the prevalence of albuminuria and how this relationship is influenced by cardiovascular risk factors such as age, male sex, duration of diabetes, HbA1c, blood pressure, lipid profile and body mass index (BMI).

Materials and methods

Search strategy and selection criteria

"AND". Additionally, we searched the references of the included studies to identify further suitable studies for inclusion. We followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocol (PRISMA-P) 2015 guidelines [10] (Fig. 1). We published the protocol in the International Prospective Register for Systematic Reviews (PROSPERO) database (CRD 42018090637). The full search strategy is in Supplementary material 1.

The inclusion criteria were studies reporting urinary albumin excretion (UAE) in adults (>18 years) with T2DM. T2DM was defined as a condition affecting people's blood sugar level which was then diagnosed by healthcare professionals and treated with diet, lifestyle interventions, oral medication or injectable therapy. People with type 1 diabetes mellitus (T1DM), steroid-induced diabetes, diabetes insipidus, and late auto-immune diabetes of adults (LADA) were excluded, but maturity-onset diabetes of the young (MODY) were included. Smokers were defined as self-reported cigarette smokers for at least a year after being diagnosed with T2DM. For this study, albuminuria was defined as urinary albumin creatinine ratio (ACR) > 20 mg/gm or > 2.5 mg/ mmol in male or > 3.5 mg/mmol in female (KDIGO-Kidney Disease Improving Global Outcome guidelines http://kdigo.org) [11]. Total cholesterol and HDL were converted to mmol/l if they were reported in mg/dl (mg/ $dl = \div 38.67 \text{ mmol/l}$, and TG (mg/dl = $\div 88.57$). HbA1c was expressed in both IFCC unit (mmol/mol) and DCCT unit (%). Blood pressure was expressed in mm of Hg and BMI was expressed as kg/m².

Studies in English language or translated into the English language were accepted for inclusion. Observational prospective and cross-sectional studies were included for this review. Two investigators (DK and CLG) independently screened the articles using the inclusion and exclusion criteria. Any disagreement between the two investigators was resolved either by consensus or by consulting with a third investigator (SS). Included studies were selected by reviewing the titles and abstracts on electronic databases search. Additionally, hand searches were carried out from the references of the included studies.

Data analysis

Data extraction was conducted using a predesigned data extraction template—study name, year of publication, country of study, study design, number of participants, mean age, smoking status of the participants, and presence or absence of albuminuria (Table 1).

Study-level data were also compiled for HbA1c, TC, HDL cholesterol, triglyceride, BMI, SBP and DBP. Continuous data were expressed as mean \pm SD (standard deviation). For cross-sectional studies prevalence data, and for prospective studies baseline data, were extracted. In prospective

Fig. 1 PRISMA flow chart

studies, if albuminuria was absent at the baseline but was present at follow-up, then the follow-up data were obtained. Extracting data from all studies at just one time point, allowed both cross-sectional studies and cohort studies to be combined in the meta-analyses. The study team used the Newcastle–Ottawa Tool for the assessment of the quality of observational studies to assess the quality of included studies [12]. A random effect meta-analysis was conducted to assess

