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Abstract

Background: Observational longitudinal data often feature irregular, informative visit times. We propose descriptive
measures to quantify the extent of irregularity to select an appropriate analytic outcome approach.

Methods: We divided the study period into bins and calculated the mean proportions of individuals with 0, 1, and > 1
visits per bin. Perfect repeated measures features everyone with 1 visit per bin. Missingness leads to individuals with 0
visits per bin while irregularity leads to individuals with > 1 visit per bin. We applied these methods to: 1) the TARGet
Kids! study, which invites participation at ages 2,4, 6,9, 12, 15, 18, 24 months, and 2) the childhood-onset Systemic
Lupus Erythematosus (cSLE) study which recommended at least 1 visit every 6 months.

Results: The mean proportions of 0 and > 1 visits per bin were above 0.67 and below 0.03 respectively in the TARGet
Kids! study, suggesting repeated measures with missingness. For the cSLE study, bin widths of 6 months yielded mean
proportions of 1 and > 1 visits per bin of 0.39, suggesting irregular visits.

Conclusions: Our methods describe the extent of irregularity and help distinguish between protocol-driven visits and

irregular visits. This is an important step in choosing an analytic strategy for the outcome.
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Background

Observational longitudinal data often feature visit times
that vary across individuals with the potential for the
timings and frequency of visits to be associated with the
study outcome. Visit irregularity can lead to misleading
conclusions [1] and should therefore be accounted for in
analyses of the outcome trajectory [2]. For example, in a
randomized trial of the interventions to reduce home-
lessness, individuals with greater levels of homelessness
were likely to visit more frequently [1]. When the visit
process was ignored the group receiving a case manager
only had 0.71% more days homeless than the standard
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care; when the visit process was accounted for the effect
estimate reversed direction with the case manager group
having 1.64% fewer days homeless. In another example,
Buzkova et al [3] estimated the prevalence of pneumonia
amongst Kenyan mothers with HIV-1 to be 2.89% when
the visit process was ignored; the estimate almost halved
to 1.48% after accounting for visits. Observational data
are readily available (e.g. in administrative databases,
electronic medical records); however, data collected over
the course of usual care are particularly liable to irregu-
lar visiting patterns.

The problem of visit irregularity is analogous to miss-
ing data. The key difference between irregular data and
missing data is that the latter occurs when a scheduled
measurement is not recorded, whereas irregular data de-
scribes the presence of imbalanced visiting patterns
across individuals, often in the absence of a study wide
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follow-up schedule. In statistical terms, data is missing
when visit times are fixed by design and whether the
visit occurs is a random variable. With irregular visits,
the timings of visits are the random variables.

The possibility for biased results in the presence of
missing data is generally recognized in applied settings
[4], and this consensus has led to the exploration of
missing data patterns being recommended (e.g.
STROBE, CONSORT 2010) [5, 6]. Summarizing missing
data typically begins by recording the frequency (or per-
centage) of individuals with missing values for each vari-
able (STROBE [5]), upon which the severity of the
problem can be judged. For example, if the data is
judged to be missing at random (or completely at ran-
dom), one might proceed with techniques that deal with
missing longitudinal data such as multiple imputation
[7] or inverse-probability weighting [8]. On the other
hand, unless missingness is known to be completely at
random, missing values may render further analysis fu-
tile as informative missingness can lead to bias as miss-
ingness increases.

Given that irregularity can lead to bias, irregular data
should be explored with the same rigor as is done with
missing data. Irregularity exists on a continuum where
on one extreme the extent of irregularity can vary to the
point where no two individuals share the same visit
times. At the other extreme, visit times can resemble
perfect repeated measures where every individual has 1
visit at each pre-specified visit time in the protocol. In
practice, there are scenarios between both extremes
where visits are intended to be repeated measures but
the timings of scheduled visits vary across individuals,
scheduled visits are missing, or there are unscheduled
visits. There are different techniques for analyzing ir-
regular data versus repeated measures, but it can be dif-
ficult to decide at what point the data should no longer
be treated as repeated measures, but as irregular data.
Farzanfar et al [9] performed a systematic review of lon-
gitudinal studies to explore how irregularity is reported
and handled in practice. They observed that of the 44
eligible studies: 86% of the studies did not report enough
information to assess if it was necessary to account for
informative visit timings, 3 studies reported on the gaps
between visits, 2 studies assessed predictors of visit
times, and only 1 study used a specialized method for ir-
regular longitudinal data. One of the reasons why visit
irregularity is ignored in practice is that most of the lit-
erature on this topic is highly technical.

