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Dramatic band gap reduction 
incurred by dopant coordination 
rearrangement in Co-doped 
nanocrystals of CeO2
T. S. Wu1, Y. W. Chen1, S. C. Weng2, C. N. Lin3, C. H. Lai4, Y. J. Huang3, H. T. Jeng1,5, S. L. 
Chang1,2 & Y. L. Soo   1,2

A dramatic band gap narrowing of 1.61 eV has been observed in Co-doped nanocrystals of CeO2 (ceria), 
as a result of thermal annealing, without changing the ceria crystal structure and the Co concentration. 
As demonstrated by x-ray absorption fine structures, thermal annealing incurs an oxygen coordination 
rearrangement around Co atoms from an octahedral coordination to a square-planar coordination. 
First principle calculation using density functional theory reveals two stable oxygen coordination types 
surrounding Co, consistent with the experimental observation. The band gap values calculated for the 
two stable coordination types differ dramatically, reproducing the experimentally observed band gap 
narrowing. These prominent effects due to local structure rearrangement around dopant atoms can lead 
to unprecedented methods for band gap engineering in doped nanocrystal oxides.

Ceria based catalysts have attracted considerable research interest due to their important applications in energy 
and environmental technologies. The catalytic activities quantified by CO oxidation for the ceria catalysts have 
been reported to improve after metal ion doping1–3. Theoretical works aiming to establish models for their cat-
alytic mechanism and activity improvements have also been extensively performed4–6. It is well-known that 
increased ionic conductivity and electronic conductivity due to oxygen vacancies arising from anion deficiency 
can enhance the catalytic activity in thermally annealed non-stoichiometric ceria7. On the other hand, thermal 
annealing was reported to release strains and thus change the band gap in many solid-state materials8–10. It is 
conceivable that reduction of the band gap of ceria can increase the efficiency of charge transfer required in the 
catalytic processes and therefore also contribute to enhance the catalyst’s activity. In this paper, we demonstrate 
a newly observed bistability of local oxygen coordination around Co dopant atoms. Transition between the two 
stable oxygen coordination types can be incurred by thermal annealing. In contrast to the strain release mech-
anism, such oxygen-coordination-type transition of Co dopant can give rise to much more dramatic band-gap 
variations.

Nanocrystal samples of Co-doped CeO2 synthesized by using a polyol method11 was annealed at temperatures 
200, 300, 400, 500, 600, and 650 °C. The Co concentration of the samples was determined to be 4.3 at. % by using 
inductively coupled plasma mass spectrometry (ICPMS). As shown in Fig. 1, the synchrotron-based x-ray pow-
der diffraction (XRD) patterns for all samples match well with that of cubic CeO2 at the (111), (200), (220), (311), 
(222) and (400) Bragg peaks indicating that the crystal structure remains largely unchanged after annealing. The 
crystallite size determined by the Scherrer equation increases from 4.0 nm in the as-made sample to 4.0, 4.2, 4.6, 
6.7, 10.6, and 15.3 nm in the 200 °C-, 300 °C-, 400 °C-, 500 °C-, 600 °C-, and 650 °C-annealed sample while the 
corresponding lattice parameter changes from 5.4216 Å to 5.4220, 5.4222, 5.4197, 5.4177, 5.4173, and 5.4169 Å, 
respectively. The decreasing trend of lattice parameter with increasing crystallite size is consistent with previous 
reports on CeO2 nanoparticle12.
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However, dramatic changes in band gap width were observed in the annealed samples from UV-vis dif-
fuse reflectance spectra as shown in Fig. 2. To extract the band gap values from the experimental data, the 
Kubelka-Munk13 function and Tauc’s plots14 were used. The band gap energies, determined by the intersection of 
the horizontal axis and the tangent line to the absorption curve at the inflection point, are 2.80 eV, 1.94 eV, 1.71 eV, 
1.60 eV, 1.48 eV, 1.36 eV and 1.19 eV, for the as-made, 200, 300, 400, 500, 600 and 650 °C annealed sample, respec-
tively. The band gap energy of the sample shows a drastic decrease of 1.61 eV after thermal annealing at 650 °C. 
It is worth noting that the band gap width of the as-made sample of Co-doped CeO2 nanocrystals is roughly 
the same as that of a pure CeO2 nanocrystal, 2.80 eV measured previously11. The effect of Co dopant atoms on 
band-gap engineering of ceria appears to be negligible compared to that of thermal annealing in the present work. 
Also, the band gap variation due to crystallite-size-related quantum confinement effect was reported to be only 
around 0.2 eV15, 16.

