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ABSTRACT

miRNAs are small, non-coding RNA that negatively
regulate gene expression at post-transcriptional
level, which play crucial roles in various physiologic-
al and pathological processes, such as development
and tumorigenesis. Although deep sequencing
technologies have been applied to investigate
various small RNA transcriptomes, their computa-
tional methods are far away from maturation as
compared to microarray-based approaches. In this
study, a comprehensive web server mirTools was
developed to allow researchers to comprehensively
characterize small RNA transcriptome. With the aid
of mirTools, users can: (i) filter low-quality reads and
3/50 adapters from raw sequenced data; (ii) align
large-scale short reads to the reference genome
and explore their length distribution; (iii) classify
small RNA candidates into known categories, such
as known miRNAs, non-coding RNA, genomic
repeats and coding sequences; (iv) provide
detailed annotation information for known miRNAs,
such as miRNA/miRNA*, absolute/relative reads
count and the most abundant tag; (v) predict novel
miRNAs that have not been characterized before;
and (vi) identify differentially expressed miRNAs
between samples based on two different counting
strategies: total read tag counts and the most
abundant tag counts. We believe that the integration
of multiple computational approaches in mirTools

will greatly facilitate current microRNA researches
in multiple ways. mirTools can be accessed
at http://centre.bioinformatics.zj.cn/mirtools/ and
http://59.79.168.90/mirtools.

INTRODUCTION

MicroRNAs (miRNAs) are endogenous, non-coding
RNAs of �22 nt in length that regulate gene expression
post-transcriptionally by directly guiding RNA-induced
silencing complex (RISC) to cognate mRNA targets
(1,2). Particularly, the complementary sequence in the
‘seed region’ (6–8 bp) at the 50-end of the miRNA–
mRNA heteroduplex provide an obvious clue that there
are specified interactions between miRNA and its targets.
Recent studies have documented the potent pro- and
anti-tumorigenic activities of speciEc miRNAs both
in vitro and in vivo (3). Potential influences have been
verified in more widespread biological processes, such as
viral infections, cardiovascular diseases and neurological
and muscular disorders, as well as tumorigenesis (4,5).
Consequently, identifying comprehensive sets and differ-
entially expressed miRNAs across tissues and cell lines is
attracting considerably more attention.

The emergence of high-throughput next-generation
sequencing technologies has dramatically changed the
speed of all aspects of sequencing in a rapid and
cost-effective fashion, which can permit unbiased, quanti-
tive and in-depth investigation of the small RNA tran-
scriptome that has been previously possible (6,7).
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Compared to previous hybridization-based methods, deep
sequencing approaches have several advantages, such as
high resolution, high yield and reduced complexity of ex-
perimental procedures. However, deep sequencing-based
expression analysis is still in its infancy and has substantial
informatics challenges for lack of efficient and flexible
tools to handle and analyze a huge scale of short se-
quences (8,9).

Till now, there are several public tools that are available
for miRNA transcriptomic analysis from deep sequencing
data. The miRDeep package was developed to discover
active known or novel miRNAs from deep sequencing
data, and it includes scripts to preprocess raw reads and
also algorithms to analyze and score miRNA expression
data (10). miRExpress is a stand-alone software package
implemented for generating miRNA expression profiles
from high-throughput sequencing of microRNAs (11).
SeqBuster is a web-based tool to allow users to investigate
the miRNA variants or isomers hidden in large-scale small
RNA datasets (12). miRanalyzer is a web server tool that
can detect all known miRNA sequences annotated in
miRBase and predict novel miRNAs based on a
machine-learning approach (13). UEA small RNA tools
were designed to the analysis of high-throughput small
RNA data, such as identification of miRNAs and their
targets, and comparison expression levels in specific
small RNA loci (14). deepBase is a comprehensive
database developed to annotate and discover small
RNAs from transcriptomic data (15). However, to the
best of our best knowledge, none of the currently available
tools provides web-based approaches to analyze multiple
transcriptomes. In this study, we present a novel web
server mirTools, which can (i) filter low-quality reads
and adapters; (ii) classify large-scale short reads into

known categories; (iii) predict novel miRNAs and their
secondary structures; and (iv) identify significantly differ-
entially expressed miRNAs. We believe that the integra-
tion of multiple computational approaches in mirTools
will greatly facilitate current microRNA researches.