There are currently no proposed measures for quanti-
fying the extent of irregularity in longitudinal data. This
paper provides intuitive visual measures that can be used
by researchers who are not experts in statistics along
with the respective R code to implement these measures
in practice. This paper demonstrates how these
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descriptive measures can help distinguish between
individually-driven irregular visits and protocol-driven
regular visits, and illustrates how to examine the under-
lying visit process to select an appropriate statistical ap-
proach for the outcome.

Methods

Datasets

We will illustrate our proposed measures of irregularity
with the following two datasets.

Pre-specified visit times: TARGet kids!

The TARGet Kids! study enrolls healthy children aged
0-5 years and follows them until age 18, with the aim of
investigating the relationship between early life expo-
sures and later health problems including obesity, micro-
nutrient deficiencies, and developmental problems [10].
Well-child visits are recommended at ages 2, 4, 6, 9, 12,
15, 18, 24 months, and then every 12 months afterwards,
with vaccinations occurring at ages 2, 4, 6, 12, 15, 18
months. Parents also bring their children for “sick” visits
as needed. Individuals are recruited and enrolled by re-
search assistants who approach them at well-child visits.
In general, most well-child visits did not occur prior to
the expected visit schedule because the physician could
not bill for an early visit, and vaccinations could only
occur once a child reaches a specific age. For example,
the Measles, Mumps and Rubella (MMR) vaccine cannot
be administered until a child is 12 months old.

No pre-specified visit times: child systemic lupus
Erythematosus study

The child lupus study was a retrospective inception co-
hort study of patients who were diagnosed with
childhood-onset Systemic Lupus Erythematosus (cSLE)
and followed at a single center with a dedicated cSLE
clinic. This cohort was followed from childhood into
adulthood. Visit dates ranged from January 1st, 1985 to
September 30th, 2011. Individuals are followed at least
once every 6 months; however, visit frequency depended
on the severity of their disease. The primary objective of
this study was to assess differences in disease activity
trajectories among all ¢cSLE patients.

Measures for quantifying the extent of visit irregularity

The following measures can be used to assess the extent
of visit irregularity and help inform the modelling ap-
proach for the outcome. They can also help determine
whether observed visits can be viewed as repeated mea-
sures subject to missingness. The proposed measures are
based on techniques used to explore missing data. In a
repeated measures design, summarizing missing values
begins by recording the percentage of missing values at
each pre-specified visit time. In addition, predictors of
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being observed at a pre-specified visit time can be evalu-
ated using a regression model (e.g. logistic regression).
We adapt these concepts to the context of irregular data.
We consider studies with pre-specified visit times in the
protocol, and studies which do not pre-specify visit
times in the protocol.

Pre-specified visit times

We propose constructing bins around pre-specified visit
times. Let the time frame of interest be (0, 1), and let T;
denote the j™ pre-specified visit time (j =1, 2,..k). The
j™ bin is given by the interval (L, Rj), where L; and R;
are chosen to specify the left and right cut-points of the
jth bin respectively (Fig. 1). We require that Rj < L;, ; (for
all values of j) so that bins do not overlap, and that L; <
T; < R;. These bins can be used to calculate summary sta-
tistics such as the proportions of individuals with 0, 1,
and > 1 visits per bin.

Bin widths should be specified according to clinical
context as appropriate. For example, the HbA1C blood
test measures blood glucose levels from the previous 3
months (levels are known to be stable during this time
period [11]), and hence bin widths should not be less
than this. Bins can have different widths across the study
period to account for known patterns in visit intensity
(e.g. more frequent visits in the winter). Another ap-
proach to specifying bin widths is to use the percentage
of the time gap between the pre-specified visit times
(Tj). For example, 10% of the gap implies that L;=T; -
0.1(T; — Tj,4), and R;=Tj + 0.1(Tj, ; — Tj). When there
is no obvious choice of bin widths, reporting on varying
bin widths can be helpful.

