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Abstract

The rate of change on coastlines is accelerating from climate change and coastal develop-

ment. Coastal flooding is a particularly pressing and increasing problem, which affects hun-

dreds of millions of people and damages trillions of US$ in property. Scientists, practitioners

and managers must be able to quickly assess flood risk and identify appropriate adaptation

and risk reduction measures often with limited data and tools, particularly in developing

countries. To inform these decision-making processes, we identify how sensitive flood risk

and adaptation analyses are to changes in the resolution of data and models. We further do

these comparisons in the context of assess the benefits of an ecosystem-based approach

for risk reduction. There is growing interest in these ecosystem-based approaches as cost

effective measures for adaptation and risk reduction. We assess flood risks from tropical

cyclones and the flood risk reduction benefits provided by mangroves in Pagbilao (the Philip-

pines). Then, we also compare risks and risk reduction (benefits) using different quality data

and models, to identify where to invest in in new modeling and data acquisition to improve

decision-making. We find that coastal flood risk valuation improves by using high resolution

topography and long time series of data on tropical cyclones, while flood reduction benefits

of mangroves are better valued by using consistent databases and models along the whole

process rather than investing in single measures.

Introduction

Coastal flooding effects are expected to enhance considerably during the 21st century, due to

three main reasons. First, development in the coastal zone, that has led to an increasing num-

ber of people and property located in coastal floodplains [1]. Second, the increase in intensity

of extreme storms [2,3], such as recent tropical cyclones in 2017 (e.g., Franklin, Harvey, Irma,

Katia, José and Marı́a), that will result in devastating consequences to people and property [4]

and could accentuate with Sea Level Rise [5,6]. Third, the coastal ecosystem loss [7,8] reduces

the protection capacity of coastal areas to climate hazards and increases flood risks.
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As flood risks increase, there is a growing interest in the understanding of how natural ecosys-

tems (e.g. coral reefs, mangroves and salt marshes), damp waves and reduce flood levels [9]. This

is an important service to coastal communities and should be valued to inform policies for sustain-

able development, disaster risk reduction and environmental conservation. Mangroves are partic-

ularly relevant for risk reduction for many tropical nations [10–12], but they are being lost at an

alarming rate. Given the increase in coastal risks, decision-makers must respond quickly, and they

often have limited information, particularly for ecosystem-based solutions, that lead them to make

wrong decisions, such as relying on traditional measures rather than prioritizing over green alter-

natives, even when data clearly show their limitations in effectiveness and cost [13,14].

Assessing flood risks requires key data, numerical models and statistical tools to assess

flooding consequences to people and property. Consequently, the access to high quality and

time-space homogeneous data is a growing need for decision-makers and coastal communities

to accurately assess risk and value adaptation measures. The available input data, numerical

models and statistical tools will likely decide the geographical scale at which any flood risk

assessment analysis could be addressed (global, national, regional or local) [15]. While global

(national and regional included) approaches are best suited for screening assessments identify-

ing hotspots and supporting first national ranking of ecosystem services, local studies are

appropriate for specific service valuation, risk reduction or adaptation projects implementa-

tion and cost-benefit analysis. Unfortunately, many local decisions are based on low accurate

methods and low resolution data [16]. Most assessments of the sensitivity of flood risk models

focus on exploring the sensitivity of coastal flood risk against single elements, such as the reso-

lution of Digital Elevation Model (DEM) [17,18] and assets (i.e. spatial distribution of people

and property [19]). No studies have explored the sensitivity of flood models for assessing risk

reduction benefits of ecosystem-based adaptation measures, flood risks in the presence of

coastal ecosystems and to other combined data and methods [20].

Comparing flood protection service value calculated using different approaches and data-

sets thus helps to quantify the order of magnitude of errors behind making direct use of simpli-

fied approaches or low-resolution datasets for local applications when there is a lack of local

specific datasets and economic or technical resources. The aim of this study is to provide guid-

ance on where to invest in new modeling and data acquisition to improve assessments of flood

risk and ecosystem-based adaptation measures. To answer this question, we carry out a sensi-

tivity analysis of flood risks to variations in the number of tropical cyclones, coastal segmenta-

tion, DEM resolution, flood methods and population data resolution. Each single element is

individually tested and compared with the case of fully availability of high-resolution data and

process-based models (Benchmark case).

Methods and study site

Methodology overview

The workflow diagram (Fig 1) summarizes the process followed in this work to assess the sen-

sitivity of flood risk and flood risk reductions to different sets of data and modeling tools.

To quantify risks, we follow a four-step methodology based on the risk assessment and

management framework of the IPCC (Intergovernmental Panel on Climate Change) [5]: Haz-

ard analysis includes steps 1 and 2; Impacts are calculated in step 3; and Exposure, Vulnerabil-

ity and Risk are all evaluated in step 4. This multi-step methodology has been applied by

others [10,11,21] and the output of each step is briefly described below:

1. Pre-habitat modeling: Offshore waves and storm surge statistical distributions produced by

tropical cyclones propagated to the habitat.

High-quality data and models in valuing flood protection of mangroves
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2. Habitat modeling: The Total Water Level along the coast, namely Flood Height (FH), due

to waves and surge propagation through mangrove fields.

3. Flood impacts: coastal flooding and local water depth.

4. Exposure, vulnerability and risk of flooding to land (km2), people (nº) and property (US$

millions of industrial and residential stock).

In this study we assess flood risk to annual expected floods for land, people and property,

with and without mangroves. We also assess annual expected flood reduction benefits of adap-

tation measures to land, people and property.

