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Cancer cell plasticity plays critical roles in both tumorigenesis and tumor progression.

Metastasis-associated protein 3 (MTA3), a component of the nucleosome remodeling

and histone deacetylase (NuRD) complex and multi-effect coregulator, can serve as a

tumor suppressor in many cancer types. However, the role of MTA3 in tongue squamous

cell cancer (TSCC) remains unclear although it is the most prevalent head and neck

cancer and often with poor prognosis. By analyzing both published datasets and clinical

specimens, we found that the level of MTA3 was lower in TSCC compared to normal

tongue tissues. Data from gene set enrichment analysis (GSEA) also indicated that MTA3

was inversely correlated with cancer stemness. In addition, the levels of MTA3 in both

samples from TSCC patients and TSCC cell lines were negatively correlated with SOX2,

a key regulator of the plasticity of cancer stem cells (CSCs). We also found that SOX2

played an indispensable role in MTA3-mediated CSC repression. Using the mouse model

mimicking human TSCC we demonstrated that the levels of MTA3 and SOX2 decreased

and increased, respectively, during the process of tumorigenesis and progression. Finally,

we showed that the patients in the MTA3low/SOX2high group had the worst prognosis

suggesting that MTA3low/SOX2high can serve as an independent prognostic factor for

TSCC patients. Altogether, our data suggest that MTA3 is capable of repressing TSCC

CSC properties and tumor growth through downregulating SOX2 and MTA3low/SOX2high

might be a potential prognostic factor for TSCC patients.
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INTRODUCTION

More than 500,000 new cases of oral and pharyngeal cancers are diagnosed yearly worldwide
(World Cancer report 2014, https://www.who.int/cancer/publications/WRC_2014/en/). Oral
cancer is malignant neoplasia which arises on the lip or oral cavity. Although progress has been
made in cancer treatments, the oral cancer survival rate has not been improved significantly
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for decades (1, 2). Since ∼90% of these cancers are histologically
shown to be originated from squamous cells (3), this subtype of
cancers is traditionally defined as oral squamous cell carcinoma
(OSCC). OSCC may show different levels of differentiation and
has a propensity to coincide with lymph node metastasis (4).
Among OSCC, tongue squamous cell cancer (TSCC) has the
highest incidence and is usually associated with a poor survival
rate. Therefore, TSCC is one of the most lethal types of cancers
in the head and neck region (5). Thus, a better understanding of
the underlying mechanisms in TSCC development will provide
not only a more reliable biomarkers for diagnosis and prognosis
but also potential therapeutic targets for the treatment of
this cancer.

Cellular plasticity plays critical roles in tumor initiation,
progression, and metastasis. It is now well-established that
stem cell-like cancer cells or cancer stem cells (CSCs) are
responsible for both cell plasticity and treatment (6–10). CSCs
are a small subset of cancer cells and multiple lines of evidence
indicate that CSCs are responsible for tumor initiation, indefinite,
and progression (7, 11, 12). Accumulating data also indicate
that plasticity of CSCs closely correlates with recurrences and
metastasis (13–16) with poor prognosis in a wide variety of
cancers, including tongue cancer (17–20).

Metastasis-associated protein 3 (MTA3) is a multi-effect
coregulatory factor and plays indispensable roles in cell
proliferation, tumorigenesis, and metastasis (21–26). Compelling
evidence suggests that MTA3 is a tumor suppressor in many
cancer types (26–28) by serving as an integral subunit of
the nucleosome remodeling and histone deacetylase (NuRD)
complex (21, 25, 27). As a transcriptional corepressor (29),
MTA3 either directly or indirectly regulates the expression
and activity of EMT-associated genes such as Snail and E-
cadherin (25, 27). Dysregulation of MTA3 has been observed
in many different human tumors (26–28). Reduced levels of
MTA3 lead to the upregulation of Snail and subsequently
enhance the process of epithelial-mesenchymal transition
(EMT) (25, 27, 30). Consistently, the dysfunctional MTA3
reduces cell-cell adhesion and promotes cancer invasion
and metastasis (23, 26). Moreover, reduced expression of
MTA3 in tumor specimens has been associated with poor
survival and therefore the expression of MTA3 has been
suggested as an independent predictor of patient prognosis
in uterine non-endometrioid carcinomas, gastroesophageal
junction adenocarcinoma, glioma, and colorectal cancer
(27, 28, 31, 32). However, the role of MTA3 and the
underlying mechanism of MTA3’s function in TSCC remain
largely unknown.