In perfect repeated measures, all individuals have 1
visit in a bin (regardless of bin width) and no individuals
have 0 or > 1 visits per bin. Thus the proportion of indi-
viduals with 0 or > 1 visits per bin are 0 and the propor-
tion of individuals with 1 visit per bin is 1. Figure 2
illustrates the visit timings for a random subset of 20 in-
dividuals from a perfect repeated measures simulated
dataset with 100 observations and five pre-specified visit
times (2, 4, 6, 8, 10 months). As the levels of missingness
increase, the proportion of individuals with 0 visits per
bin increases. As irregularity increases, the proportion of
individuals with > 1 visit per bin increases.

The R code for plotting visiting patterns for a random
subset of individuals and the mean proportions of indi-
viduals with 0, 1, and>1 visits per bin uses the
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Fig. 1 Specifying bin widths for pre-specified visit times
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Fig. 2 The visit timings for a random subset of 20 individuals from a
perfect repeated measures simulated dataset with 100 observations

“Irreglong” package in CRAN [12] and is presented in
the Appendix.

No pre-specified visit times

We construct adjacent bins across the entire study
period. Bin widths can be determined by clinical context
or known visiting patterns (e.g. fewer visits later on in
follow-up could be accommodated by wider bins). The
j™ bin is given by the interval (L R;), where L; and R;
are chosen to specify the left boundary and right bound-
ary of the j™ bin respectively (Fig. 3).

The mean proportions of individuals with 0, 1, and > 1
visits per bin can be obtained by varying the number of
bins (as the number of bins increases, bin widths de-
crease). These values can be used to judge the extent of
irregularity by assessing whether or not they are consist-
ent with values that would result from repeated mea-
sures. The larger the disparity of these values from
repeated measures values suggests the greater the extent
of irregularity. To evaluate this, the first step is to plot
the mean proportions of individuals with 0, 1, and > 1
visits per bin as a function of bin width. The next step is
to identify the bin width that yields the largest mean
proportion of individuals with 1 visit per bin (i.e. in per-
fect repeated measures, all individuals have 1 visit per
bin). At this bin width, determine if either the mean pro-
portions of individuals with 0 or > 1 visits per bin are 0.
If the mean proportion of individuals with > 1 visit per
bin is not 0, this indicates a degree of irregularity. If the
mean proportion of individuals with > 1 visit per bin is 0
and the mean proportion of individuals with 0 visits per
bin is not 0, this suggests the data can be viewed as

L, R =L, Ry=L3 Ry=L4

Fig. 3 Specifying bin widths for no pre-specified visit times
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repeated measures with missingness. This comparison
can be supplemented by identifying the largest bin width
such that the mean proportion of individuals with >1
visit per bin is 0, and evaluating whether the mean pro-
portions of individuals with 0 and 1 visits per bin are 0.
If at the largest such bin width, the mean proportion of
individuals with O visits per bin is 0 and the mean pro-
portion of individuals with 1 visit per bin is not 0, this
suggests the data can be treated as repeated measures.

Censoring

Both left and right censoring should be considered
when using bins to explore visit irregularity. Individ-
uals may enter the study after the first pre-specified
visit time, and the dataset may be closed before they
have the opportunity to attend all the follow-up visits.
In cases where censoring is administrative and un-
likely to lead to bias, we may wish to measure irregu-
larity separately from censoring. This can be done by
specifying an “at-risk” set of individuals for each bin
(i.e. individuals who are under follow-up for all times
in the bin) then using just these individuals to esti-
mate the proportions of 0, 1, and>1 visits per bin.
Individuals who are lost to follow-up (rather than ad-
ministratively censored) can still be at-risk beyond
their last visit. However, individuals should not be
considered in calculations for bins representing times
before they entered the study or after the dataset was
closed.

Results

Pre-specified visit times: TARGet kids!

The study comprised of 6470 individuals with a median
follow-up of 5.32 years. The years of recruitment ranged
from 2008 to 2015. Data from well-child visits and sick
visits were used to assess whether the data resembled re-
peated measures. Visits from all 6470 individuals were
included in bin calculations, and Fig. 4 displays the age
at each visit for a random subset of 20 individuals.