Since the XRD data show no obvious structural changes in the ceria host, possible local structural variations 
surrounding the Co dopant atoms may play a pivotal role in the mechanism underlying the observed band gap 
narrowing. To probe the local structure surrounding Co atoms, Co K-edge x-ray absorption near edge structure 
(XANES) and extended x-ray absorption fine structure (EXAFS) were measured. As shown in Fig. 3(a), the 
XANES data gradually changes with the increasing annealing temperature. By comparing the XANES of the 
samples with those of the model compounds, as plotted in Fig. 3(b), the possibility for Co atom forming metal or 
oxide clusters in the samples can be excluded.

Quantitative information on radial distribution of neighboring atoms surrounding the Co dopant atoms was 
obtained from EXAFS data. An established data reduction method was used to extract the EXAFS χ-functions 
from the raw experimental data17, 18. The χ-functions of the Co K-edge EXAFS are then Fourier-transformed 
into real space and plotted as fine lines in Fig. 4. Local structural parameters were quantitatively extracted from 

Figure 1.  X-ray powder diffraction patterns of Co-doped CeO2 samples annealed at different temperatures. 
Curves have been shifted vertically for the sake of clarity.

Figure 2.  UV–vis diffuse reflectance spectra for Co-doped CeO2 samples. Inset: A plot of band gap energy vs. 
annealing temperature.
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Figure 3.  (a) Co XANES data for Co-doped CeO2 sample annealed at different temperatures. (b) Comparison 
of XANES of as-made and 650 °C-annealed samples with spectra from reference compounds. (c) FDMNES 
simulated Co XANES spectra.

Figure 4.  Co K-edge EXAFS data for Co-doped CeO2 samples. Fine lines: experimental; Coarse lines: curve 
fitting. Curves have been shifted vertically for the sake of clarity.
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the EXAFS functions using an improved curve-fitting procedure with back scattering amplitude and phase shifts 
functions obtained from the FEFF software19, 20. The amplitude reduction factor S0

2 representing the central atom 
shake-up and shake-off effects and the mean free path of photoelectrons λ were set to be 0.72 and 10 Å as deter-
mined in previous papers21, 22. The final values of fitting parameters for the Co K-edge EXAFS are listed in Table 1.

For the as-made sample, the EXAFS data exhibit a nearest O shell at 2.06 Å and a Ce next nearest shell at 
3.79 Å from the Co central atom as shown in Table 1. The coordination number of the nearest O neighboring 
shell is around 6, roughly two less than that of 8 surrounding Ce in the CeO2 host. Compared to the 2.34 Å Ce-O 
distance and 3.83 Å Ce-Ce distance calculated from the standard crystal structure19 of CeO2, the observed Co-O 
and Co-Ce distance indicate that the Co dopant atoms most likely substitute for Ce atoms in the CeO2 matrix 
with large distortion arising from the surrounding oxygen vacancies. After thermal annealing, the amplitude of 
the peak due to the 2.06 Å Co-O bond decreases while a new peak representing a much shorter (1.86 Å) Co-O 
bond appears and intensifies as the annealing temperature increases. The Co-Ce bond length also decreases from 
the as-made value of 3.79 Å to 3.22–3.25 Å in the samples annealed at 400–600 °C. For the 650 °C annealed sam-
ple, the Co-O and Co-Ce bond lengths are around 1.86 Å and 3.21 Å, respectively. The coordination number of 
the nearest O neighboring shell is also reduced from 6 to 4. We ascribed this dramatic reduction of Co-O bond 
length and O coordination number surrounding Co to the change of Co dopant location in the CeO2 host due to 
thermal annealing.

To reveal the coordination geometry around Co atoms, the experimental XANES spectra were compared with 
theoretical simulation based on the multiple-scattering (MS) formalism using the FDMNES code20. Local struc-
tural information obtained from EXAFS analysis were used to construct the theoretical model. The self-consistent 
muffin-tin (MT) full-multiple-scattering (FMS) approach with the real Hedin-Lundqvist exchange-correlation 
potential was applied with a cluster radius R = 2.1 Å that corresponds to 7 and 5 atoms for the octahedral model 
and the square planar model, respectively. The FMS calculations were performed using the MT potential con-
structed from 10% overlapped MT spheres. For the as-made and 650 °C annealed samples, an octahedral and 
a square planar ligand models with 6 and 4 Co-O bonds were adopted, respectively. As shown in Fig. 3(c), it is 
clear that the theoretical simulation agrees rather well with the experimental XANES data. Therefore, our x-ray 
results show that the Co dopant atoms can be driven by thermal annealing from an octahedral coordination in 
the as-made sample to a square planar coordination.