Then we evaluate sensitivity of estimates of flood risk and adaptation benefits to variations

in five key data and modeling elements (storms, coastline segmentation, topography, flood

methods and exposure data). We compare each individual variation (sensitivity test) and the

lowest resolution set for the five elements (Baseline case), with the highest resolution set

(Benchmark case). In the sensitivity tests, we keep everything at low-resolution except for one,

the variable where we higher the resolution.

Sensitivity tests. We ran sensitivity tests on all five variables (data and models). (a) Storms
(Number of tropical cyclones): Improving tropical cyclone´s historical databases by using larger

time series (S1 Fig, S2 Fig and S3 Fig). (b) Coastline segmentation (number of coastal cross-
shore profiles): Increasing the number of coastal segments (S4 Fig). (c) Topography (DEM reso-
lution): Measuring the effect of improving the DEM horizontal resolution (S5 Fig). (d) Flood
method (Bathtub vs process-based): Comparing a stationary flood method based on hydraulic

connectivity (bathtub method) with a process-based model (S6 Fig). (e) Exposure data (Popu-
lation resolution): Calculating the effect of using high resolution people distribution data ver-

sus coarse gridded population data (S7 Fig).

On the one hand, we use as our Benchmark case a high-resolution assessment of flood risk

for Pagbilao, simultaneously using the best set of databases and models from the five sensitivity

test, to provide site-specific results, that could, for example, be used for local service valuation,

adaptation projects implementation and cost-benefits analysis. On the other hand, we consider

as our Baseline case the currently available global data and model of coastal flood risk,

Fig 1. Workflow diagram and results. Strategy for testing the sensitivity of flood risk and flood protection benefits of mangroves to different approaches, with the aim

of informing decision-makers where the maximum benefit is gained with improving data and models.

https://doi.org/10.1371/journal.pone.0220941.g001
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simultaneously using the low-resolution set of the five sensitivity tests, to provide global or

large regional risk assessment.

We calculate the Error Rate Index (ERI) (Eq 1) to compare Benchmark case (EBenchmark)

with the Baseline case and each sensitivity test (Ei). Sensitivity tests could either overestimate

(ERI >0) or underestimate (ERI<0) Benchmark values. It allows us to compare sensitivities to

data and models, with the aim of choosing the most efficient way to improve flood risk assess-

ments from any global, national or regional scale.

ERI ¼ 100 � ðEi� EBenchmarkÞ=EBenchmark ð1Þ

Data and tools applied at each step of the methodology and for both, Baseline and Bench-

mark cases, are summarized in Table 1.

Study area

We assess the coastal flood protection service provided by mangroves in Pagbilao (the Philip-

pines), a municipality located in the southern part of Quezon Province in Luzon Island, the

north coastline of Tabayas Bay. This study site was chosen because: first, its reasonable coast-

line extension for local high resolution analysis (~20 km); second, the availability of high-qual-

ity local data; third, the remarkable presence of mangroves [36], and fourth, its exposure to

local extreme storms.

Pagbilao covers 15,820 ha, whereof 4,560 ha are mangrove forests. It has a total population

of 75,000 people of which 27,958 live in low-lying areas exposed to flood threats, and it

accounts for US$45.06 million of property located in potentially flooded areas (US$16.28

Table 1. Multi-step methodology to evaluate flood risks and flood reduction benefits of mangroves.

BASELINE CASE BENCHMARK CASE

(1) PRE-HABITAT MODELING Data �Tropical cyclones: Historical IBTrACS [22]

Astronomical Tide (GOT)

Mean Sea Level

Bathymetry global: GEBCO [23]

�Tropical cyclones: Synthetic [24]

Astronomical Tide (GOT)

Mean Sea Level

Bathymetry global: GEBCO [23]

Tools Clustering method: DMA [25]

Offshore: Delft3D model (2D mesh at 5 km)

Nearshore: Delft3D model (2D mesh at 100 m)

Clustering method: DMA [25]

Offshore: Delft3D model (2D mesh at 5 km)

Nearshore: Delft3D model (2D mesh at 100 m)

(2) HABITAT MODELING Data Bathymetry global: GEBCO [23]

Bathymetry reefs: SeaWiFS [26]

Mangroves 2010: WCMC [7]

Coral Reefs: UNEP-WCMC

Bathymetry global: GEBCO [23]

Bathymetry reefs: SeaWiFS [26]

Mangroves 2010: DENR [27]

Coral Reefs: UNEP-WCMC

Tools �Cross-shore Profile tracer (2 km)

Delft3D model (1D mesh at 10m)

�Cross-shore Profile tracer (200 m)

Delft3D model (1D mesh at 10m)

(3) FLOODING IMPACTS Data �Topography: MERIT at 90 m [28]

Coastline: GSHH [29]

�Topography: IFSAR at 5 m [30]

Coastline: GSHH [29]

Tools �Flood method: Bathtub [21]

Reconstruction method: RBF [31]

Extreme distribution: Pareto Poisson

�Flood method: RFSM-EDA model [32]

Reconstruction method: RBF [31]

Extreme distribution: Pareto Poisson

(4) EXPOSURE, VULNERABILITY AND RISK Data �Population data: GPW at 1 km [33]

Property data: GAR15 [34]

Damage functions: HAZUS [35]

�Population data: WorldPop at 100 m

Property data: GAR15 [34]

Damage functions: HAZUS [35]