mirTools ANALYSIS WORKFLOW

Read filter

The current procedure of mirTools used to annotate small
RNA transcriptome by high-throughput sequencing is
shown in Figure 1. Briefly, for deep sequencing reads
produced by Illumina Genome Analyzer or 454 FLX in-
strument, low-quality reads must be filtered out to exclude
those most likely to represent sequencing errors and
3/50 adaptor sequences. Subsequently, they are trimmed
into clean full-length reads and formatted into a non-
redundant FASTA file. The occurrence of each unique
sequence read is counted as sequence tag and the
number of reads for each tag reflects its relative expression
level.

Small RNA annotation

All unique sequence tags that pass through above filtering
criteria are mapped onto the reference genome using the
SOAP program (16). Subsequently, these unique sequence
tags are also aligned against miRBase (17), Rfam (18),
repeat database produced by RepeatMasker (19) and the
coding genes of the reference genome. In this way, the
unique sequence tags can be classified into the following
categories: known miRNA, degradation fragments of
non-coding RNA, genomic repeats and mRNA. In case
of conFict, a hierarchy is conducted to assign the tag into

Figure 1. The small RNA annotation workflow of mirTools.
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a unique category, which starts with non-coding RNA,
then known miRNA and followed by repeat associated
RNA and mRNA. Sequences that are assigned to none
of these annotations but can be mapped to the reference
genome are classified as ‘unclassified’.

Differential expression detection

To compare differentially expressed miRNAs between
multiple samples, read count of each identified miRNA
is normalized to the total number of miRNA read
counts that are matched to the reference genome in each
sample. The statistical significance (P-value) is inferred
based on a Bayesian method (20), which was developed
for analyzing digital gene expression profiles and could
account for the sampling variability of tags with low
counts. In default, a specific miRNA will be deemed to
be significantly differentially expressed when the P-value
given by this method is �0.01 and there is at least a 2-fold
change in normalized sequence counts.

Novel miRNA prediction

Sequences that do not fall into above annotation
categories but matched on the reference genome are
used to detect candidate novel miRNA genes. In default,
100 nucleotides of genomic sequence flanking each side of
these sequences are extracted and their RNA secondary
structures are predicted using RNAfold (21). Novel
miRNAs are identified by folding the flanking genomic
sequence using the miRDeep program.

IMPLEMENTATION

The web design scheme of mirTools follows our previous
integrated PGA4genomics pipeline (22), which was con-
structed based on open source softwares. Briefly, mirTools
is programmed in Perl and the web server is hosted on an
Apache 2.0 HTTP server under a Linux operating system.
The front-end, implemented in PHP language scripts,
provides results upon request for users once a job is
finished. The server is equipped with four Quad-Core
AMD processors (2.2GHz each) and 32GB of RAM.
Meanwhile, mirTools has a queuing module to control
user-submitted jobs, which only executes two jobs in
parallel and extra ones will be put into a queue. The
web application is implemented in an operating-system
independent way and has been successfully tested in
Microsoft Internet Explorer 8.0 and Firefox 2/3 (under
different versions of Linux, Microsoft Windows and
MacOS).