Openand <	Study included name/ID	Study design	Country	Mean	Sex (% male)	Number of participants	Smokir	g status	(1)	Albumi	nuria	Mean dura- tion of DM	Mean HbA1c	Mean SBP
				(years)		(u)	s	SN	Ø	Yes	No	(years)	mmol/mol(%)	(mm of Hg)
	Chuahirunet al., 2003 [50]/08	Prospective	USA	45	55	33	13	20	NS	NS	NS	NS	92 (10.6)	NS
	Chuahirunet al., 2004 [51]/09	Prospective	NSA	45	54	84	31	53	SN	46	38	5	95 (10.8)	115
Reduct et al., 2006 (55/J2) Consesectional lapan 62 100 142 81 at 21 88 84 NS 62 (73) 137 Target et al., 2001 (53/J2) Prospective Taxum 8 5 5 5 5 19 30 83 84 NS 62 (73) 143 Tranget et al., 2001 (53/J2) Prospective Usball 27 89 13 75 141 93 45 63 (73) 143 Hate et al., 2006 (53/J2) Prospective Usball 73 38 93 88 83 83 84 83 83 64 73 94 75 143 Respective Taxum 53 100 273 43 53 44 43 53 64 53 143 Respective Taxum 53 100 64/3 53 53 53 53 53 53 53 53 53 53 53 53	Chuahirun et al., 2004 [60]/09	Prospective	NSA	49	50	157	69	88	NS	112	45	5	54 (7.06)	132
Nage et al., 2010 [53/138) Prospective Taiwan 58 53 510 53 54 56 53 53 54 53 54 56 53 143 55 53 14 55 34 56 53 143 55 54 56 53 143 55 54 56 53 143 55 51 56 53 143 55 51 53 <th< td=""><td>Ikeda et al., 1996 [52]/15</td><td>Cross-sectional</td><td>Japan</td><td>62</td><td>100</td><td>142</td><td>81</td><td>40</td><td>21</td><td>58</td><td>84</td><td>NS</td><td>62 (7.8)</td><td>137</td></th<>	Ikeda et al., 1996 [52]/15	Cross-sectional	Japan	62	100	142	81	40	21	58	84	NS	62 (7.8)	137
volgari e al. 2011 [54]29ProspectiveGreece563091373NS73NS918391913913913914Hast et al. 2001 [57]79FrogenciveTawm587391939252NS91NS8173913Hast et al. 2001 [57]70Cross-sectionalItaly5873909139139591NS919191Baggio et al. 2002 [57]902Cross-sectionalItaly5861931256505NS41166(8.2)NSSwegen et al. 2002 [57]902Cross-sectionalItalyS8619312565394318693714.0093Swegen et al. 2005 [57]97Cross-sectionalItalyNS51939448156(8.1)NSSwegen et al. 2006 [59]71Cross-sectionalItalyNS519374977.4093Sweden et al. 2006 [59]71Cross-sectionalItalyNS519374977.4093Sweden et al. 2006 [59]71Cross-sectionalItalyNSNSNSNS87.74126Sweden et al. 2006 [59]71Cross-sectionalItalyNSNSNSNS77.40126Sweden et al. 2006 [59]71Cross-sectionalItalyNSNSNSNS77.40126Sweden et al. 2006 [59]72Cross-sectional <td< td=""><td>Tseng et al., 2010 [53]/28</td><td>Prospective</td><td>Taiwan</td><td>58</td><td>55</td><td>519</td><td>199</td><td>320</td><td>NS</td><td>240</td><td>279</td><td>10</td><td>64 (8.0)</td><td>132</td></td<>	Tseng et al., 2010 [53]/28	Prospective	Taiwan	58	55	519	199	320	NS	240	279	10	64 (8.0)	132
	Voulgari et al., 2011 [54]/29	Prospective	Greece	56	50	193	73	NS	120	193	NS	NS	61 (7.75)	143
Hau et al., 2010 [56]/14 Prospective Taiwan 54 100 500 191 243 75 314 195 4 66(8.2) 129 Baggio et al., 2002 [37]/05 Cross-sectional Ialy Sseden 7.3 31.317 55 53 19.3 511 53 53 51 101 55 53 51 101 55 53 51 101 55 51 101 55 51 101 55 51 101 55 51 101 55 51 101 55 51 104 55 51 104 55 51 101 55 51 101 55 51 102 51 102 51 103 55 51 53 51 53 51 53 51 53 52 53 53 52 53 53 53 53 53 53 53 53 53 53 53 53	Phistkul et al., 2008 [55]/23	Prospective	NSA	47	52	91	39	52	NS	91	NS	4	59 (7.53)	145
Baggio et al. 2005 [37]/02 Cross-sectional Italy 58 73 96 48 NS NS 11 65 (8.1) NS Coderbiner et al. 2005 [37]/02 Cross-sectional Swelen 57 59 31,037 4332 26,505 NS 81 10 65 (8.1) NS Savage et al., 1995 [59]/26 Cross-sectional Jama 65 100 2770 760 38 81 10 76 (8.5) 147 Savage et al., 1995 [59]/26 Cross-sectional Iama NS 51 447 85 362 NS 16 70 (8.5) 10 Prashamt et al., 2016 [69]/21 Cross-sectional Iama NS 19 57 (7.4) 10 70 (8.5) 12 Aname tal., 2016 [63]/31 Cross-sectional Rap 10 273 14 95 56 (7.4) 13 77 (7.4) 13 Aname tal., 2016 [63]/31 Cross-sectional Rap 10 273 18 85 14 11 87	Hsu et al., 2010 [56]/14	Prospective	Taiwan	54	100	509	191	243	75	314	195	4	66 (8.2)	129
Cadenolmer al., 2005 [57]06 Cross-sectional New of the constructional New of th	Baggio et al., 2002 [37]/02	Cross-sectional	Italy	58	73	96	48	48	NS	96	NS	11	65 (8.1)	NS
Savage et al., 1995 [58]/26 Cross-sectional Lip Savage et al., 1995 [58]/26 Cross-sectional Japan 65 100 2710 760 539 1451 NS 103 1130 Orkhuma et al., 2001 [69]/25 Cross-sectional Japan 65 100 2770 760 539 1451 NS 19 70 (3.55) NS Orkhuma et al., 2007 [62]/01 Cross-sectional Japan 45 18 55 20 35 NS NS 8 60 (7.65) 129 Anan et al., 2007 [62]/01 Cross-sectional Japan 45 18 55 20 35 NS NS NS 77 19 Forkhum et al., 2006 [63]/71 Cross-sectional Japan 55 100 59 54 NS NS 77 13 74 126 Forkhuma et al., 2006 [63]/71 Cross-sectional Japan 55 100 NS NS 77 13 76 107 76 103 157<	Cederholm et al., 2005 [57]/06	Cross-sectional	Sweden	67	59	31,037	4532	26,505	NS	4811	26,226	8	51 (6.85)	147
Okhuma et al., 2016 [59]/21 Cross-sectional Japm 65 100 2770 760 539 1451 NS NS 193 577(-40) 130 Prashant at al., 2016 [60]/25 Cross-sectional Dman NS 51 447 85 362 NS 163 284 10 77(-40) 130 Prashant at al., 2007 [63]/31 Cross-sectional Jam 45 18 25 34 10 70 85 60 (7.65) 162 Anan et al., 2007 [63]/31 Cross-sectional Korea 53 100 629 314 90 284 10 70 125 Torshome et al., 2006 [63]/31 Cross-sectional Jam 53 100 496 36 54 NS 36 64 (7.65) 125 Torshome et al., 2006 [63]/27 Cross-sectional Japa 55 44 111 NS 77 13 56 (7.3) NS Tornhinson et al., 2006 [63]/71 Prospective Ialy NS	Savage et al., 1995 [58]/26	Cross-sectional	USA	58	61	931	264	230	439	402	531	6	103 (11.6)	NS
Prashanth et al., 2010 [60])25 Cross-sectional Iap NS 51 447 85 362 NS 163 284 10 70 (8.55) NS Anan et al., 2001 [60]/21 Cross-sectional Iap NS NS NS NS 60 7.65) 129 Anan et al., 2001 [63]/11 Prospective Finiand 45 18 55 20 35 35 57 9 95 (10.8) 129 Anon et al., 1998 [64]/11 Prospective Finiand 58 100 62 314 95 9 95 (10.8) 132 Torribine et al., 1998 [66]/15 Prospective Iap 53 100 496 196 300 NS NS 35 (7.94) 133 Tomlinson et al., 2001 [67]/12 Prospective Iap 65 55 273 32 31 7 18 55 (7.3) NS Manuchi et al., 1998 [66]/16 Cross-sectional Iap 65 55 273 32 31	Okhuma et al., 2016 [59]/21	Cross-sectional	Japan	65	100	2770	760	559	1451	NS	NS	19	57 (7.40)	130
Corradi et al., 1993 [61/10] Cross-sectional Ialy NS 100 44 46 NS 46 44 NS 60 (7.65) 162 Anan et al., 2007 [62/01] Cross-sectional Japan 45 18 55 NS NS NS NS 5 60 (7.65) 129 Yoem et al., 2007 [62/01] Cross-sectional Japan 45 14 90 225 455 174 9 58 (7.44) 126 Forsblone et al., 1908 [69/16] Cross-sectional Jana 55 100 629 314 90 225 455 174 9 58 (7.43) 133 Tomilison et al., 1908 [69/16 Cross-sectional Jana 65 54 46 111 NS 75 91 337 Manuon et al., 1908 [69/16 Cross-sectional Jana 65 53 273 72 14 11 NS 75 90 75 91 75 90 75 91 75 91<	Prashanth et al., 2010 [60]/25	Cross-sectional	Oman	NS	51	447	85	362	NS	163	284	10	70 (8.55)	NS
And rel 1, 2007 [62]/01Cross-sectionalIapan4518552035NSNSNS560 (7.65)129Forsblon et al., 2016 [63]/31Cross-sectionalKrea63100 629 31490 225 455 174 9 58 (7.44) 126 Forsblon et al., 2016 [63]/27Cross-sectionalFinland5861108 36 54 NSNSNS 33 $637/94$ 133 Tomlinson et al., 2006 [63]/27Cross-sectionalJapan 65 46 155 124 9 $567/3$ 9 $567/34$ 133 Tomlinson et al., 2006 [63]/27Cross-sectionalJapan 65 46 155 124 107 212 417 111 NS $8773567/34133Tomlinson et al., 1996 [69]/17Cross-sectionalLapan6555273273212416117128677/31108West et al., 1997 [69]/17Cross-sectionalLapy655522321224677108767/31108Brun ot al., 1996 [70]/04Cross-sectionalLapy65332001238877133769/31108Brun ot al., 1997 [69]/17Cross-sectionalLapy65332001238877138867/31108Brun ot al., 1997 [69]/17Cross-se$	Corradi et al., 1993 [61]/10	Cross-sectional	Italy	NS	100	90	4	46	NS	46	44	NS	60 (7.65)	162
Yoem et al., 2016 [G3]/31Cross-sectionalKorea 63 100 629 314 90 225 455 174 9 58 (11) Forsholm et al., 1998 [64]/11Prospective ⁴ Finland 58 61 108 36 54 NS 31 59 9 $55(10.8)$ 152 Tomlinson et al., 2006 [65]/27Cross-sectionalChina 53 100 496 196 300 NS NS 33 $63(7.94)$ 133 Tomlinson et al., 2001 [67]/12ProspectiveIaly 65 55 273 214 11 NS 78 77 13 $56(7.3)$ NS Kamauchi et al., 1998 [66]/16Cross-sectionalIaly 65 55 273 272 144 111 NS 78 77 13 $56(7.3)$ NS West et al., 1998 [66]/16Cross-sectionalIaly 65 55 273 273 421 203 137 $75(9.0)$ NS West et al., 1996 [70)/04Cross-sectionalIaly 66 55 273 273 421 107 203 13 $75(9.0)$ NS West et al., 1996 [70)/04Cross-sectionalIaly 66 55 273 421 107 203 13 $96(7.9)$ 137 West et al., 1996 [70)/04Cross-sectionalIaly 80 NS NS NS NS $76(9.0)$ NS West et al., 1996 [70)/04Cross-secti	Anan et al., 2007 [62]/01	Cross-sectional	Japan	45	18	55	20	35	NS	NS	NS	5	60 (7.65)	129
Forsblom et al., 1998 [64]/11Prospective ^a Finland58611083654NS3159995 (10.8)152Tomlinson et al., 2006 [65]/27Cross-sectionalJapan6546196300NSNSNS363(7.94)133Tomlinson et al., 2006 [65]/17Cross-sectionalJapan654615544111NSNSNS5571356 (7.3)NSKanauchi et al., 1980 [66]/16Cross-sectionalJapan655527372144111NS771375 (9.0)NSWest et al., 1980 [66]/17Cross-sectionalUSANSNS9733234212294165577NS137West et al., 1980 [70]/04Cross-sectionalItaly655320012358NSNSNSNSBruno et al., 2016 [72]/03ProspectiveItaly66333167023318NSNSNSBruno et al., 2016 [72]/03ProspectiveItaly6563353353360NSNSNSNSNSNSBruno et al., 2016 [72]/03ProspectiveItaly66 338 1103 129 <	Yoem et al., 2016 [63]/31	Cross-sectional	Korea	63	100	629	314	90	225	455	174	6	58 (7.44)	126