All bins were anchored on the ages of well-child visits
and the left side of each bin was fixed at 5% of the gap
between successive well-child visit ages (since visits
could not occur too early) and the right side of each bin
was varied from 1 to 95% of the gap. Figure 5 illustrates
the mean proportions of individuals with 0, 1, and > 1
visits per bin across varying bin widths. The mean pro-
portions of individuals with 0 visits per bin were above
0.67 for all bin widths while the mean proportions of in-
dividuals with > 1 visit per bin were below 0.03. These
values suggest that individuals mostly visit according to
suggested visit times. The pattern is similar to repeated
measures subject to missingness.
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Fig. 4 The age at visit (months) for a random subset of 20 individuals

from the TARGet Kids! cohort

No pre-specified visit times: cSLE study

The study size was 473 individuals with a median dur-
ation of follow-up of 5.44 years (total duration of follow-
up was 2666 patient-years). Figure 6 illustrates visit tim-
ings for a random subset of 20 individuals. Visit sched-
ules highly varied and were personalized with few
individuals having similar visit patterns.

To determine the extent of visit irregularity, the entire
study period was split into adjacent and equally-sized
bins and the number of bins was varied. Figure 7 shows
the mean proportions of individuals with 0, 1, and > 1
visits per bin across bin widths. When the disease is con-
trolled, individuals are recommended to visit every 6
months, and if their disease status worsens they visit
more frequently. For bin widths of 6 months, the mean
proportion of individuals with > 1 visit per bin was 0.39,
the mean proportion of individuals with 1 visit per bin
was 0.39, and the mean proportion of individuals with 0
visits per bin was 0.22. Although individuals were

o ]
o
d B \
"
S o
'-E -
g ° —— 0 Visits
£ — - 1 Visit
s = --- >1 Visit
§ 7
=
N e
S _ -
s
Vs
QO | @ e ccecececccec e e e e e e e e e e e m ... ===
= T
T T T T T
0 20 40 60 80

Bin Width (%)

Fig. 5 The mean proportions of individuals with 0, 1, and > 1 visits
per bin as bin width varies from 1 to 95% of the gap between well-
child visits for the TARGet Kids! cohort
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Fig. 6 The visit timings for a random subset of 20 patients from the
CSLE study
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expected to visit at least once every 6 months, 22% of in-
dividuals on average had 0 visits when using this inter-
val. The mean proportions of individuals with 1 visit per
bin had a maximum value of 0.48 corresponding to bin
widths of 3.52 months (the mean proportion of individ-
uals with > 1 visit per bin was 0.15, and the mean pro-
portion of individuals with 0 visits per bin was 0.37). For
smaller bin widths of 0.82 months, the mean proportion
of individuals with > 1 visit per bin was 0.004, the mean
proportion of individuals with O visits per bin was 0.81,
and the mean proportion of individuals with 1 visit per
bin was 0.19. There were no bin widths that were con-
sistent with repeated measures because even when the
mean proportions of individuals with 1 visit per bin was
maximized, 52% of individuals on average had >1 or 0
visits per bin, and when bin widths were small enough
such that the mean proportion of individuals with >1
visit per bin was almost 0, 82% of individuals on average
did not contribute data because they had 0 visits per bin.
These results suggest individually-driven irregular visits,
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Fig. 7 The mean proportions of individuals with 0, 1, and > 1 visits
per bin for the cSLE study
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and therefore the extent of irregularity needs to be con-
sidered in analyses of the disease trajectory.

Analyzing irregular visit processes

There are several methods which can accommodate ir-
regular visit processes, but they make assumptions con-
cerning the relationship between the outcome and
irregularity [13]. It is important to consider the irregu-
larity mechanism to ensure the validity of any chosen
statistical approach for the outcome.

With missing data, judging whether data are missing
completely at random (MCAR) or missing at random
(MAR) is done by evaluating predictors of being ob-
served at pre-specified occasions. This is typically done
by comparing demographic and other available charac-
teristics across the observed and unobserved groups
using tables or logistic regression models [14]. With
irregular data, the relationship between the outcome and
visit process can be judged by identifying predictors of
visit intensity.