Tools Downscaling people: from 1 km to 90 m

Downscaling property: from 5 km to 90 m

Annual Expected Function

Downscaling people: from 100 m to 5 m

Downscaling property: from 5 km to 5 m

Annual Expected Function

Key data and tools for assessing flood risk and risk reduction benefits. We show all the data and tools for the Benchmark and Baseline cases. We note with an asterisk

(�) the variables that we assessed in sensitivity tests.

https://doi.org/10.1371/journal.pone.0220941.t001
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million of industrial stock and US$28.78 million of residential stock). There has been a 43%

decline in mangroves since 1950 mainly because of aquaculture, which has reduced mangroves

to a narrow coastal band only hundreds of meters wide (Fig 2). The observed habitat decline

over the last decades built a real concern in the conservation of natural resources [37] and

management alternatives for the Pagbilao mangroves [38].

Coastal flooding in Pagbilao climate is mainly caused by tropical cyclones. The maximum

observed surge in the offshore area of Pagbilao bay does not exceed 2 m and is produced by

storms with a southeast-northwest track when crossing it.

Significant differences are observed between Baseline (Fig 3A1 and 3A2) and Benchmark

(Fig 3B1 and 3B2) cases, which illustrates the land area flooded by a 1-in-50-year storm with

(Fig 3A1 and 3B1) and without (Fig 3A2 and 3B2) mangroves in Pagbilao Bay. In the Baseline

case the flooding surface is underestimated (upper charts), while the Benchmark case signifi-

cantly improves the quality (more pixel resolution) resulting in a larger flooded area.

Results

We assessed the sensitivity of each of the variables individually and in combination for assess-

ing flood risk and adaptation measures (Table 2 and S8 Fig). In terms of risk, increasing DEM

resolution (Test “c”) always overestimates land, people and property flooded. Meanwhile,

using higher resolution flood models (Test “d”) leads to significant underestimations of flood

risk (when coupled with low resolution data). In terms of risk reduction, we find that benefits

to people and property are less sensitive than risks to single improvements in data and models.

It highlights the importance of being consistent in databases resolution along the whole meth-

odology (e.g. applying Baseline case) rather than investing in individual high-resolution data-

bases or process-based models.

We use the values given in Table 2 to calculate the error index, ERI (Eq.1), with the aim of

assessing sensitivity that would most help improve risk assessments. Higher absolute ERI’s

indicate greater errors and lower sensitivity. The first ranking table (Table 3) sorts each case

according to land, people and property risk estimates. S1 Table is similar but expressed in

terms of assessment of adaptation options. The DEM resolution is, by itself, the most efficient

Fig 2. Mangrove cover in Pagbilao (The Philippines). Mangroves extent in 1950 and 2010 in Pagbilao municipality,

zooming in four different areas with different mangrove covert development: (a) Mangroves retreat may be due to a

change in the river sediment transport in the west side of the municipality, (b) mangroves density increment due to

restoration policies, (c) mangroves conversion into aquaculture areas and (d) mangroves migration in the east side of

Pagbilao. Reprinted from ArcGIS Online maps under a CC BY license, with permission from Esri, original Copyright

2018 Esri (Basemaps supported by Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus Ds, USDA, AEX,

Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).

https://doi.org/10.1371/journal.pone.0220941.g002

High-quality data and models in valuing flood protection of mangroves

PLOS ONE | https://doi.org/10.1371/journal.pone.0220941 August 20, 2019 5 / 14

https://doi.org/10.1371/journal.pone.0220941.g002
https://doi.org/10.1371/journal.pone.0220941


way of reducing errors to flood risk to land and people. However, improving the DEM had rel-

atively high errors for assessing impacts of flooding to property. Overall, as it is shown in

Table 3, using the Baseline case is not always the worst option, which highlights that there are

sensitivity tests, that, on their own, do not bring any improvement to the analysis and must be

combined with other improvements so that it is worth investing resources and time in their

use.

We also assess the most efficient way of valuing risks in the presence of mangroves (S2

Table) versus in the absence of mangroves (S3 Table). We not only studied each single

improvement of data and models individually, but also any possible combination of cases. S4

Table lists all the ERI indices of each existing combination, so that we can identify the most

efficient way of combining datasets and modeling methods to reduce the error of flood risk

estimates.

Fig 3. Flood map comparison in Pagbilao. Coastal flooding produced by 1-in-50 years tropical cyclone in Pagbilao. Comparison between Baseline case

(with and without mangroves) and Benchmark case (with and without mangroves). Reprinted from ArcGIS Online maps under a CC BY license, with

permission from Esri, original Copyright 2018 Esri (Basemaps supported by Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus Ds,

USDA, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).

https://doi.org/10.1371/journal.pone.0220941.g003
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For a better understanding of the effect that each single improvement in datasets and meth-

ods has, we analyze, one by one, the sensitivity of flood risks to each case:

Sensitivity to the number of storms (tropical cyclones)

Longer time series of storms (i.e. 1,000 years of synthetic tropical cyclones) results in better accu-

racy in flood predictions than shorter time series (i.e. 71 years of historical IBTrACS dataset) (S1

Fig and S2 Fig). For example, by increasing the number of tropical cyclones, risk assessment in

presence of mangroves to land, people and property increases by 43 ha (+31%), 357 people (+51%)

and US$ 0.46 million (+38%) with respect the Baseline case (calculated from Table 2). Additionally,

we better estimate floods in no-mangrove scenarios (47% of average error) than in mangrove pro-

tected coastlines (59% of average error) if using synthetic tropical cyclones (S2 and S3 Tables).