Tomlinson et al., 2006 [65]/27Cross-sectionalChia53100496196300NSNS3363(7.94)133Kanauchi et al., 1998 [66]/16Cross-sectionalJapan654615544111NS78771356 (7.3)NSGambaro et al., 2001 [67]/12ProspectiveIapan655527372134671072031375 (9.0)NSWest et al., 1993 [69]/17Cross-sectionalUSANSNS973323421229416771375 (9.0)NSWest et al., 1993 [69]/17Cross-sectionalUSANSNS973323421229416771375 (9.0)NSBruno et al., 1995 [70]/04Cross-sectionalIaby6643110314978NSNSNSNSNSNSNSBruno et al., 2001 [72]/03ProspectiveItaly6943110314978NSNSNSNSNSNSBruno et al., 2000 [73]/18Cross-sectionalIaby66333303538N/A17711282371164 (8.05)NSBruno et al., 2000 [73]/18Cross-sectionalUSA53333538N/A17711282371158 (7.46)125Bruno et al., 2000 [73]/18Cross-sectionalUSA5133256.136NSNS	Forsblom et al., 1998 [64]/11	Prospective ^a (follow-up data)	Finland	58	61	108	36	54	NS	31	59	6	95 (10.8)	152
Kanauchi et al., 1998 [66]/16Cross-sectionalJapan654615544111NS78771356 (7.3)NSGambaro et al., 2001 [67]/12ProspectiveItaly655527372134671072031375 (9.0)NSWest et al., 1998 [68]/30Cross-sectionalUSANSNS9733234212294165577NSNS137Klein et al., 1998 [68]/17Cross-sectionalUSANSNS3765320012358318NSNS137Klein et al., 1995 [70]/04Cross-sectionalItaly69431103149708756751164 (8.05)NSBruno et al., 2003 [71]/05ProspectiveItaly694311031497082224266771065 (8.1)154Bentata et al., 2000 [43]/13Cross-sectionalUSA513171497082374165771065 (8.1)154Bentata et al., 2000 [43]/13Cross-sectionalUSA51316708728724266771065 (8.1)154Bentata et al., 2000 [43]/13Cross-sectionalUSA5131370013170876 (9.1)NSGerstein et al., 2000 [43]/13Cross-sectionalUSA51363376671065 (6.1)76Nilson et	Tomlinson et al., 2006 [65]/27	Cross-sectional	China	53	100	496	196	300	NS	NS	NS	3	63(7.94)	133
Gambaro et al., 2001 [67]/12ProspectiveIay655527372134671072031375 (9.0)NSWest et al., 1980 [68]/30Cross-sectionalUSANSNS9733234212294165577NS137West et al., 1990 [68]/30Cross-sectionalUSANSNS 376 5320012358318NSNS137Bruno et al., 1996 [70]/04Cross-sectionalItaly694311031497087567651164 (8.05)NSBruno et al., 2003 [71]/05ProspectiveItaly68381103149708724266771065 (8.1)154Bentata et al., 2006 [72]/03ProspectiveMoroco65NS533503538N/A1777112823751158 (7.46)142Gerstein et al., 2006 [72]/03ProspectiveMoroco65NS533503NSNS7521158 (7.46)142Gerstein et al., 2006 [72]/13Cross-sectionalUSA51333533538N/A1777112823751158 (7.46)142Molter et al., 2006 [72]/13Cross-sectionalUSA513336,135NSNS76 (9.1)NSNilsson et al., 2006 [72]/13Cross-sectionalUSA513236,136NS57337,60142 <t< td=""><td>Kanauchi et al., 1998 [66]/16</td><td>Cross-sectional</td><td>Japan</td><td>65</td><td>46</td><td>155</td><td>4</td><td>111</td><td>NS</td><td>78</td><td>LL</td><td>13</td><td>56 (7.3)</td><td>NS</td></t<>	Kanauchi et al., 1998 [66]/16	Cross-sectional	Japan	65	46	155	4	111	NS	78	LL	13	56 (7.3)	NS
West et al., 1980 [68]/30Cross-sectionalUSANSNS9733234212294165577NSNS137Klein et al., 1993 [69]/17Cross-sectionalUSANSNSNS3765320012358318NSNSNSNSBruno et al., 1996 [70]/04Cross-sectionalItaly69431521NSNS7567651164 (8.05)NSBruno et al., 2003 [71]/05ProspectiveItaly683811031497087224266771065 (8.1)154Bruno et al., 2016 [72]/03ProspectiveItaly683811031497087224266771065 (8.1)154Bruno et al., 2016 [72]/03ProspectiveMorocco65633303538N/A1771112823751164 (8.05)NSGerstein et al., 2000 [43]/13Cross-sectionalUSA51321044NSNSNS761158 (7.4)128Kohler et al., 2000 [73]/18Cross-sectionalUSA513236,136NS75211065 (8.1)154Bruta at al., 2000 [73]/18Cross-sectionalUSA513236,136NSNS2224266771065 (8.1)155Kohler et al., 2000 [73]/18Cross-sectionalUSA513236,136NS233 <t< td=""><td>Gambaro et al., 2001 [67]/12</td><td>Prospective</td><td>Italy</td><td>65</td><td>55</td><td>273</td><td>72</td><td>134</td><td>67</td><td>107</td><td>203</td><td>13</td><td>75 (9.0)</td><td>NS</td></t<>	Gambaro et al., 2001 [67]/12	Prospective	Italy	65	55	273	72	134	67	107	203	13	75 (9.0)	NS
Klein et al., 1993 [69]/17Cross-sectionalUSANSNS 376 53 200 123 58 318 NSNSNSNSNSNSBruno et al., 1996 [70]/04Cross-sectionalItaly 69 43 1521 NSNS 756 765 11 $64(8.05)$ NSBruno et al., 2003 [71]/05ProspectiveItaly 68 38 1103 149 708 222 426 677 10 $65(8.1)$ 154 Bentata et al., 2000 [43]/13Cross-sectionalCanada 65 63 3503 538 N/A 1777 1128 2375 11 $58(7.46)$ 142 Kohler et al., 2000 [73]/18Cross-sectionalUSA 51 32 1044 NSNS NS 756 677 10 $65(8.1)$ NS Kohler et al., 2006 [73]/18Cross-sectionalUSA 51 32 1044 NSNS NS 760 0.3 $76(9.1)$ NS Nilsson et al., 2006 [76]/22Cross-sectionalDenmark 61 50 $24,151$ NS NS NS 760 0.3 $76(9.1)$ NS Nilsson et al., 2006 [76]/22Cross-sectionalDenmark 61 50 $22,151$ 86 $68(7.5)$ 144 Nilsson et al., 2006 [76]/22Cross-sectionalDenmark 61 50 $24,151$ NS NS NS 88 $76(9.1)$ NS Nilsson et al., 2006 [76]/	West et al., 1980 [68]/30	Cross-sectional	NSA	NS	NS	973	323	421	229	416	557	7	NS	137
Bruno et al., 1996 [70]/04 Cross-sectional Italy 69 43 1521 NS NS 756 765 11 64 (8.05) NS Bruno et al., 2003 [71]/05 Prospective Italy 68 38 1103 149 708 222 426 677 10 65 (8.1) 154 Bruno et al., 2003 [71]/05 Prospective Morocco 65 NS 671 81 50 755 12 426 677 10 65 (8.1) 154 Bentata et al., 2016 [72]/03 Prospective Morocco 65 63 35303 538 N/A 1777 1128 2375 11 58 (7.46) NS Kohler et al., 2000 [73]/18 Cross-sectional USA 51 32 1044 NS NS 76 0.3 76 (9.1) NS Nilsson et al., 2006 [76]/22 Cross-sectional Denmark 61 50 24,150 NS 76 11 28 76,91 143 N	Klein et al., 1993 [69]/17	Cross-sectional	USA	NS	NS	376	53	200	123	58	318	NS	NS	NS
Bruno et al., 2003 [71]/05 Prospective Italy 68 38 1103 149 708 222 426 677 10 65 (8.1) 154 Bentata et al., 2016 [72]/03 Prospective Morocco 65 NS 671 81 80 NS 520 151 8 68 (8.4) NS Gerstein et al., 2010 [72]/13 Cross-sectional Canada 65 63 3503 538 N/A 1777 1128 2375 11 58 (7.46) 142 Kohler et al., 2000 [73]/18 Cross-sectional USA 51 32 1044 NS NS NS 76 11 58 (7.46) 142 Kohler et al., 2000 [73]/18 Cross-sectional USA 51 32 1044 NS NS NS 76 11 28 (7.55) 144 Nilsson et al., 2006 [76]/22 Cross-sectional Denmark 61 50 24,151 NS NS NS 76 11 142 Pa	Bruno et al., 1996 [70]/04	Cross-sectional	Italy	69	43	1521	NS	NS	NS	756	765	11	64 (8.05)	NS
Bentata et al., 2016 [72]/03 Prospective Morocco 65 NS 671 81 590 NS 520 151 8 68 (8.4) NS Gerstein et al., 2000 [43]/13 Cross-sectional Canada 65 63 3503 538 N/A 1777 1128 2375 11 58 (7.46) 142 Kohler et al., 2000 [73]/18 Cross-sectional USA 51 32 1044 NS NS NS 244 760 0.3 76 (9.1) NS Nilsson et al., 2006 [76]/22 Cross-sectional USA 51 32 1044 NS NS NS 76 (9.1) NS Parving et al., 2006 [76]/22 Cross-sectional Denmark 61 50 24,151 NS NS NS 76 (9.1) NS Parving et al., 2006 [76]/22 Cross-sectional Denmark 61 50 24,151 NS NS NS 76 (9.1) NS Parving et al., 2006 [76]/22 Cross-sectional Denmark	Bruno et al., 2003 [71]/05	Prospective	Italy	68	38	1103	149	708	222	426	677	10	65 (8.1)	154
Gerstein et al., 2000 [43]/13 Cross-sectional Canada 65 63 3503 538 N/A 1777 1128 2375 11 58 (7.46) 142 Kohler et al., 2000 [73]/18 Cross-sectional USA 51 32 1044 NS NS NS 244 760 0.3 76 (9.1) NS Nilsson et al., 2000 [73]/18 Cross-sectional Sweden 65 54 40,648 4512 36,136 NS 5578 35,070 8 48 (6.55) 144 Parving et al., 2006 [76]/22 Cross-sectional Denmark 61 50 24,151 NS NS NS NS 76 (9.1) NS Parving et al., 2001 [75]/24 Cross-sectional Denmark 61 50 24,151 NS NS NS NS 76 (9.1) NS Pijls et al., 2001 [75]/24 Cross-sectional Netherlands 64 49 335 NS NS NS NS 76 (9.1) NS Pijls et al., 2001 [75]/24 Cross-sectional Netherlands 64 49 335 NS<	Bentata et al., 2016 [72]/03	Prospective	Morocco	65	NS	671	81	590	NS	520	151	8	68 (8.4)	NS
Kohler et al., 2000 [73]/18 Cross-sectional USA 51 32 1044 NS NS NS 244 760 0.3 76 (9.1) NS Nilsson et al., 2006 [74]/20 Cross-sectional Sweden 65 54 40,648 4512 36,136 NS 5578 35,070 8 48 (6.55) 144 Parving et al., 2006 [76]/22 Cross-sectional Denmark 61 50 24,151 NS NS NS 8 58 (7.5) NS Pijls et al., 2001 [75]/24 Cross-sectional Netherlands 64 49 335 NS NS NS NS NS 143	Gerstein et al., 2000 [43]/13	Cross-sectional	Canada	65	63	3503	538	N/A	1777	1128	2375	11	58 (7.46)	142
Nilsson et al., 2004 [74]/20 Cross-sectional Sweden 65 54 40,648 4512 36,136 NS 5578 35,070 8 48 (6.55) 144 Parving et al., 2006 [76]/22 Cross-sectional Denmark 61 50 24,151 NS NS NS 8 58 (7.5) NS Pijls et al., 2001 [75]/24 Cross-sectional Netherlands 64 49 335 NS NS NS 6 NS 143	Kohler et al., 2000 [73]/18	Cross-sectional	NSA	51	32	1044	NS	NS	NS	244	760	0.3	76 (9.1)	NS
Parving et al., 2006 [76]/22 Cross-sectional Demmark 61 50 24,151 NS NS NS NS 8 58 (7.5) NS Pijls et al., 2001 [75]/24 Cross-sectional Netherlands 64 49 335 NS NS NS 6 NS 143	Nilsson et al., 2004 [74]/20	Cross-sectional	Sweden	65	54	40,648	4512	36,136	SN	5578	35,070	8	48 (6.55)	144
Pijls et al., 2001 [75]/24 Cross-sectional Netherlands 64 49 335 NS NS NS NS NS NS 6 NS 143	Parving et al., 2006 [76]/22	Cross-sectional	Denmark	61	50	24,151	NS	NS	NS	NS	NS	8	58 (7.5)	NS
	Pijls et al., 2001 [75]/24	Cross-sectional	Netherlands	64	49	335	NS	NS	NS	NS	NS	9	NS	143