Visit processes

Determining the visit process is important because all
methods make assumptions concerning the relationship
between the visit and the outcome processes. Visit pro-
cesses can be regular or irregular, and among irregular
processes, the taxonomy for classifying missing data
mechanisms has been extended to irregular visit pro-
cesses [13]:

a) Visiting completely at random (VCAR): Visit
times are completely independent of the outcome
process.

b) Visiting at random (VAR): Given the observed
history (outcomes, visits, covariates) up to time t,
the visit process at time t, is independent of the
outcome process.

c) Visiting not at random (VNAR): Given the
observed history (outcomes, visits, covariates) up to
time t, the visit process is not independent of the
outcome process at time t.

This classification scheme highlights the potential rela-
tionships between the outcome and visit processes over
time and can be used to determine the appropriate ana-
lytic method for the outcome [13].

Determining the visit process

To determine the visit process, it can be helpful to con-
sider the study protocol. Some protocols pre-specify a
common set of visit times (fixed visits), while others
allow current patient status to determine future visit
times such as: 1) a patient’s previously observed history
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(history-dependent), 2) physician-driven visits, or 3) self-
determined or patient-driven visits.

If the protocol is adhered to perfectly, then history-
dependent visits correspond to VAR. Physician-driven
visits can also result in VAR provided that all the informa-
tion that the physician uses to decide the time of the next
visit is recorded in the patient’s chart. Patient-driven visits
may be VNAR because the underlying factors which influ-
ence future visits are usually not reported in advance. It is
important to consider the extent of deviations from pre-
specified visit times for fixed, history-dependent protocols
and physician-driven visits because the visit process may
be non-ignorable, especially if deviations are due to unob-
served or unrecorded factors.

Although it is possible to distinguish between VAR
and VCAR visits using recurrent event regression
models, there is no way of distinguishing between VAR
and VNAR visits. Any modelling assumptions should be
judged carefully to avoid biased results on the outcome.

Distinguishing between VCAR and VAR: Modelling the visit
process

Identifying predictors of visit intensity can be performed
using recurrent event regression models. Techniques for
analyzing recurrent event data are well established [15]
and are applicable to irregular visits. Regression models
for recurrent events characterize event rates over time
by modelling the intensity function [16]. The intensity
function is analogous to the hazard function in survival
analysis in the sense that it can be thought of as the in-
stantaneous probability of observing an event by time t,
conditional on a subject’s observed history.

One of the more commonly used intensity regression
models is the Andersen-Gill model [17], which is an ex-
tension of the Cox proportional-hazards regression
model [18]. The Andersen-Gill model is quite flexible as
it can include time-dependent factors and past observed
outcomes as predictors of future event intensity. The
Andersen-Gill model can be implemented in standard
survival analysis software such as R 3.1.0 [19].

Application to the cSLE study

Exploration of visits using bins indicated irregularity,
therefore the visit process must be addressed. The fol-
lowing analyses aimed to identify predictors to help dis-
tinguish between VCAR and VAR. This was done by
fitting a Cox proportional hazards regression model
using the Andersen-Gill formulation with age at visit as
the time variable. Baseline characteristics included: age
at diagnosis (years), sex, race (Caucasian, Black, Asian,
and Other), number of American College of Rheumatol-
ogy (ACR) criteria for SLE at diagnosis, the presence of
lupus nephritis at baseline, and mortality. Time-varying
predictors included: disease activity measured by the
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SLE disease activity index [20, 21], prednisone dose,
anti-malarial medication, total organ damage as mea-
sured by the SLE damage index [20], bone damage, car-
diovascular damage (acute myocardial infarction,
cerebrovascular accidents, and myocardial failure), a
composite score for use of significant immunosuppres-
sion (any use of azathioprine for major organ disease,
cyclophosphamide, cyclosporine, tacrolimus), and major
organ involvement (including cerebrovascular accidents,
psychosis, lupus nephritis classes III to V, pulmonary
hemorrhage, myocarditis, major organ vasculitis).

The time-varying predictors included in the visit
model were lagged by 1 visit. Model selection was based
on fitting a regression model with all available predic-
tors, and subsequently retaining predictors with P-values
<0.05. Analysis used the “coxph” function in R version
3.1.0 [22]. Table 1 presents the model summary.