To understand the observed correlation between band gap changes and cobalt local structure transition, 
density functional theory (DFT) calculations were performed using the Vienna ab initio simulation package 
(VASP)23. A generalized gradient approximation (GGA) PBEsol functional24 was adopted and a 6.5 eV Hubbard 
U correction25–27 to the Ce 4 f orbitals was employed to describe the correlation effects of the Ce 4 f states in defec-
tive CeO2 crystals. A 2 × 2 × 2 supercell with 96 atoms therein was used as the initial model for pure CeO2. The 
Brillouin-zone (BZ) integration was performed using a 4 × 4 × 4 Monkhorst- Pack k-point grid28. The plane-wave 
kinetic energy cutoff was set to be 400 eV. Atomic positions and lattice parameters of all models were optimized 
until the maximum force on each atom was smaller than 0.02 eV/Å. The structural model with octahedrally coor-
dinated Co atoms shown in Fig. 5(a) was constructed by substituting a Ce atom in the ceria host with a Co atom, 
where two O neighboring atoms were removed from the diagonal sites of a CoO8 cube forming an octahedral 
coordination geometry. In the model with Co dopant atoms in square planar coordination shown in Fig. 5(b), a 
Co atom was located in the center of the bottom face of a CoO8 cube with four O atoms on the top face removed.

Sample Bond N R (Å) σ2 (10−3 Å2) ΔE0 (eV)

As-grown
Co - O 5.7 ± 0.1 2.06 ± 0.01 7.6 ± 0.3 −1.9 ± 0.5

Co – Ce 2.9 ± 0.4 3.79 ± 0.01 8.1 ± 1.3 −10.1 ± 1.0

200 °C
Co - O 0.5 ± 0.1 1.86 1.3 ± 0.5 −9.1 ± 5.0

Co - O 4.1 ± 0.2 2.06 6.1 ± 0.8 −2.7 ± 0.5

300 °C
Co - O 1.0 ± 0.1 1.86 5.5 ± 2.3 −10.4 ± 5.0

Co - O 2.4 ± 0.2 2.06 6.4 ± 1.3 −3.5 ± 0.5

400°C

Co - O 1.3 ± 0.1 1.86 6.6 ± 0.5 −7.8 ± 0.5

Co – O 2.0 ± 0.1 2.06 7.9 ± 0.6 −3.8 ± 0.5

Co - Ce 1.6 ± 0.2 3.23 ± 0.01 13.9 ± 1.6 −2.0 ± 1.3

500 °C

Co - O 1.5 ± 0.1 1.86 4.2 ± 2.5 −10.2 ± 0.5

Co – O 1.3 ± 0.1 2.06 3.9 ± 1.3 −2.9 ± 2.5

Co - Ce 1.2 ± 0.2 3.25 ± 0.02 9.8 ± 2.5 −2.0 ± 1.3

600 °C
Co - O 3.9 ± 0.3 1.87 ± 0.01 13.3 ± 1.4 −9.7 ± 5.0

Co – Ce 1.3 ± 0.4 3.22 ± 0.02 7.8 ± 2.9 −5.5 ± 5.0

650 °C
Co - O 3.9 ± 0.3 1.86 ± 0.01 10.1 ± 1.1 −8.1 ± 5.0

Co – Ce 1.4 ± 0.4 3.21 ± 0.02 6.9 ± 3.0 −8.3 ± 5.0

Table 1.  Parameters of local structure around Co atoms obtained from curve-fitting of the Co K-edge EXAFS. 
N is the coordination number. R is the bond length. σ2 is the Debye-Waller-like factor serving as a measure 
of local disorder. ΔE0 is the difference between the zero kinetic energy value of the sample and that of the 
theoretical model used in FEFF. Uncertainties were estimated by the double-minimum residue (2χ2) method.
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After structural relaxation, the calculated lattice constants of octahedral and square planar coordination are 
5.400 and 5.426 Å, which are close to the XRD values 5.42 Å. For the octahedral coordination, the calculated 
average bond length of the nearest O and the next nearest Ce shells around Co are 2.00 Å and 3.81 Å, which are 
close to the EXAFS values of 2.06 ± 0.01 Å and 3.79 ± 0.01 Å, respectively. For the square planar coordination, 
the calculated average Co-O and Co-Ce bond lengths are 1.84 Å and 3.24 Å, which satisfactorily reproduce the 
experimental values of 1.86 ± 0.01 Å and 3.22 ± 0.01 Å, respectively. Both structural models appear to be stable 
for the Co dopant atoms in the ceria host.