^aBoth groups are normoalbuminuric at the baseline

the odds of having albuminuria between smokers and nonsmokers. Further random effects meta-analyses models were fitted to compare participants with and without albuminuria for other risk factors (age, sex, duration of type 2 diabetes systolic and diastolic blood pressure, total cholesterol, HDL cholesterol, triglyceride, BMI and HbA1c), with categorical outcomes fitted as odds ratios and continuous variables as difference in mean values. To explore the relationship between smoking and albuminuria, meta-regression analyses were carried out. To investigate the influence of duration of diabetes on the risk of albuminuria between smokers and non-smokers further, we used the mixed effect metaregression model to predict the odds ratio and corresponding 95% confidence intervals of albuminuria, among smokers compared to non-smokers for the duration of type 2 diabetes ranging from 4 to 20 years.

The heterogeneity between studies was assessed using the I^2 statistic, which represents the total proportion of study variation that is due to heterogeneity rather than sampling error/chance [13]. Publication bias among studies was assessed by visual inspection of the funnel plot and the Egger's test. The type 1 error to determine the level of statistical significance was set at p = 0.05. All statistical analyses were carried out using the metafor package (version 2.0.0) in the R statistical software environment and Cochrane Collaboration Review Manager version 5.

Results

A total of 2207 studies were identified by electronic database searches. After removing the duplicates, 2119 articles were screened for eligibility; 150 of them were accepted for abstract review, and 58 of them were included for fulltext review. Overall, 30 studies (20 cross-sectional and ten prospective observational) with a total of 113,140 people with T2DM were included. The mean age of the study participants was 58 years, and 51% of them were male. Amongst the study participants, 11% were smokers, 60% were non-smokers, and 4% were quitters. Smoking status was unavailable for 25% of the study participants. The prevalence of albuminuria in the included studies was 14%. The mean duration of T2DM was 8 years; the mean HbA1c was 63 mmol/mol (7.9%), and the mean SBP was 125 mmHg. The outcomes from the random effects metaanalysis of 13 studies on 4313 smokers and 15,743 nonsmokers showed that the pooled odds ratio of albuminuria in smokers, compared to non-smokers was 2.13 (95% CI 1.32–3.45; p = 0.002; Fig. 2), indicating a statistically significant increased risk of albuminuria in smokers.

Except for one study, the radial plot suggested that the outcomes for most of the studies were consistent, regarding the effects of smoking and the variation in the risk of albuminuria (Fig. 3).

	Sm	oker	Non-S	moker					
Author(s) and Year	Albuminuria+	Albuminuria-	Albuminuria+	Albuminuria-					Odds Ratio [95% C[]
West et al, 1980	129	194	198	223			⊢∎⊣		0.75[0.56, 1.00]
Savage et al, 1995	115	149	92	138			н	∎⊣	1.16[0.81, 1.66]
Bruno et al, 2003	60	89	254	454			н	₽ ⊣	1.20 [0.84, 1.73]
Tseng et al, 2010	102	97	138	182			ł	-∎	1.39 [0.97, 1.98]
Bentata et al, 2016	67	14	453	137			н	-∎1	1.45[0.79, 2.66]
Cederholme et al, 2005	366	2177	1309	11287				H a t	1.45 [1.28, 1.64]
Hsu et al, 2010	71	120	59	184				⊢∎⊣	1.85 [1.22, 2.79]
Yoem et al, 2016	106	208	19	71				⊨−∎−−1	1.90 [1.09, 3.33]
Kanauchi et al, 1998	28	16	50	61				⊢ ∎i	2.13 [1.04, 4.38]
Gambaro et al, 2001	20	52	17	117				┝──▋╼╾	2.65 [1.28, 5.46]
Corradi et al, 1993	29	15	17	29				⊢₽-	3.30 [1.39, 7.83]
Klein et al, 1993	21	32	16	184				▶	7.55 [3.56, 15.99]
Forsblom et al, 1998	29	7	2	52				►	107.71 [20.98, 552.96]
RE Model								*	2.13 [1.32, 3.45]
					0.05	0.25	1	5	
						Odds Ratio	(loa s	cale)	

Fig. 2 Forest plot showing an odds ratio of albuminuria in smokers compared to non-smokers

Fig.3 A radial plot of random effects meta-analysis showing the standardized differences in observed outcomes (zi) between smokers against their corresponding precision (xi). The plot demonstrates that the differences in outcomes between smokers and non-smokers were consistent for most studies suggesting that other factors were unlikely to contribute to the variation in the risk of albuminuria

The visual exploration of the funnel plot showed slight asymmetry of the plot suggesting possible publication bias. However, outcomes from the Egger's test showed the evidence was not statistically significant (p = 0.063) (Supplementary material 2).