Sensitivity to the number of profiles

Coastal impacts (land flooded) and risks (people affected and property damaged due to coastal

flooding) are slightly underestimated if moving from 2 km to a 200 m longshore segmentation.

Table 2 shows that the area flooded, people affected and property loss in presence of man-

groves decreases by 2 ha (-1.5%), 13 people (-1.8%) and US$ 0.02 million (-1.6%) with respect

to the Baseline case.

Sensitivity to DEM resolution

Overall predictions of flood risk to land and people was the most sensitive to changes in DEM.

In presence of mangroves, coastal risk assessment increases by 201 ha (+144%), 5,258 people

(+755%) and US$ 6.58 million (+539%) if using high resolution DEM (IFSAR 5m) instead of

global DEM (MERIT 90 m). We observe in Table 3, that local high resolution DEM reduce

errors with respect to the Baseline case when valuing land flooded (+7.41% vs -47.42%) and

people affected (+50.13% vs -77.01%), but not property damages based on 5 km resolution

dataset (80.81% vs -66.37%), due to the abrupt differences between the DEM and property

data resolution (5 m and 5 km respectively).

Sensitivity to flood method

The use of a process-based flood model (RFSM-EDA), instead of the bathtub method, results

in lower estimates of risk with respect to the Baseline case: -118 hectares (-85%), -397 people

Table 2. Flood risk and adaptation benefits assessment.

LAND FLOODED

(Hectares)

PEOPLE AFFECTED

(Nº)
PROPERTY DAMAGE

(US$ mill)

With Without Benefit With Without Benefit With Without Benefit

Benchmark case (high-resolution) 320 350 30 3898 4510 612 4.23 5.05 0.82

Baseline case (low-resolution) 139 216 77 696 1268 572 1.22 1.94 0.72

Test A: Nº of storms 182 256 74 1053 1701 648 1.68 2.43 0.75

Test B: Nº of profiles 137 214 77 683 1271 588 1.20 1.95 0.75

Test C: DEM resolution 340 380 40 5954 6653 699 7.80 8.95 1.15

Test D: Flood method 21 35 14 299 523 224 0.57 0.82 0.25

Test E: Exposure resolution (Pop) 139 216 77 736 1323 587 1.22 1.94 0.72

Flood risk (with and without mangroves) and risk reduction benefits to land, people and property. The benefits provided by mangroves are the difference in flooding

with and without mangroves.

https://doi.org/10.1371/journal.pone.0220941.t002
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(-57%) and US$ -0.65 million (-53%). These differences observed in Table 2 lead to an average

error increment of 23% (Table 3) with respect to the Baseline case. However, if we combine

the RFSM-EDA model with high resolution topography data (IFSAR 5 m), the error in risk

assessment to land, people and property would be reduced to -36%, +40% and +67% respec-

tively (S4 Table, row 14, column 1: “Flood”, column 2: “People” and column 3: “Property”).

Sensitivity to population resolution

Using high-resolution population distribution (100 m WorldPop) as an alternative to low reso-

lution data (1 km GWP) does improve the estimation of people affected by coastal flooding by

40 people (+6%), but not enough to reach the predicted 3,898 people by the Benchmark case

(Table 2).

Discussion

Given the growing risks of people and property to flooding and the need to quickly decide on

effective risk reduction solutions, we identified the key factors that would most help improve

upon existing global data or poor data sites and models for applications at national and poten-

tially site-specific levels.

The assessment of flood risk to land and people is most sensitive to resolution of the topo-

graphic data. That is, you would benefit the most from making improvements in topography

but also in the storm data (ranked #2 in both cases). Meanwhile, estimates of risks to property

are most sensitive to the quality of the storms database. Consequently, improving DEM resolu-

tion is the most effective way of improving risk to land and people, but storms data may be the

most important overall for improving risk estimates. We believe the results are particularly

sensitive to storms data because, since we analyze damage in a statistical way (i.e. annual

expected function), results are highly dependent on the number of elements considered.

Increasing the number of tropical cyclones reduces uncertainty in the extreme value distribu-

tion analysis and improves overall annual expected risk estimates.

Conversely improvements of the flood method had the least improvement in all the risk

assessments. That is, in many instances using a bathtub model is a fine approximation given

what is available in the other databases.

In terms of assessing benefits from adaptation options, the model results were most sensi-

tive to changes in the number of coastal segments to estimate people and property benefits,

and changes in DEM and flood method to estimate land flooded benefits. These findings are

different from the flood risk assessment because benefits are less sensitive than risks to

Table 3. Ranking table for valuing risks, based on ERI index.

RISK

LAND PEOPLE PROPERTY

Rank Sensitivity test ERI Rank Sensitivity test ERI Rank Sensitivity test ERI

1 DEM res. +7.41% 1 DEM res. +50.13% 1 Nº storms -56.08%

2 Nº storms -34.99% 2 Nº stoms -67.63% 2 Baseline -66.37%

3 Baseline -47.42% 3 Exposure res. (Pop) -75.89% 3 Exposure res. (Pop) -66.37%

4 Exposure res. (Pop) -47.42% 4 Baseline -77.01% 4 Nº profiles -66.51%

5 Nº profiles -48.02% 5 Nº profiles -77.15% 5 DEM res. +80.81%

6 Flood method -91.72% 6 Flood method -90.37% 6 Flood method -85.14%

A comparison of sensitivity of estimates of risk to 5 different factors and to the Baseline case. Baseline case in also ranked to show which elements improve risk estimates

(ranked above the Baseline) and which do not (ranked below the Baseline). Risk is assessed as flooding of land (left), people (mid) and property (right).

https://doi.org/10.1371/journal.pone.0220941.t003
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database and model improvements and, consequently, to better estimate them, it is more

important to use consistent databases and models along the whole process rather than invest-

ing in single measures.