DATA INPUT

mirTools provides a simple and user-friendly interface to
allow users to extensively annotate the small RNA tran-
scriptome generated from high-throughput sequencing
(Figure 1). The input requirement of mirTools is a
trimmed FASTA file obtained from pre-processed raw
data as follows:
>UniTag-009_�80
CATTTATTATTTATCTTATTCCTTCTTCTTTTTTA

Where, ‘UniTag-009’ represents a user-definable unique
ID for reads with identical sequences. The ‘�80’ indicates
that this tag (UniTag-009) has occurred 80 times in
the sequenced sample. Both of them must be linked
with an underline. In such a way, a gigabyte-scale file
with unprecedented amounts of reads can be significantly
reduced to an acceptable size for a web server tool. To
generate the desired input format, we provide a
command-line Perl script (http://centre.bioinformatics.zj
.cn/mirtools/adaptortrim.php), through which low
quality reads, 3/50 adaptor sequences and polyA can be
easily filtered from raw sequenced data.

mirTools server runs in a two-mode architecture on a
centralized platform according to the number of uploaded
samples: single and multiple. In the ‘single’ mode, the
server will analyze and annotate small RNAs embed in
the sample. In the ‘multiple’ mode, additionally, the
server identifies differential expression miRNAs between
pair designed samples. It should be noted that, currently,
the maximum allowable size of input file uploaded is
limited to 10MB, which can be in FASTA format or com-
pressed in zip or gz format containing the FASTA file. In
addition, to satisfy personalized small RNA annotation, a
number of important parameters are provided in both
modes. Users can set a length interval in advance and
only the tag sequences within this length interval will be
considered for downstream analysis. mirTools allow users
to define the number of allowed mismatches (at most two
mismatches) between the tag sequence and genomic se-
quences, as well as other annotation information. When
predicting novel miRNAs, the flanking sequence length of
the query is supported. To detect differentially expressed
miRNAs between samples, the desired statistical signifi-
cance of interest with P-value threshold and fold change
in normalized sequence counts can be defined by users. A
specific miRNA will be deemed to be significantly differ-
entially expressed when both the P-value and the fold
change are satisfied.

After data submission, a typical run may take 1–2 h to
finish, depending on the data size, reference genome size
and queuing jobs. If users provide a valid email address,
mirTools will send out a notification with a URL of the
data archive when the job is completed. In addition, users
can retrieve their results from the stored jobs (no longer
than one month) with a unique ID randomly generated by
the server for each job.

DATA OUTPUT

A typical output of mirTools consists of six parts: length
distribution, reference genome mapping, annotation,
known miRNAs, novel miRNAs and differentially ex-
pressed miRNAs (Figure 2). All these components are
well organized with examples to facilitate users with the
correct input and expected results.

The first two parts give an overview of the length dis-
tribution of miRNAs and their mapping ratios against the
reference genome. mirTools plots both the unique read
distribution and expression levels (the number of reads
for each tag reflects its relative abundance). This is
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useful to allow users to easily determine the efficiency of
the deep sequencing procedure for miRNA detection and
to simultaneously compare length distributions between
samples.

The third part summarizes the percentage of small
RNAs classified into different functional categories.
Currently, mirTools assign the small RNA sequences
into one of following categories: known miRNA, degrad-
ation fragments of non-coding RNA (tRNA, rRNA,
snRNA/snoRNA, etc.), genomic repeat, mRNA and un-
classified. In the fourth part, mirTools provides a detailed
annotation for each known miRNA. In the left, a table
shows known miRNA ID, 50/30 arm, absolute count,
relative counts (normalized to the total number of
miRNA reads and then multiplied by 106), miRNA
sequence and most abundant tags with Tag ID,
absolute/relative counts and corresponding tag sequence.
Visual sequence alignments matched to a specific miRNA
are listed in tabulated text files in the right.