Further meta-analyses demonstrated that cardiometabolic factors associated with albuminuria (OR, 95% CI) were: age 1.24 (95% CI 0.84–1.64, p < 0.001); male sex 1.39 (95% CI 1.16–1.67; p = 0.003); SBP 6.03 (95% CI 4.10–7.97, p < 0.001); DBP 1.85 (95% CI 1.08–2.62, p < 0.001); duration of T2DM 1.78 (95% CI 1.32–2.23, p < 0.001); BMI 0.40 (95% CI 0.00–0.80, p = 0.05); total cholesterol 0.06 (95% CI – 0.05 to 0.17; p = 0.31); HDL – 0.01 (95% CI – 0.04 to 0.02; p = 0.47); triglyceride 0.22 (95% CI 0.12–0.33; p < 0.001) and HbA1c 0.63 (95% CI 0.45–0.81; p < 0.001) (Table 2) (Supplementary material 3).

Meta-regression analyses found most moderator variables were not associated with the study effect except the duration of diabetes showing a significant association (p = 0.001). We observed that the inclusion of duration of diabetes as a moderator variable reduced the residual heterogeneity although there was still evidence of residual heterogeneity (Q statistic = 10.09, p = 0.002); the estimate of residual heterogeneity (τ^2) reduced from 0.69 (95% CI 0.38–3.84) based on the random effect meta-analysis model to 0.23 (95% CI 0.10–2.13) based on the mixed effect meta-regression model (Table 3) (Supplementary material 3). Therefore, the time to diabetes as a moderator variable accounted for almost 60% of the heterogeneity.

The statistically significant residual heterogeneity suggested that other moderators not investigated in this study might be important. The duration of T2DM was positively

 Table 2
 Relationship of cardiometabolic risk factors and albuminuria

 before adjusting for smoking status

Variables	Mean difference	95% confidence interval	p value
Age	1.24	0.84–1.64	< 0.001
Male sex	1.39	1.16-1.67	0.003
SBP	6.03	4.10-7.97	< 0.001
DBP	1.85	1.08-2.62	< 0.001
HbA1c	0.63	0.45-0.81	< 0.001
Duration of dia- betes	1.78	1.32–2.23	< 0.001
Total cholesterol	0.06	-0.05 to 0.17	0.31
HDL cholesterol	-0.01	-0.04 to 0.02	0.47
Triglyceride	0.22	0.12-0.33	< 0.001
Body mass index	0.40	-0.00 to 0.80	0.05

associated with albuminuria: each year increase in the duration of T2DM was associated with an increased log of odds of albuminuria on an average by 0.19 units (95% CI 0.07–0.31), or it increased the odds approximately by 21% (Fig. 4). After 9 years of diabetes, the odds of albuminuria in smokers was approximately 50% higher 1.53 (1.10–2.43) compared to non-smokers. The odds ratio rose further to almost three times at 12-year duration 2.74 (1.74–4.30) and almost six times after 16 years 5.94 (2.58–15.05). The predicted mean odds ratio of albuminuria among smokers compared to non-smokers conditional on a range of the duration of diabetes are presented in Supplementary material 4.

Discussion

This systematic review summarises the relationship between smoking and albuminuria in people with T2DM, and whether this relationship is influenced by other confounding variables such as age, sex, the duration of T2DM, HbA1c, BMI, HDL and total cholesterol, systolic and diastolic blood pressure. The meta-analysis suggests that smoking is a strong predictor of albuminuria in people with T2DM. The meta-regression, on the other hand, concedes that apart from the duration of T2DM, none of the above confounding variables has any statistically significant influence on albuminuria, when adjusted for smoking status. There is a linear relationship between smoking and the duration of T2DM with albuminuria. Smokers with T2DM have 21% increased annual risk of albuminuria, compared to non-smokers. Therefore, smoking cessation at an early stage of disease trajectory is likely to be one of the most effective intervention strategies to prevent the development of albuminuria in smokers with T2DM.

This is the first systematic review and meta-analysis exploring the relationship between smoking and
 Table 3
 Relationship of cardiometabolic risk factors

 with albuminuria after adjusting for smoking status

Moderator variables	Overall effect size (Z)	Heterogeneity (τ^2)	p value
Age	0.75 (-0.084-0.18)	0.70 (0.33-6.44)	0.46
Male sex	0.27 (-0.02-0.03)	0.79 (0.36-6.81)	0.78
HbA1c	1.43 (0.1–0.65)	0.76 (0.30-4.94)	0.15
HDL	-0.50 (-47.78 to 28.83)	9.93 (1.66–100)	0.61
Total cholesterol	0.92 (-1.36 to 3.75)	1.74 (0.56–15.78)	0.35
Triglyceride	-1.14 (-0.51 to 0.14)	0.01 (0-1.28)	0.25
Duration of diabetes	3.18 (0.07-0.31)	0.23 (0.10-2.13)	0.001
SBP	1.09 (-0.29 to 0.101)	1.26 (0.44–10.22)	0.27
DBP	0.26 (-0.13 to 0.17)	2.05 (0.66–18.43)	0.79
BMI	2.48 (0.15–1.30)	0.74 (0.36–6.86)	0.93

Statistically significant variable that influenced the relationship between smoking and albuminuria was the duration of T2DM (highlighted in bold font)

albuminuria, and how other cardiometabolic parameters influence this relationship. Although multiple studies have shown smoking augments the risk of albuminuria in people with type 1 diabetes [14, 15], its role in T2DM remains undetermined. T2DM, as opposed to T1DM, is one of the components of metabolic syndrome. In addition to hyperglycaemia, it is often accompanied by obesity, hypertension and dyslipidaemia [16]. All these risk factors are closely associated with albuminuria [17], and therefore, the relationship between smoking and albuminuria is much more intricate in T2DM, compared to T1DM. Previous studies have shown that smokers have a higher urinary albumin excretion rate, which might have been independent of glycaemic effects [18]. Meta-analyses in this systematic review concluded that there is a close association between smoking and albuminuria in people with T2DM. Meta-regression, on the other hand, taking into consideration all the above confounding variables, concluded that the duration of diabetes is the most important predictor of albuminuria in smokers with T2DM.

Early detection of albuminuria at the stage of microalbuminuria, and multifactorial intervention including smoking cessation, are advocated in all the guidelines across the globe, including the European Association of Study on Diabetes (EASD) and the American Diabetes Association (ADA) [19]. This recommendation is based on the observation that once the daily urinary albumin excretion rate reaches the level of proteinuria (urinary albumin excretion > 300 mg/day), no interventions appears to be effective in reversing it [20, 21]. Addressing other anthropometric and metabolic risk factors including hip–waist ratio, BMI, HbA1c, blood pressure and lipid profiles remain at the centre of this intervention strategy. For glycaemic management, the choice of drugs seems to be a determinant factor of albuminuria. Insulin sensitizers have shown better efficacy in halting the prevalence and progression of albuminuria compared to insulin and its secretagogues. In BARI-2D trial, the researchers have shown that insulin, and its secretagogues are more likely to cause an increased prevalence of albuminuria and coronary artery disease, compared to insulin-sensitizing drugs [22]. However, it will be interesting to know if this outcome is influenced by the choice of drugs or people who were on insulin had poorer glycaemic control.