The model confirmed that visit intensity was positively
associated with disease activity (hazard ratio = 1.02, 95%
confidence interval: 1.01-1.02). As a result, any regres-
sion analyses on disease activity should incorporate the
visit process to account for this association; see [23] for
an application of inverse-intensity weighted generalized
estimating equations to this data.

The R code for modelling the visit process using the
Andersen-Gill formulation and estimating the inverse-
intensity weights are provided in the Appendix.

Discussion

This paper proposes novel visual measures for summar-
izing the extent of visit irregularity by dividing the time
frame of interest into bins and counting the number of
individuals with 0, 1, and > 1 visits per bin. For the TAR-
Get Kids! study, the mean proportions of individuals
with O visits per bin were above 0.67 while the mean
proportions of individuals with >1 visit per bin were
below 0.03. This suggested repeated measures data sub-
ject to missingness, and thus reasons for why visits are
missing should be explored. If investigators deem miss-
ingness to be non-informative, the desired longitudinal
outcome can be analyzed using appropriate missing data
techniques such as multiple imputation. For the cSLE
study, visits were recommended to occur at least once
every 6 months. For bin widths of 6 months, the mean
proportion of individuals with > 1 visit per bin was 0.39
and the mean proportion of individuals with 1 visit per
bin was 0.39. The mean proportion of individuals with 1
visit per bin was maximized at bin widths of 3.52 months
with a value of 0.48 (the mean proportion of individuals
with >1 visit per bin was 0.15 at bin widths of 3.52
months). Semi-parametric regression analyses on visit
intensity showed that higher disease activity was associ-
ated with more frequent visits, and therefore regression
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Table 1 The visit process model for the cSLE study

Page 7 of 9

Characteristic Time-Varying Hazard Ratio 95% Hazard Ratio Confidence Limits P-Value
Disease Activity Yes 1.02 1.01 1.02 < 0.0001
Prednisone (mg) Yes 1.02 1.01 1.02 < 0.0001
Composite Score for Significant Immuno-Suppression Yes 1.07 1.03 .11 0.0010
Ethnicity No

Asian Vs. Caucasian - 1.10 1.05 1.15 < 0.0001

Black Vs. Caucasian - 1.20 1.13 1.26 < 0.0001

Other Vs. Caucasian - 1.08 1.02 1.14 0.0064
Age at Diagnosis (Years) No 1.02 1.01 1.03 < 0.0001
Major Organ Involvement Version 1 No 1.07 1.03 1.11 0.0012

analyses on the outcome should account for the visit
process.

Irregular longitudinal data is often mishandled in prac-
tice. For example, researchers who know repeated mea-
sures ANOVA cannot handle irregular data assume they
cannot use the data at all, or can use data from sched-
uled visits only. The latter approach can protect from
bias when the visit process is VNAR; however, it is inef-
ficient when the visit process is VCAR or VAR as out-
come information is discarded. Other researchers may
be aware that certain methods for longitudinal data (e.g.
generalized estimating equations, mixed models) will
run on unbalanced visits but falsely assume that the re-
sults will be unbiased, so they neglect the visit process
and risk biased results. In the cSLE study for example,
this would result in bias because individuals visited more
frequently when their disease status worsened, and thus
an unadjusted GEE analysis risks overestimating the bur-
den of disease.

Visit irregularity and missing data are related con-
cepts; however, the timings of visits are rarely scruti-
nized [9] whereas exploring missing data is
recommended practice (e.g. STROBE, CONSORT
2010) [5, 6]. For example, the STROBE guideline en-
courages the reporting missing data by “indicating the
number of participants with missing data for each
variable of interest” [5]. Furthermore, identifying pre-
dictors of missingness is also generally recommended,
see [14] for an example of how this can be done.
Similar to missing data techniques, our measures of
irregularity count the number of individuals with 0, 1,
and > 1 visits in each bin. Fitting a recurrent event re-
gression model for the visit intensity to distinguish
between VCAR and VAR is analogous to using logis-
tic regression to identify predictors of missingness.