However, it is sometimes effective to properly combine different elements to achieve the

best results. For instance, using process-based flooding model (i.e. RFSM-EDA) underestimate

flooding unless combined with high-resolution elevation data.

We expect these results to be broadly applicable to many areas but there are some particu-

lars of the Pagbilao case that are important: (1) Pagbilao has experienced many cyclones. The

effectiveness of increasing the number of tropical cyclones is more noticeable in coastal areas

with high cyclone activity because it allows to generate a wider range of synthetic tropical

cyclone intensities and tracks, improving the statistical analysis of extreme value distribution

by narrowing confidence bands, especially for high return period storms (see S1 Fig and S2

Fig). (2) Pagbilao has a relatively simple and homogeneous coastline. That is why using 200 m

spaced cross-shore profiles, rather than 2 km, do not significantly improve risk estimations in

Pagbilao. This findings should not be projected to other regions with longshore morphology

variability, different mangrove species and more complex distribution of coastal assets, which

are probably more sensitive to the increase of coastal segmentation. (3) Pagbilao does not have

available high-resolution socioeconomic data. The abrupt downscaling required to rescale the

global 5 km grid data of property to 5 m (the same than high-resolution DEM) leads to an spa-

tial misallocation of coastal exposure and the consequent overestimation of the capital loss.

This fact reduces the efficiency of using high-resolution DEM. (4) Pagbilao is a local area with

short coastline (~20km of coastline), where using process-based models (e.g. RFSM-EDA) are

computationally affordable. However, it is no longer applicable spatial scales larger than 100

km because its time-consuming pre-processing mesh generation.

Further methodological limitations come up when valuing flood risk at different locations.

First, calculating annual expected values of risk and benefits requires large sample data to

reduce errors. However, historical datasets do not always provide enough information. Sec-

ond, one-dimensional propagations neglect two-dimensional processes such as longshore cur-

rents or waves diffraction, missing some energy losses, that could be relevant in longshore

varied coastal areas. Third, using 1 km bathymetry data is a high limitation to wave hydrody-

namics modelling, especially in coral reef and mangroves environments due to the inability to

capture the level of detail required to model coastal ecosystems processes. For that reason, we

increase the accuracy in the vegetated shallow areas using both, local specific bathymetry of

ecosystems [26] and parameterized profiles to correct bathymetric errors (S9 Fig).

In brief, for local high-resolution flood risk analysis, we must consider how to combine

databases and methods to obtain the best possible result with the less effort and resources

expenses, before making directly use of all the high-resolution databases available.

Supporting information

S1 File. Sensitivity tests description: S1_File_Sensitivity_tests_description.

(DOCX)

S1 Fig. Sensitivity Test A: Offshore HS distribution in Tabayas Bay (Pagbilao). Offshore

maximum significant wave height extreme distribution produced by (A) historical tropical

cyclones and (B) synthetic tropical cyclones. Black circles represent the most probable value of

HS. The solid line represents the best fit adjustment of the most probable values of HS. Dashed

lines represent the 95% confidence interval of the analytical extreme value distribution. (TIF).

(TIF)
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S2 Fig. Sensitivity Test A: Offshore SS distribution in Tabayas Bay (Pagbilao). (A) Offshore

maximum storm surge produced by historical tropical cyclones. (B) Offshore maximum storm

surge produced by synthetic tropical cyclones. Black circles represent the most probable value of

SS. The solid line represents the best fit adjustment of the most probable values of SS. Dashed

lines represent the 95% confidence interval of the analytical extreme value distribution. (TIF).

(TIF)

S3 Fig. Sensitivity Test A: TWL pre-habitat and flood height extreme distributions with

and without mangroves in Tabayas Bay (Pagbilao). (A) TWL pre-habitat. (B1) Flood Height

distribution produced by historical tropical cyclones (solid line) and synthetic tropical

cyclones (dashed line) in case of preserving the 2010 mangrove cover. (B2) Flood Height distri-

bution produced by historical tropical cyclones (solid line) and synthetic tropical cyclones

(dashed line) in case of losing mangroves. (TIF).

(TIF)

S4 Fig. Sensitivity Test B: Coastline segmentation in Pagbilao. (a) Example of 2 km spaced

cross-shore profiles. (b) Example of 200 m space cross-shore profiles. Reprinted from ArcGIS

Online maps under a CC BY license, with permission from Esri, original Copyright 2018 Esri

(Basemaps supported by Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus Ds,

USDA, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).

(TIF).

(TIF)

S5 Fig. Sensitivity Test C: Digital elevation model comparison in Pagbilao. (a) General view

of Pagbilao bay. (b) Global SRTM 30 m resolution model. (c) MERIT DEM at 90 m resolution,

obtained from SRTM by filtering out the vegetation height. (d) Local high resolution IFSAR

DEM (5 m resolution). All the figures have been labeled between 0 and 20 m height. Reprinted

from ArcGIS Online maps under a CC BY license, with permission from Esri, original Copy-

right 2018 Esri (Basemaps supported by Esri, DigitalGlobe, GeoEye, Earthstar Geographics,

CNES/Airbus Ds, USDA, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS

User Community). (TIF).