Irrespective of hypertension, treatment with angiotensinconverting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB) has shown promising prospect of halting the prevalence and progression of albuminuria [23]. However, studies have shown that this reno-protective effect of ACEI and ARBs can be revoked in smokers [24], suggesting that renin-angiotensin axis blockade is less effective to prevent the progression of albuminuria in smokers. Raised triglyceride, and raised total and LDL cholesterol, with low HDL cholesterol are the hallmarks of dyslipidaemia in T2DM [25], but in smokers the predominant abnormality in lipid profile seems to be lower HDL cholesterol [26]. Smoking downregulates the hepatic and endothelial lipoprotein lipase activities [27] and tampers with the reverse cholesterol transport pathway [28]. As a consequence, they have lower HDL cholesterol compared to their non-smoker counterparts. Smoking cessation, on the other hand improves lipid profile particularly the HDL cholesterol, despite moderate weight gain [29, 30], which in turn halts the progression of albuminuria [31]. Conversely, isolated and piecemeal management of glucose, blood pressure and lipid profile did not show consistent efficacy to prevent the prevalence or progression of albuminuria in smokers with diabetes [9, 32]. These observations are suggestive of an independent relationship between smoking and albuminuria mediated by a constellation of underlying pathophysiological processes.

Several mechanisms have been proposed to explain the albuminuria in smokers with T2DM. They include increased blood pressure, altered intrarenal haemodynamics such as activation of the sympatho-adrenergic pathway, activation of the renin–angiotensin–aldosterone axis and the endothelin system [33–35]. In addition, smoking directly causes tubulo-interstitial disease [36] and causes neuro-endocrine disruption, vascular endothelial damage and metabolic deregulations which adversely affect renal structure and function [18, 37, 38]. Therefore, addressing hyperglycaemia, hypertension and dyslipidaemia without smoking cessation may not halt the prevalence and progression of albuminuria in smokers with diabetes.

Nicotine and other toxic metabolites in cigarettes appear to be handled differently in people with and without diabetes [39]. Nicotine infusion acutely increases insulin resistance in people with T2DM but not in people without [40]. Although smokers have lower BMI than non-smokers, nonetheless they have more visceral adiposity and lower insulin sensitivity [41]. Smoking cessation, on the other hand, despite causing moderate weight gain, is associated with the reversal of visceral adiposity and an improvement in insulin sensitivity [30]. But this reversal takes longer in people with T2DM, compared to people without [3, 42]. Therefore, short-term abstinence may not yield any meaningful benefit in smokers with T2DM. The Heart Outcomes Prevention Evaluation (HOPE) study examined the factors that influence the prevalence and progression of albuminuria in people with and without diabetes. This study demonstrated that smoking, hypertension, older age, abdominal adiposity, vascular disease and left ventricular hypertrophy were significantly associated with albuminuria, in people with and without diabetes. However, in people with diabetes, the most significant determinants of albuminuria were the duration of diabetes, HbA1c and the use of insulin. People with diabetes were 1.16 times more likely to develop albuminuria after a diabetes duration of 10.4 years (irrespective of their HbA1c), the risk of albuminuria increased by 8% for each 0.9% increase in the HbA1c, and the people with albuminuria were 1.3 times more likely to be on insulin compared to people who had normoalbuminuria. Sex, dyslipidaemia, creatinine, and BMI were not independently associated with albuminuria after adjustment of other factors [43]. Taking all these evidence into account, this systematic review emphasises that to effectively manage the prevalence and the progression of albuminuria in T2DM, the most effective strategy would be a multifactorial intervention where smoking cessation is one of the key components.

The findings of this systematic review have significant clinical implications. The World Health Organization (WHO) estimates that by 2030, a staggering number of 366 million people will suffer from T2DM worldwide. Amongst them, 60 million will be between 20 and 44 years, and 180 million will be between 45 and 64 years [44]. Young smokers with T2DM are at a higher risk of albuminuria as they will live longer with the condition. This study showed that the risk of albuminuria was similar in smokers and non-smokers up to around 8.5 years of T2DM duration, and then the risk increased approximately by 20% annually. Albuminuria marks the onset of microvascular complications which is often associated with retinopathy, neuropathy and macrovascular involvement [45]. Several studies have shown a rapid rise in the prevalence of albuminuria and cardiovascular complications in younger patients with T2DM, compared to T1DM, despite having similar glycaemic control [46, 47]. Poor lifestyle choices including smoking have been attributed to this disparate response of glycaemic control in T2DM, as opposed to T1DM. Therefore, this study emphasises

that smokers, particularly the younger smokers should be encouraged to quit soon after the diagnosis and persuaded to remain abstinent.

One of the strengths of this study is that it included all the major studies available on the electronic databases from their inception and included 30 studies with 113,400 participants. The quality of the papers was determined by the Newcastle-Ottawa scale, which is a validated tool, and the review process followed PRISMA protocol [10], which is considered to be the gold standard. Publication bias was addressed by conducting the appropriate sensitivity test, which did not show any significant bias. On the other hand, the weaknesses of the study were that it was based mainly on cross-sectional, or the baseline data of prospective studies, and therefore, no temporal relationship between smoking and albuminuria can be confirmed. Second, most of the included studies used self-reported smoking behaviour which might not be accurate. There was also considerable heterogeneity in the included studies, and therefore, the findings may not be generalisable. Although between-study heterogeneity was investigated, meta-regression models lacked statistical power to assess associations between the effect size and study-level covariates.

Conclusion

Albuminuria is one of the earliest biochemically measurable risk factors in T2DM, which heralds incipient micro- and macrovascular complications. It is a substantial milestone in the trajectory of disease progression and is independently associated with cardiovascular and all-cause mortality. This study reiterates that smoking is a strong predictor of albuminuria; the longer the duration of T2DM, the higher the risk. With a rapidly changing global prevalence of T2DM with an anticipated surge of younger people with T2DM [48], and an approximately 70% of them already having complications [49], it is important to raise awareness about the effect of smoking and duration of T2DM on albuminuria, and its impact on cardiovascular mortality. Future research should be focused on elucidating the relationship between smoking cessation, and the progression of albuminuria in people with T2DM, particularly the length of abstinence required to reverse the risk of albuminuria.

Author contributions The original idea of the research came from DK, who did the searches, conducted the study design, and registered the project in PROSPERO. CLG and SS contributed to data collection, data analysis and writing up. CLG and MN contributed to statistical analyses of the data. DK wrote up the manuscript, and all the co-authors contributed to it. KK and MJD were involved in overall supervision and worked in advisory roles in all aspects of the research.

Funding This research was partially funded by the East Midlands Collaboration for Leadership in Applied Health Research and Care (Project 17).

Compliance with ethical standards

Conflict of interest DK, CLG and MN have no competing interests. MJD reports personal fees from Novo Nordisk, Sanofi-Aventis, Lilly, Merck Sharp & Dohme, Boehringer Ingelheim, AstraZeneca, Janssen, Servier, Mitsubishi Tanabe Pharma Corporation, Takeda Pharmaceuticals International Inc. She has also received grants from Novo Nordisk, Sanofi-Aventis, Lilly, Boehringer Ingelheim, Janssen outside the submitted work. Prof Khunti has acted as a consultant and speaker for Amgen, AstraZeneca, Bayer, Novartis, Novo Nordisk, Roche, Sanofi-Aventis, Lilly, Servier and Merck Sharp & Dohme. He has received grants in support of investigator and investigator-initiated trials from AstraZeneca, Novartis, Novo Nordisk, Sanofi-Aventis, Lilly, Pfizer, Boehringer Ingelheim and Merck Sharp & Dohme. KK has received funds for research, honoraria for speaking at meetings and has served on advisory boards for AstraZeneca, Lilly, Sanofi-Aventis, Merck Sharp & Dohme and Novo Nordisk. SS has acted as a consultant on advisory boards and speaker for Novartis, Novo Nordisk, Sanofi-Aventis, Lilly, and Merck Sharp & Dohme, Amgen, Boehringer Ingelheim, Janssen and Takeda Pharmaceuticals International Inc.

Ethics standard statement Not applicable.

Consent for publication All the authors have approved the final manuscript and consented for publication.