The calculated densities of states for the octahedral coordination and the square-planar coordination are plot-
ted in Fig. 6(a) and (b), respectively. For the octahedral coordination model, the calculated O 2p to Ce 4 f band 
gap (2.5 eV) is 0.3 eV smaller than the experimental value of 2.8 eV. This is expected since GGA is well-known to 
underestimate band gap values. The impurity band isolated in the energy gap is contributed from the Co t2g states 
and the Ce 4 f1 states due to the two O vacancies. For the square planar coordination model, the calculated gap 
between O 2p and Ce 4f is still 2.5 eV. However, the square planar crystal field incurs more complicated splitting 
of the Co 3d states. The increased number of oxygen vacancies also introduces more Ce 4f1 related states. These 
impurity states are therefore expanded to connect with the O 2p band such that the band gap width is reduced 

Figure 5.  Schematic view of Co doped CeO2 with different Co dopant coordination geometry: (a) octahedral 
coordination (b) square-planar coordination. The yellow balls, red balls, and blue balls represent the Ce, O, and 
Co atoms, respectively.

Figure 6.  Density of states (DOS) of Co-doped CeO2 with different Co dopant coordination geometry: (a) 
octahedral coordination (b) square planar coordination.
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form 2.5 eV to 0.9 eV. Such a 1.6 eV reduction of band gap width is consistent with the experimentally observed 
value.

As a side remark, we note that the strain in the nanoparticle can also affect the band gap. However, as the 
annealing temperature increases, the particle size also increases as indicated by the XRD analysis using Scherrer 
equation. The crystals of the annealed samples are thus expected to be more bulk-like that should have resulted in 
a band gap closer to that of the bulk value under strain consideration. However, the band gap value turned out to 
move rapidly away from the bulk value as the annealing temperature increases. Therefore, the band gap narrow-
ing effect due to coordination rearrangement is apparently dominant over the effect of strain in the present case.

To explore possible enhancement of catalytic activity due to the observed band-gap narrowing effect in the 
annealed samples, the activity of each sample as a catalyst in the reaction + →CO O CO1

2 2 2 was monitored by 
quantifying the concentration of the effluent gas with a gas chromatograph (GC) device equipped with a thermal 
conductivity detector. The catalyst weight was 30 mg and the total flow rate of the reaction gas was 100 SCCM, 
with a composition of 5% CO– 25% O2 (balanced with He gas). The conversion of CO was calculated from the CO 
concentrations in the inlet and outlet gases. It is clear that the sample becomes more active with the cobalt dopant, 
as shown in Fig. 7. The light-off temperature T50, corresponding to 50% conversion of CO, for the as-made 
Co-doped sample around 143 °C is much lower than that for the CeO2 nanoparticle sample of 305 °C. On the 
other hand, the catalytic activity also shows progressive enhancement as the band gap decreases with increasing 
annealing temperature up to 400 °C. We note that the nanoparticle sizes for the 200 °C-, 300 °C-, and 400 °C 
-annealed samples are very close to that for the as-made sample. When the annealing temperature increases 
beyond 400 °C, the nanoparticle size increases abruptly and the change of catalytic activity no longer follow the 
trend, due to the dominating counter effect of large particle size.

In conclusion, we have observed dramatic band gap reduction in thermally annealed samples of Co-doped 
CeO2 nanocrystal catalysts. Experimental and theoretical analyses indicated that these effects are due to local 
structural transition of Co from an octahedral coordination to a square-planar coordination. We have demon-
strated a mechanism of a totally different concept for band gap reduction in doped nanocrystal materials. 
Dramatic reduction of band gap due to dopant coordination rearrangement incurred by thermal annealing in 
nanocrystals of Co-doped ceria is of great potential for applications in a wide variety of energy and environmental 
technologies.
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