(TIF)

S6 Fig. Sensitivity Test D: Flood method comparison in Pagbilao. (a) 1-in-50-year flooding

in the presence of mangroves calculated with the bathtub method. (b) 1-in-50-year flooding in

the presence of mangroves calculated with the RFSM-EDA model. Reprinted from ArcGIS

Online maps under a CC BY license, with permission from Esri, original Copyright 2018 Esri

(Basemaps supported by Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus Ds,

USDA, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).

(TIF).

(TIF)

S7 Fig. Sensitivity Test E: Population datasets in Pagbilao and Lucena. (a) 1 km-resolution

data GPW. (b) 100 m-resolution data Worldpop. Reprinted from ArcGIS Online maps under

a CC BY license, with permission from Esri, original Copyright 2018 Esri (Basemaps supported

by Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus Ds, USDA, AEX, Get-

mapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community). (TIF).

(TIF)

S8 Fig. Annual expected risks and benefits. (A1) Annual Expected Flooding with mangroves

(light grey) and without mangroves (dark grey), calculated following the Baseline case, Benchmark

case and each sensitivity test. (A2) Annual Expected Risk in terms of people affected by coastal
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flooding with mangroves (light grey) and without mangroves (dark grey), calculated following the

Baseline case, Benchmark case and each sensitivity test. (A3) Annual Expected Risk in terms of

property damaged by coastal flooding with mangroves (light grey) and without mangroves (dark

grey), calculated following the Baseline case, Benchmark case and each sensitivity test. (B1)

Annual Expected Flooding reduction due to the presence of mangroves, calculated following the

Baseline case, Benchmark case and each sensitivity test. (B2) Annual Expected Benefits in terms of

people protected by mangroves, calculated following the Baseline case, Benchmark case and each

sensitivity test. (B3) Annual Expected Benefits in terms of property protected by mangroves, cal-

culated following the Baseline case, Benchmark case and each sensitivity test. (TIF).

(TIF)

S9 Fig. Cross-shore profile parameterization. Parameterized cross-shore profile typical from

coral reef and mangroves regions. Where “h” values represent dater depth or topographic ele-

vation, “B”, “L”, “W” and “D” represent horizontal distances and “m” values represent bottom

slope. (TIF).

(TIF)

S1 Table. Ranking table for valuing benefits, based on ERI index. A comparison of sensitiv-

ity of estimates of mangrove benefits (risk reduction) to 5 different factors and to the Baseline

case. Baseline case in also ranked to show which elements improve benefits estimates (ranked

above the Baseline) and which do not (ranked below the Baseline). Ranking table to prioritize

the best-practice case of valuing mangrove´s protection capacity in three different ways: Flood

reduction (left), people protected (mid) and total property benefits (right). (DOCX).

(DOCX)

S2 Table. Ranking table for valuing flood risks in mangrove presence, based on ERI index.

Ranking table to prioritize the best-practice case of valuing flood risks in presence of man-

groves to 5 different factors and to the Baseline case. Baseline case in also ranked to show

which elements improve risk estimates (ranked above the Baseline) and which do not (ranked

below the Baseline). Ranking table to prioritize the best-practice case of valuing mangrove´s

protection capacity in three different ways: Flood reduction (left), people protected (mid) and

total property benefits (right). (DOCX).

(DOCX)

S3 Table. Ranking table for valuing risks in mangrove absence, based on ERI index. Rank-

ing table to prioritize the best-practice case of valuing flood risks in absence of mangroves to 5

different factors and to the Baseline case. Baseline case in also ranked to show which elements

improve risk estimates (ranked above the Baseline) and which do not (ranked below the Base-

line). Ranking table to prioritize the best-practice case of valuing mangrove´s protection

capacity in three different ways: Flood reduction (left), people protected (mid) and total prop-

erty benefits (right). (DOCX).

(DOCX)

S4 Table. Error Rate Index (ERI). Error Rate Index (ERI) calculated at any intermediate case.

(DOCX).

(DOCX)

Acknowledgments

We gratefully acknowledge support from the World Bank WAVES Program (Wealth Account-

ing and the Valuation of Ecosystem Services) and by the Spanish Ministry of Economy and

High-quality data and models in valuing flood protection of mangroves

PLOS ONE | https://doi.org/10.1371/journal.pone.0220941 August 20, 2019 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220941.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220941.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220941.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220941.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220941.s014
https://doi.org/10.1371/journal.pone.0220941


Innovation (currently named as Ministry of Science, Innovation and Universities), within

ECOPROOF project (BIA2014-59718-R), RISKOADAPT project (BIA2017-89401-R) and the

FPI grant (BES-2015-074343). Authors are grateful to the useful contributions provided by

Sheila Abad and Javier Garcı́a Alba (IHCantabria).

Author Contributions

Conceptualization: Pelayo Menéndez, Iñigo J. Losada.

Data curation: Pelayo Menéndez.