Availability of data and material The corresponding author has all the data and materials.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Pan A, Wang Y, Talaei M, Hu FB (2015) Relation of smoking with total mortality and cardiovascular events among patients with diabetes mellitus: a meta-analysis and systematic review. Circulation 132(19):1795–1804
- Kar D, Gillies C, Zaccardi F, Webb D, Seidu S, Davies M et al (2016) Relationship of cardiometabolic parameters in non-smokers, current smokers, and quitters in diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol 15:158
- Clair C, Rigotti NA, Porneala B, Fox CS, D'Agostino RB, Pencina MJ et al (2013) Association of smoking cessation and weight change with cardiovascular disease among adults with and without diabetes. JAMA 309(10):1014–1021
- Chaturvedi N, Stevens L, Fuller JH (1997) Which features of smoking determine mortality risk in former cigarette smokers with diabetes? The World Health Organization Multinational Study Group. Diabetes care 20(8):1266–1272
- Eijkelkamp WB, Zhang Z, Brenner BM, Cooper ME, Devereux RB, Dahlof B et al (2007) Renal function and risk for cardiovascular events in type 2 diabetic patients with hypertension: the RENAAL and LIFE studies. J Hypertens 25:876

- Lee ET, Howard BV, Wang W, Welty TK, Galloway JM, Best LG et al (2006) Prediction of coronary heart disease in a population with high prevalence of diabetes and albuminuria: the Strong Heart Study. Circulation 113(25):2897–2905
- Singh DK, Winocour P, Summerhayes B, Sivakumar G, Viljoen A, Farrington K (2009) The relationship of albuminuria and vascular calcification in type 2 diabetes. Diabetes 58(1):A198
- Di Landro D, Catalano C, Lambertini D, Bordin V, Fabbian F, Naso A et al (1998) The effect of metabolic control on development and progression of diabetic nephropathy. Nephrol Dial Transplant 13(Suppl 8):35–43
- Ascic-Buturovic B, Kacila M, Kulic M (2009) Effects of aggressive approach to the multiple risk factors for diabetic nephro-pathy on proteinuria reduction in diabetes type 2 patients. Bosn J Basic Med Sci 9(1):44–48
- Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: elaboration and explanation. BMJ (Online) 349:1
- Miller W, Bruns D, Hortin G, Sandberg S, Aakre K, McQueen M et al (2009) Current issues in measurement and reporting of urinary albumin excretion. Clin Chem 55(1):24–38
- Stang A (2010) Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605
- 13. Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558
- Chase HP, Garg SK, Marshall G, Berg CL, Harris S, Jackson WE et al (1991) Cigarette smoking increases the risk of albuminuria among subjects with type I diabetes. JAMA 265(5):614–617
- Amin R, Widmer B, Prevost AT, Schwarze P, Cooper J, Edge J et al (2008) Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ 336(7646):697–701
- Abuaisha B, Kumar S, Malik R, Boulton AJ (1998) Relationship of elevated urinary albumin excretion to components of the metabolic syndrome in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 39(2):93–99
- 17. Temimovic R, Rasic S (2015) Impact of obesity and smoking on the values of albuminuria and proteinuria in high risk patients and its impact on development of early chronic kidney disease in outpatients in bosnia herzegovina. Nephrol Dial Transplant 30:iii489
- Christiansen JS (1978) Cigarette smoking and prevalence of microangiopathy in juvenile-onset insulin-dependent diabetes mellitus. Diabetes care 1(3):146
- Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M et al (2015) Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes care 38(1):140–149
- 20. Boger CA, Haak T, Gotz AK, Christ J, Ruff E, Hoffmann U et al (2006) Effect of ACE and AT-2 inhibitors on mortality and progression to microalbuminuria in a nested case-control study of diabetic nephropathy in diabetes mellitus type 2: results from the GENDIAN study. Int J Clin Pharmacol Ther 44:364–74
- Yamashita T, Makino H, Nakatani R, Ohata Y, Miyamoto Y, Kishimoto I (2013) Renal insufficiency without albuminuria is associated with peripheral artery atherosclerosis and lipid metabolism disorders in patients with type 2 diabetes. J Atheroscler Thromb 20(11):790–797
- 22. Wall BM, Hardison RM, Molitch ME, Marroquin OC, McGill JB, August PA (2010) High prevalence and diversity of kidney dysfunction in patients with type 2 diabetes mellitus and coronary artery disease: the BARI 2D baseline data. Am J Med Sci 339:401–10

- 23. Boger CA, Haak T, Gotz AK, Christ J, Ruff E, Hoffmann U et al (2006) Effect of ACE and AT-2 inhibitors on mortality and progression to microalbuminuria in a nested case-control study of diabetic nephropathy in diabetes mellitus type 2: results from the GENDIAN study. Int J Clin Pharmacol Ther 44(8):364–374
- 24. Chuahirun T, Wesson DE (2002) Cigarette smoking predicts faster progression of type 2 established diabetic nephropathy despite ACE inhibition. Am J Kidney Dis 39(2):376–382
- 25. de Boer IH, Astor BC, Kramer H, Palmas W, Seliger SL, Shlipak MG et al (2008) Lipoprotein abnormalities associated with mild impairment of kidney function in the multi-ethnic study of atherosclerosis. Clin J Am Soc Nephrol CJASN 3(1):125–132
- 26. Berlin I (2008) Smoking-induced metabolic disorders: a review. Diabetes Metab 34(4 Pt 1):307–314
- 27. Freeman DJ, Caslake MJ, Griffin BA, Hinnie J, Tan CE, Watson TD et al (1998) The effect of smoking on post-heparin lipoprotein and hepatic lipase, cholesteryl ester transfer protein and lecithin:cholesterol acyl transferase activities in human plasma. Eur J Clin Investig 28(7):584
- 28. Zong C, Song G, Yao S, Guo S, Yu Y, Yang N et al (2015) Cigarette smoke exposure impairs reverse cholesterol transport which can be minimized by treatment of hydrogen- saturated saline. Lipids Health Dis 14(1):159-
- Campbell SC, Moffatt RJ, Stamford BA (2008) Smoking and smoking cessation—the relationship between cardiovascular disease and lipoprotein metabolism: a review. Atherosclerosis 201(2):225–235
- Ferrara CM, Kumar M, Nicklas B, McCrone S, Goldberg AP (2001) Weight gain and adipose tissue metabolism after smoking cessation in women. Int J Obes 25(9):1322–1326
- 31. Zoppini G, Targher G, Chonchol M, Perrone F, Lippi G, Muggeo M (2009) Higher HDL cholesterol levels are associated with a lower incidence of chronic kidney disease in patients with type 2 diabetes. Nutr Metab Cardiovasc Dis 19:580–6
- 32. Sawicki PT, Muhlhauser I, Bender R, Pethke W, Heinemann L, Berger M (1996) Effects of smoking on blood pressure and proteinuria in patients with diabetic nephropathy. J Intern Med 239(4):345–352
- Orth SR (2004) Effects of smoking on systemic and intrarenal hemodynamics: influence on renal function. J Am Soc Nephrol 15(Suppl 1):58
- Ritz E, Ogata H, Orth SR (2000) Smoking: a factor promoting onset and progression of diabetic nephropathy. Diabetes Metab 26(Suppl 4):54–63
- 35. Orth SR, Schroeder T, Ritz E, Ferrari P (2005) Effects of smoking on renal function in patients with type 1 and type 2 diabetes mellitus. Nephrol Dial Transplant 20(11):2414–2419
- Orth SR (2002) Cigarette smoking: an important renal risk factor—far beyond carcinogenesis. Tob Induc Dis 1(2):137–155
- 37. Baggio B, Budakovic A, Dalla Vestra M, Saller A, Bruseghin M, Fioretto P (2002) Effects of cigarette smoking on glomerular structure and function in type 2 diabetic patients. J Am Soc Nephrol 13(11):2730–2736
- Agarwal R (2005) Smoking, oxidative stress and inflammation: impact on resting energy expenditure in diabetic nephropathy. BMC Nephrol 6:13
- 39. Canoy D, Wareham N, Luben R, Welch A, Bingham S, Day N et al (2005) Cigarette smoking and fat distribution in 21,828 british men and women: a population-based study. Obesity 13(8):1466–1475
- 40. Axelsson T, Jansson PA, Smith U, Eliasson B, Sahlgrenska a, Institutionen för i et al (2001) Nicotine infusion acutely impairs insulin sensitivity in type 2 diabetic patients but not in healthy subjects. J Intern Med 249(6):539–544
- 41. Kim JH, Shim KW, Yoon YS, Lee SY, Kim SS, Oh SW (2012) Cigarette smoking increases abdominal and visceral obesity