Judging the visit process is crucial to modelling the
outcome; we have presented this in terms of determining
whether the visit process is VAR or VCAR; however, this
can also be viewed in terms of ignorability. In missing
data analysis, Little and Rubin [24] defined ignorability

as not needing to model the missing data mechanism
(data is missing at random or missing completely at ran-
dom) when performing likelihood inference on the out-
come. Farewell et al [25] extended the concept of
ignorability to irregular longitudinal data and showed
that stability is a sufficient condition for ignorability. Sta-
bility requires the outcome at the j'™ visit to be inde-
pendent of any visit patterns conditional on the
observed data up to the j™ visit. In the presence of
ignorability, parametric analyses can ignore the visit
process.

Modelling the outcome trajectory using a mixed ef-
fects regression model is biased if the visit process de-
pends on past observed outcomes and the covariance
between the repeated measures is not correctly specified
[26]. Several strategies can handle informative visit pro-
cesses more effectively. Two main semi-parametric ap-
proaches for incorporating the visit process are: jointly
modelling the outcome and visit processes using shared
random effects [27] and constructing generalized esti-
mating equations where observations are weighted by
the inverse of their visit intensity [1]. Each strategy relies
on a set of assumptions concerning the relationship be-
tween the visit and outcome process in relation to covar-
iates and prior visits and outcomes [13]. Since each
strategy was developed for specific visit scenarios, no
modelling strategy can accommodate all possible cases.
Thus careful consideration of the visit process and study
design should inform the chosen analytic method.

While our proposed measures of irregularity can help
to distinguish between repeated measures and irregular
data, the specification of bin widths is not always
straightforward. Consulting with a clinician may help in
such cases. For example, the left side of the bins for the
TARGet Kids! study was fixed at 5% of the gap between
successive visits because it was understood that well
child visits cannot be billed if they occur too early and
vaccinations are not administered before a child is a cer-
tain age. We have also illustrated that varying bin widths
can shed light on the visit process.
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With missing data, the proportions of missing values
provide an easily interpreted score of how severe the
problem is. It would be ideal to have a single number
that can be used to indicate the extent of irregularity.
We are currently investigating the area under the curve
(AUC) obtained from plotting the mean proportions of
individuals with O visits per bin against the mean pro-
portions of individuals with > 1 visit per bin. The AUC
is a single number that can be used to describe the ex-
tent of irregularity where larger values of the AUC
would signify increasing irregularity.

Conclusions

Describing the extent of irregularity is an important step
in determining the correct analytic approach to model-
ling the outcome. Choosing to ignore irregularity and
simply use a mixed effects model leads to bias when the
observed history (e.g. past outcomes and visits etc.) is
predictive of future visit intensity. Exploring visit irregu-
larity is as important as exploring missing data, and our
measures of the extent of irregularity can assist in select-
ing the appropriate methodology for handling the longi-
tudinal outcome.

Appendix
R-code for Generating Visual Measures and Modelling the
Visit Process
##########Using the Irreglong Package to Generate
Visual Measures.

Library (IrregLong).

Library (Survival).

#u########Plot Visit Timings for a Random Subset of
n Individuals.

abacus.plot(n,time,id,data,tmin,tmax,xlab.abacus = “
Time”,ylab.abacus = “Subject”,

pch.abacus = 16,col.abacus = 1).

##########Plot Mean Proportions of Individuals with
0, 1, and > 1 Visit per Bin.

extent.of.irregularity (data,time = “time”,id = “id”,sche-
duledtimes = NULL,

cutpoints = NULL,ncutpts = NULL,maxfu = NULL,
plot = FALSE,legendx = NULL,legendy = NULL,

formula = NULL,tau = NULL).

###u######Modelling the Visit Process.

##########Create an “event” Indicator Representing
When a Visit Occurred.

data$event<—c (1).

#u########Visit Process Model.

modell < —coxph (Surv (time_stop, time, event)~
agedx+factor (eth) + ....., data = data).

summary (modell).

#u######## Weights.

data$pl < —predict (modell,newdata = data,type = “Ip”).

data$weights<— 1/data$pl.
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summary (data$weights).
#H#u#H##### Test PH Assumption.
modelll < —cox.zph (modell).
modelll.
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