Formal analysis: Pelayo Menéndez, Saúl Torres-Ortega, Alexandra Toimil.
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Resources: Iñigo J. Losada, Saúl Torres-Ortega, Michael W. Beck.
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9. Spalding MD, Mcivor AL, Beck MW, Koch EW, Möller I, Reed DJ, et al. Coastal ecosystems: A critical

element of risk reduction. Conserv Lett. 2014; 7: 293–301. https://doi.org/10.1111/conl.12074

10. Menéndez P, Losada IJ, Beck MW, Torres-Ortega S, Espejo A, Narayan S, et al. Valuing the protection

services of mangroves at national scale: The Philippines. Ecosyst Serv. 2018; 34: 24–36. https://doi.

org/10.1016/j.ecoser.2018.09.005

High-quality data and models in valuing flood protection of mangroves

PLOS ONE | https://doi.org/10.1371/journal.pone.0220941 August 20, 2019 12 / 14

https://doi.org/10.1073/pnas.1222469111
https://doi.org/10.1073/pnas.1222469111
http://www.ncbi.nlm.nih.gov/pubmed/24596428
https://doi.org/10.1038/nature03906
http://www.ncbi.nlm.nih.gov/pubmed/16056221
https://doi.org/10.1038/nature07234
http://www.ncbi.nlm.nih.gov/pubmed/18769438
https://doi.org/10.1073/pnas.1715895114
https://doi.org/10.1073/pnas.1715895114
http://www.ncbi.nlm.nih.gov/pubmed/29078412
https://doi.org/10.1371/journal.pone.0133409
https://doi.org/10.1371/journal.pone.0133409
http://www.ncbi.nlm.nih.gov/pubmed/26177285
https://doi.org/10.1371/journal.pone.0010095
https://doi.org/10.1371/journal.pone.0010095
http://www.ncbi.nlm.nih.gov/pubmed/20386710
https://doi.org/10.1111/conl.12074
https://doi.org/10.1016/j.ecoser.2018.09.005
https://doi.org/10.1016/j.ecoser.2018.09.005
https://doi.org/10.1371/journal.pone.0220941


11. Losada IJ, Menéndez P, Espejo A, Torres S, Dı́az-Simal P, Abad S, et al. The global value of man-

groves for risk reduction. Technical Report. Berlin; 2018. https://doi.org/10.7291/V9DV1H2S

12. Narayan S, Beck M, Reguero B, Losada I, van Wesenbeeck B, Pontee N, et al. The benefits, costs and

effectiveness of natural and nature-based coastal defenses. Pap Submitt to PLOS. 2016;

13. Sutton-Grier AE, Gittman RK, Arkema KK, Bennett RO, Benoit J, Blitch S, et al. Investing in natural and

nature-based infrastructure: Building better along our coasts. Sustain. 2018; 10: 1–11. https://doi.org/

10.3390/su10020523

14. Reguero BG, Beck MW, Bresch DN, Calil J, Meliane I. Comparing the cost effectiveness of nature-

based and coastal adaptation: A case study from the Gulf Coast of the United States. 2018; 1–24.

https://doi.org/10.17605/OSF.IO/D6R5U

15. De Moel H, Jongman B, Kreibich H, Merz B. Flood risk assessments at different spatial scales. 2015;

865–890. https://doi.org/10.1007/s11027-015-9654-z

16. Laurice Jamero M, Onuki M, Esteban M, Billones-Sensano XK, Tan N, Nellas A, et al. Small-island com-

munities in the Philippines prefer local measures to relocation in response to sea-level rise. Nat Clim

Chang. 2017; 7: 581. https://doi.org/10.1038/nclimate3344

17. Leon JX, Heuvelink GBM, Phinn SR. Incorporating DEM uncertainty in coastal inundation mapping.

PLoS One. 2014; 9: 1–12. https://doi.org/10.1371/journal.pone.0108727 PMID: 25250763

18. Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ, Tol RSJ, et al. Coastal flood damage and adap-

tation costs under 21st century sea-level rise. Proc Natl Acad Sci. 2014; 111: 3292–3297. https://doi.

org/10.1073/pnas.1222469111 PMID: 24596428

19. Mondal P, Tatem AJ. Uncertainties in Measuring Populations Potentially Impacted by Sea Level Rise

and Coastal Flooding. 2012; 7. https://doi.org/10.1371/journal.pone.0048191 PMID: 23110208

20. Rohmer J, Cazenave A, Van De Wal R, De Winter R, Pedreros R, Balouin Y, et al. Environmental

Modelling & Software Evaluating uncertainties of future marine fl ooding occurrence as sea-level rises.

2015; 73: 44–56. https://doi.org/10.1016/j.envsoft.2015.07.021

21. Beck MW, Losada IJ, Mendendez P, Reguero BG, Dı́az-Simal P, Fernandez F. The global flood protec-

tion savings provided by coral reefs. Nat Commun. 2017; https://doi.org/10.1038/s41467-018-04568-z

PMID: 29895942

22. Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ. The international best track archive for

climate stewardship (IBTrACS) unifying tropical cyclone data. Bull Am Meteorol Soc. 2010; 91: 363–

376. https://doi.org/10.1007/978-90-481-3109-9_26

23. Weatherall P, Marks KM, Jakobsson M, Schmitt T, Tani S, Arndt JE, et al. A new digital bathymetric

model of the world’s oceans. Earth and Space Science (AGU Publications). 2015. pp. 1–15. https://doi.

org/10.1002/2015EA000107

24. Nakajo S, Mori N, Yasuda T, Mase H. Global stochastic tropical cyclone model based on principal com-

ponent analysis and cluster analysis. J Appl Meteorol Climatol. 2014; 53: 1547–1577. https://doi.org/10.

1175/JAMC-D-13-08.1

25. Camus P, Mendez FJ, Medina R, Cofiño AS. Analysis of clustering and selection algorithms for the

study of multivariate wave climate. Coast Eng. 2011; 58: 453–462. https://doi.org/10.1016/j.coastaleng.