- 42. Clair C, Rigotti N, Shrader P, Caroline P, Pencina M, Meigs J (2011) Effects of smoking, cessation and weight change on cardiovascular disease among people with and without diabetes. J Gen Intern Med 26:S12–S14
- 43. Gerstein HC, Mann JF, Pogue J, Dinneen SF, Halle JP, Hoogwerf B et al (2000) Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the Heart Outcomes Prevention Evaluation Study. The HOPE Study Investigators. Diabetes Care 23(Suppl 2):35
- 44. Organization WH (2016) Global report on diabetes
- Savage S, Estacio RO, Jeffers B, Schrier RW (1996) Urinary albumin excretion as a predictor of diabetic retinopathy, neuropathy, and cardiovascular disease in NIDDM. Diabetes care 19(11):1243–1248
- 46. Constantino M, Molyneaux L, Gisler F, Al Saeed A, Luo C, Wu T et al (2012) Long term complications and mortality in youth onset diabetes: type 2 diabetes is more lethal than type 1 diabetes. Diabetes Care 61(s1):A88-A
- 47. Group TS (2013) Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care 36(6):1735–1741
- Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321
- 49. Dabelea D, Department of Epidemiology CSoPH, Aurora, Stafford JM, Department of Biostatistical Sciences WFSoM, Winston-Salem, North Carolina, Mayer-Davis EJ, Departments of Nutrition and Medicine UoNC, Chapel Hill et al (2017) Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA 317(8):825–835
- Chuahirun T, Khanna A, Kimball K, Wesson DE (2003) Cigarette smoking and increased urine albumin excretion are interrelated predictors of nephropathy progression in type 2 diabetes. Am J Kidney Dis 41:13–21
- Chuahirun T, Simoni J, Hudson C, Seipel T, Khanna A, Harrist RB et al (2004) Cigarette smoking exacerbates and its cessation ameliorates renal injury in type 2 diabetes. Am J Med Sci 327(2):57–67
- 52. Ikeda Y, Suehiro T, Takamatsu K, Hashimoto K, Yamashita H, Tamura T (1997) Effect of smoking on the prevalence of albuminuria in Japanese men with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 36(1):57–61
- 53. Tseng CH, Tseng CP, Chong CK. Joint effects of hypertension, smoking, dyslipidemia and obesity and angiotensin-converting enzyme DD genotype on albuminuria in Taiwanese patients with type 2 diabetes mellitus. Clin Biochem 2010;43:629–34
- Voulgari C, Katsilambros N, Tentolouris N (2011) Smoking cessation predicts amelioration of microalbuminuria in newly diagnosed type 2 diabetes mellitus: a 1-year prospective study. Metabolism 60:1456–64
- 55. Phisitkul K, Hegazy K, Chuahirun T, Hudson C, Simoni J, Rajab H et al (2008) Continued smoking exacerbates but cessation ameliorates progression of early type 2 diabetic nephropathy. Am J Med Sci 335:284–91
- 56. Hsu CC, Hwang SJ, Tai TY, Chen T, Huang MC, Shin SJ et al (2010) Cigarette smoking and proteinuria in Taiwanese men with type 2 diabetes mellitus. Diabet Med 27(3):295–302
- Cederholm J, Eliasson B, Nilsson PM, Weiss L, Gudbjörnsdottir S (2005) Microalbuminuria and risk factors in type 1 and type 2 diabetic patients. Diabetes Res Clin Pract 67(3):258–266
- Savage S, Nagel NJ, Estacio RO, Lukken N, Schrier RW. Clinical factors associated with urinary albumin excretion in type II diabetes. Am J Kidney Dis 1995;25:836–44

- 59. Ohkuma T, Nakamura U, Iwase M, Ide H, Fujii H, Jodai T et al (2016) Effects of smoking and its cessation on creatinineand cystatin C-based estimated glomerular filtration rates and albuminuria in male patients with type 2 diabetes mellitus: the Fukuoka Diabetes Registry. Hypertens Res 39(10):744–751
- 60. Prashanth P, Sulaiman KJ, Kadaha G, Bazarjani N, Bakir S, Jabri KE et al (2010) Prevalence and risk factors for albuminuria among type 2 diabetes mellitus patients: a middle-east perspective. Diabetes Res Clin Pract 88(3):e24–e27
- Corradi L, Zoppi A, Tettamanti F, Malamani G, Lazzari P, Fogari R (1993) Association between smoking and micro-albuminuria in hypertensive patients with type 2 diabetes mellitus. J Hypertens 11:S190-1
- 62. Anan F, Nakagawa M, Yonemochi H, Saikawa T, Masaki T, Takahashi N et al (2007) Smoking is associated with urinary albumin excretion: an evaluation of premenopausal patients with type 2 diabetes mellitus. Metab Clin Exp 56(2):179–184
- 63. Hyungseon Y, Jung Hyun L, Hyeon Chang K, Il S (2016) The association between smoking tobacco after a diagnosis of diabetes and the prevalence of diabetic nephropathy in the korean male population. J Prev Med Public Health 49(2):108–117
- Forsblom CM, Totterman KJ, Saloranta C, Groop PH, Ekstrand A, Sane T et al (1998) Predictors of progression from normoalbuminuria to microalbuminuria in NIDDM. Diabetes Care 21(11):1932–1938
- 65. Thomas GN, Tomlinson B, McGhee SM, Lam TH, Abdullah ASM, Yeung VTF et al (2006) Association of smoking with increasing vascular involvement in type 2 diabetic chinese patients. Exp Clin Endocrinol Diabetes 114(06):301–305
- Kanauchi M, Kawano T, Akai M, Yashima I, Nishioka H, Nakashima Y et al (1998) Smoking habit and progression of diabetic nephropathy. J Nara Med Assoc 49(2):85–89
- 67. Gambaro G, Bax G, Fusaro M, Normanno M, Manani SM, Zanella M et al (2001) Cigarette smoking is a risk factor for nephropathy and its progression in type 2 diabetes mellitus. Diabetes Nutr Metab Clin Exp 14(6):337–342
- West KM, Erdreich LS, Stober JA (1980) Absence of a relationship between smoking and diabetic microangiopathy. Diabetes care 3(2):250–252
- Klein R, Klein BE, Moss SE (1993) Incidence of gross proteinuria in older- onset diabetes. A population- based perspective. Diabetes 42(3):381
- Bruno G, Cavallo-Perin P, Bargero G, Borra M, Calvi V, D'Errico N et al (1996) Prevalence and risk factors for microand macroalbuminuria in an Italian population-based cohort of NIDDM subjects. Diabetes Care 19(1):43–47
- Bruno G, Merletti F, Biggeri A, Bargero G, Ferrero S, Pagano G et al (2003) Progression to overt nephropathy in type 2 diabetes: the Casale Monferrato Study. Diabetes Care 26(7):2150–2155
- 72. Bentata Y, Karimi I, Benabdellah N, El Alaoui F, Haddiya I, Abouqal R (2016) Does smoking increase the risk of progression of nephropathy and/or cardiovascular disease in type 2 diabetic patients with albuminuria and those without albuminuria? Am J Cardiovasc Dis 6(2):66–69
- Kohler KA, McClellan WM, Ziemer DC, Kleinbaum DG, Boring JR (2000) Risk factors for microalbuminuria in black americans with newly diagnosed type 2 diabetes. Am J Kidney Dis 36(5):903–913
- 74. Nilsson P, Gudbjörnsdottir S, Eliasson B, Cederholm J (2004) Smoking is associated with increased HbA 1c values and microalbuminuria in patients with diabetes—data from the National Diabetes Register in Sweden. Diabetes Metab 30(3):261–268
- Pijls LT, de Vries H, Kriegsman DM, Donker AJ, van Eijk JT (2001) Determinants of albuminuria in people with type 2 diabetes mellitus. Diabetes Res Clin Pract 52(2):133–143

76. Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG, DEMAND investigators (2006) Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int 69(11):2057–2063 **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Debasish Kar^{1,2} · Clare Gillies¹ · Mintu Nath¹ · Kamlesh Khunti¹ · Melanie J. Davies¹ · Samuel Seidu¹

Clare Gillies clg13@leicester.ac.uk

Mintu Nath mn193@leicester.ac.uk

Kamlesh Khunti kk22@leicester.ac.uk

Melanie J. Davies melanie.davies@uhl-tr.nhs.uk Samuel Seidu sis11@leicester.ac.uk

- ¹ Diabetes Research Centre, University of Leicester, Leicester, UK
- ² Academic Unit of Diabetes and Endocrinology, University of Sheffield, Sheffield, UK