In the fifth part, novel miRNAs identified by miRDeep
are provided, which contain novel miRNA sequence, tag
number, tag count and responding hairpin structure,
which is displayed in a SVG format and thus requires a

SVG plug-in to be installed in client’s computers. In the
last part, the relative expression level of all miRNAs is
illustrated in a scatter plot with red dots representing dif-
ferentially expressed miRNAs. Meanwhile, detailed anno-
tation of these differentially expressed miRNAs is
provided, including miRNA ID, relative sequenced
count, fold change, up-regulated/down-regulated and
P-value. It should be noted that mirTools employs two
different measures to evaluate miRNA expression levels:
one is based on the total tag count (#specific miRNA tags/
#total miRNA sequence tags) and the other is based on
the most abundant tag count (#the most abundant tag of
specific miRNA /#total miRNA sequence tags).

CASE STUDIES

To evaluate the performance of mirTools, the small RNA
transcriptomes from the human embryonic stem cell hESC
and EB libraries were downloaded from ftp://ftp03.bcgsc
.ca/public/hESC_miRNA (23). mirTools identified 533
and 573 known miRNAs from hESC and EB, respectively
(http://centre.bioinformatics.zj.cn/mirtools/download2

Figure 2. Screenshots of the mirTools web interface.
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.php?id=1264223745), which are a little more than the
numbers identified in previous study. This is due to
recent updates in miRBase (version 14) used in
mirTools. When detecting differentially expressed
miRNAs, we set the same parameters (P< 0.001, fold
change� 1.5) as Morin’s study. As shown in
Supplementary Figure S1A, the expression level
changes identified by both studies are highly correlated
(Pearson’s correlation coefficient=0.96).
Additionally, two small RNA transcriptome data sets

derived from our lab were performed. This experiment
was designed to characterize the miRNA expression
profiles underlying the progression of androgen-
dependent (LNCaP) to androgen-independent prostate
cancer (LNCaP-AI). Standard protocols were used for
small RNA preparation and Illumina sequencing. In
total, 9 107 833 and 10 083 251 raw reads were generated
for LNCaP and LNCaP-AI, respectively (data not
shown). Following the mirTools’s workflow, we filtered
low-quality reads and adapters, and mapped them
onto the human reference genome (hg18), and annotated
them using currently available miRNA databases.
Additionally, a detailed list of significantly differentially
expressed microRNAs was identified. The summary
output of mirTools run on these data was shown in the
web server (http://centre.bioinformatics.zj.cn/mirtools/
download2.php?id=1259926142). To further validate
these differentially expressed miRNAs, 29 of them were
selected to perform qRT–PCR analysis. As shown in
Supplementary Figure S1B, a strong correlation
(Pearson’s correlation coefficient=0.91) was observed
between the Illumina deep sequencing data and the
qRT–PCR measurements, indicating the robustness of
deep sequencing-based expression analysis obtained from
mirTools.

PERSPECTIVES

In transcriptomic studies, high-throughput sequencing
technologies generate an overwhelming amount of raw
reads, which present substantial informatics challenges
for a lack of efficient and flexible tools. In order to
address these challenges, mirTools was developed
toward a fully automated and easy to use web service
suitable for small RNA transcriptome analyses. Several
steps in mirTools are computationally intensive, which
make us restrict upload data size to avoid overloading
the source website. In the future, we will improve the
server’s computational efficiency and decrease the input
file size limit. mirTools depend on a precomputed
annotation of reference genome. Currently, it supports
15 most commonly studied model organisms, ranging
from vertebrates, invertebrates, to plants. More reference
genomes will be integrated in future update. In addition,
mirTools will intend to implement miRanda (http://www
.microrna.org/)and RNAhybrid (http://bibiserv.techfak
.uni-bielefeld.de/rnahybrid/) to predict the targeted genes
of identified miRNAs. Meanwhile, Gene Ontology terms
and KEGG pathways of targeted genes will also be
integrated to evaluate target gene functions.

It is believed that with simplicity, robustness and acces-
sibility of mirTools can serve as a useful tool for compre-
hensive characterization of the small RNA transcriptomes
obtained from high-throughput sequencing. In general,
mirTools can fill the gaps between high-throughput
sequencing and extensive bioinformatics analysis, and al-
leviate the limitation in miRNA profiling and discovery.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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