In this study, we found that reduced levels of MTA3
in the patient specimens correlated with poorer clinical
outcomes with concurrently increased cancer stemness. We
also showed that MTA3 was capable of repressing cancer
cell proliferation through inhibiting SOX2 expression. Using
a chemical-induced mouse model of TSCC, we demonstrated
that MTA3 and SOX2 decreased and increased, respectively,
during the process of carcinogenesis and progression. Finally,
our findings suggested that MTA3low/SOX2high could potentially
serve as an independent prognostic factor for TSCC patients.

MATERIALS AND METHODS

Patient Tissue Samples
A total of 119 patients with TSCC were recruited at the Affiliated
Tumor Hospital of Shantou University Medical College from
2009 to 2011 and their TSCC were clinically diagnosed and
histologically confirmed. The primary TSCC specimens and
their matched non-cancerous tissues were paraffin-embedded.
Samples from patients who underwent preoperative radiotherapy
or chemotherapy for TSCC were excluded. Clinical research
protocols of this study were reviewed and approved by the Ethics
Committee of Shantou University Medical College.

Immunohistochemistry (IHC)
Tissue sections (4µm) from the formalin-fixed paraffin-
embedded clinical specimens or 4NQO-induced tongue tumor
tissues were processed and immune-stained with antibodies
against MTA3 (Catalog No. A300-160A, Bethyl, 1: 600), SOX2
(Catalog No. 23064, Cell Signaling, 1: 200), each with at least
two cores of the primary tumor as well as two cores of normal
tongue tissue. Sections immune-labeled with rabbit IgG or
mouse IgG as the primary antibody were used as negative
controls, known MTA3 and SOX2 positive slides were used as a
positive control.

IHC Evaluation
The percentage of positively stained cells were scored using the
following scales: 0, no staining in any field; 1, ≤ 10; 2, 11–50;
3, 51–75; 4, > 75%. The intensity of staining was scored using
the following scales: 1+, weak staining; 2+, moderate staining;
3+, strong staining. Percentage (P) and intensity (I) of nuclear,
cytoplasm or membrane expression were multiplied to generate
a numerical score (S= P • I).

The tissue sections were scored by two pathologists blind to
the clinical outcomes. Receiver operating characteristic (ROC)
curves were employed to define an optical cut-off score, which
was closest to the point with maximum sensitivity and specificity.
The cases with scores lower than or equal to the cut-off value were
designated as low expression group and those with higher scores
were categorized as high expression group.

Histological Analysis
For histological analysis, tissues were fixed in 4% neutral buffer
formalin, embedded in paraffin, sectioned (4µm) and stained
with hematoxylin and eosin.

Gene Set Enrichment Analyses
Microarray data (accession no. GSE78060) were obtained from
the Gene Expression Omnibus of NCBI (http://www.ncbi.nlm.
nih.gov/geo/) and subjected to Gene set enrichment analysis
(GSEA) using GSEA software (version 2.0.13) (http://www.
broadinstitute.org/gsea/index.jsp).

Immunofluorescence Staining
FFPE tissue sections were deparaffinized and dehydrated in
xylene and graded ethanol solutions in preparation for MTA3
and SOX2 double immunofluorescence (IF) staining. All slides
were subjected to heat-induced epitope retrieval in Citrate
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Buffer [pH = 6.0]. Endogenous tissue peroxidases were blocked
by incubating the slides in 3% hydrogen peroxide solution
and blocking buffer before incubation with MTA3 (Catalog
A300-160A, Bethyl, 1: 600), SOX2 (Catalog No. #23064, Cell
Signaling, 1: 200) as primary antibodies. And HRP-conjugated
streptavidin as the secondary antibody. The signal in IF labeled
slides were visualized with AlexaFluor 488 and AlexaFluor
594 Tyramide Super Boost kits (Invitrogen, Carlsbad, CA),
and nuclei were visualized with Prolong Diamond Antifade
Reagent with 4’,6-diamidino-2-phenylindole (DAPI; Invitrogen,
Carlsbad, CA). Primary and secondary antibodies were stripped
using Citrate Buffer [pH = 6.0] in the microwave. Known
MTA3 and SOX2 positive slides were used as a positive
control. Immunofluorescence staining was analyzed using the
PerkinElmer Vectra analysis platform to estimate the cell
numbers. The percentage of positive cells was estimated by
two pathologists.

Cell Culture
Human TSCC cell lines (SCC-25 and SCC-4) were obtained from
the Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). The cells were cultured in Dulbecco’s Modified Eagle
Media (DMEM, Gibco/Invitrogen) supplemented with 10%
FBS (Gibco/Invitrogen) at 37◦C in a humidified atmosphere
containing 5% CO2.