2011.02.003

26. Robinson JA, Feldman GC, Kuring N, Franz B, Green E, Noordeloos M, et al. Data fusion in coral reef

mapping: working at multiple scales with SeaWiFS and astronaut photography. Proceedings of the 6th

International Conference on Remote Sensing for Marine and Coastal Environments. 2000. pp. 473–

483. Available: http://eol.jsc.nasa.gov/newsletter/DataFusionInCoralReefMapping/

27. Long JB, Giri C. Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors. 2011; 11:

2972–2981. https://doi.org/10.3390/s110302972 PMID: 22163779

28. Yamazaki D, Ikeshima D, Tawatari R, Yamaguchi T, O’Loughlin F, Neal JC, et al. A high-accuracy map of

global terrain elevations. Geophys Res Lett. 2017; 44: 5844–5853. https://doi.org/10.1002/2017GL072874

29. Wessel P, Smith WHF. A global, self-consistent, hierarchical, high-resolution shoreline database. J

Geophys Res Solid Earth. 1996; 101: 8741–8743. https://doi.org/10.1029/96JB00104

30. Li X, Photogrammetrist C. Accuracy of airborne ifsar mapping.

31. Camus P, Mendez FJ, Medina R. A hybrid efficient method to downscale wave climate to coastal areas.

Coast Eng. 2011; 58: 851–862. https://doi.org/10.1016/j.coastaleng.2011.05.007

32. Jamieson SR, Wright G, Lhomme J, Gouldby BP. Validation of a computationally efficient 2D inundation

model on multiple scales. In: Klijn F, Schweckendiek T, editors. Comprehensive flood risk management:

research for policy and practice. Rotterdam: Taylor & Francis Group; 2012. pp. 121–122.

33. Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded

Population of the World, Version 4 (GPWv4): Population Count. [Internet]. Palisades, NY: NASA

Socioeconomic Data and Applications Center (SEDAC); 2016. https://doi.org/10.7927/H4X63JVC

High-quality data and models in valuing flood protection of mangroves

PLOS ONE | https://doi.org/10.1371/journal.pone.0220941 August 20, 2019 13 / 14

https://doi.org/10.7291/V9DV1H2S
https://doi.org/10.3390/su10020523
https://doi.org/10.3390/su10020523
https://doi.org/10.17605/OSF.IO/D6R5U
https://doi.org/10.1007/s11027-015-9654-z
https://doi.org/10.1038/nclimate3344
https://doi.org/10.1371/journal.pone.0108727
http://www.ncbi.nlm.nih.gov/pubmed/25250763
https://doi.org/10.1073/pnas.1222469111
https://doi.org/10.1073/pnas.1222469111
http://www.ncbi.nlm.nih.gov/pubmed/24596428
https://doi.org/10.1371/journal.pone.0048191
http://www.ncbi.nlm.nih.gov/pubmed/23110208
https://doi.org/10.1016/j.envsoft.2015.07.021
https://doi.org/10.1038/s41467-018-04568-z
http://www.ncbi.nlm.nih.gov/pubmed/29895942
https://doi.org/10.1007/978-90-481-3109-9_26
https://doi.org/10.1002/2015EA000107
https://doi.org/10.1002/2015EA000107
https://doi.org/10.1175/JAMC-D-13-08.1
https://doi.org/10.1175/JAMC-D-13-08.1
https://doi.org/10.1016/j.coastaleng.2011.02.003
https://doi.org/10.1016/j.coastaleng.2011.02.003
http://eol.jsc.nasa.gov/newsletter/DataFusionInCoralReefMapping/
https://doi.org/10.3390/s110302972
http://www.ncbi.nlm.nih.gov/pubmed/22163779
https://doi.org/10.1002/2017GL072874
https://doi.org/10.1029/96JB00104
https://doi.org/10.1016/j.coastaleng.2011.05.007
https://doi.org/10.7927/H4X63JVC
https://doi.org/10.1371/journal.pone.0220941


34. UNISDR. Making Development Sustainable: The Future of Disaster Risk Management. Global Assess-

ment Report on Disaster Risk Reduction. International Stratergy for Disaster Reduction (ISDR). 2015.

9789211320282

35. Scawthorn C, Flores P, Blais N, Seligson H, Tate E, Chang S, et al. HAZUS-MH Flood Loss Estimation

Methodology. II. Damage and Loss Assessment. Nat Hazards Rev. 2006; 7: 72–81. https://doi.org/10.

1061/(ASCE)1527-6988(2006)7:2(72)

36. Bravo DR. Restoration and management of the Pagbilao Mangrove Genetic Resource Area. Proc Eco-

tone IV, Ecol Manag Mangrove Restor Regen East Southeast Asia. 1996; 190–213.

37. Primavera JH, Esteban JMA. A review of mangrove rehabilitation in the Philippines: successes, failures

and future prospects. Wetl Ecol Manag. 2008; 16: 345–358.

38. Janssen R, Padilla JE. Preservation or conversion? Valuation and evaluation of a mangrove forest in

the Philippines. Environ Resour Econ. 1999; 14: 297–331. https://doi.org/10.1023/A:1008344128527

High-quality data and models in valuing flood protection of mangroves

PLOS ONE | https://doi.org/10.1371/journal.pone.0220941 August 20, 2019 14 / 14

https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(72)
https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(72)
https://doi.org/10.1023/A:1008344128527
https://doi.org/10.1371/journal.pone.0220941