Virus Production and Transduction
The full-length cDNA of MTA3 was PCR amplified from
SCC-25 cells and cloned into the pCDNA3.1-flag plasmid.
The shRNA targeting human MTA3 (target sequence:
GAGGATACCTTCTTCTACTCA) was cloned into pBabe/U6
plasmid. The SOX2 overexpression plasmid and SOX2 short
hairpin RNA (shSOX2) plasmid (shSOX2 target sequence:
GGTTGACACCGTTGGTAATTT) were obtained from
GeneCopoeia. Transfection of plasmid was performed using
Lipofectamine 3000 (Thermo Fisher Scientific, catalog no.
L3000015) according to the manufacturer’s instructions. Stable
cells were selected by culturing the cells in the medial with
puromycin for 2 weeks.

RNA Isolation and Quantitative Real-Time
PCR
Total RNA was extracted from cells using TRIzol (Invitrogen)
according to the manufacturer’s instruction and 2 µg RNA
was reversely transcribed using High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA, USA).
The cDNA was amplified and quantified in ABI-7500 system
(Applied Biosystems) using SYBR Green Master (Roche). The
cDNA was subjected to quantitative real-time PCR (qPCR)
with the following primers: MTA3 forward: 5′-AAGCCTGGT
GCTGTGAAT-3′ and reverse: 5′-AGGGTCCTCTGTAGTTGG-
3′; SOX2 forward: 5′-CATCACCCACAGCAAATGACA-3′ and
reverse: 5′-GCTCCTACCGTACCACTAGAACTT-3′; GADPH
forward: 5′-TCCTCCTGTTTCATCCAAGC-3′ and reverse: 5′-
TAGTAGCCGGGCCCTACTTT-3′.

Western Blot Analysis
Whole-cell lysates were prepared by lysing the cells in lysis buffer.
Cell lysates with an equal amount of proteins were separated
on 10% SDS-PAGE and transferred to PVDF membranes.
The membranes were incubated with primary antibodies
(MTA3, Catalog No. A300-160A, Bethyl, 1: 2,000; SOX2,
Catalog No.23064, Cell Signaling, 1: 1,000; GAPDH, Catalog
No. ab8245, Abcam, 1:3,000) followed by HRP-conjugated
secondary antibodies as previously described (33). Blotted
proteins were visualized by incubating in SuperSignal West
Pico Chemiluminescent Substrate (Thermo Scientific) followed
by exposure to X-ray film (Eastman Kodak, Rochester, NY,
USA) (33).

ALDEFLUOR Assay
ALDEFLUOR assay kit (Stem Cell TechnologiesTM, Vancouver,
BC, Canada) was used to determine ALDH1 activity according
to the manufacturer’s protocol. Cells were suspended in
ALDEFLUOR assay buffer containing 1µM per 1 × 106 cells of
the ALDH substrate, boron-dipyrromethene-aminoacetaldehyde
(BAAA), and incubated for 50min at 37◦C. Each sample
was treated with 50mM of an ALDH-specific inhibitor,
and diethylaminobenzaldehyde (DEAB) as a negative control.
Stained cells were analyzed by BD FACSAriaTM II (BD
Biosciences, San Jose, CA, USA). To evaluate cell viability the
cells were stained with 1 mg/ml of propidium iodide prior
to analysis.

Proliferation and Survival Assays
Real-time cell analysis (RTCA) was performed to estimate
cell proliferation using the xCELLigence DP device (ACEA
Biosciences) as described in the supplier’s instructions. In brief,
3,000 cells were seeded in E-plates, and the plates were locked
into the RTCA DP device supplied with humidified air with
5% CO2 at 37◦C. The proliferative ability was monitored
by the xCELLigence RTCA Analyzer (Roche Applied Science,
Mannheim, Germany) (34, 35).

Animals and Carcinogen Treatment
Male and female wild-type C57BL/six mice were supplied by
Beijing Vital Laboratory Animal Technology (Beijing, China).
To induce tumorigenesis in the tongue, 4NQO (Sigma-Aldrich,
St. Louise, MO) was added to the drinking water (100 mg/mL)
for the 6-week-old young adult mice for 16 weeks. The mice
were sacrificed when the bodyweight loss >1/3, otherwise
they were sacrificed at the indicated time. After sacrifice, the
tongue surface was photographed. The tissues were resected
for histopathological examination and immunohistochemistry
(IHC) analyses. Animals were housed in pathogen-free
conditions at the Animal Center of Shantou University Medical
College in compliance with Institutional Animal Care and Use
Committee (IACUC) regulations (SUMC2014-148). All animal
experiments were performed according to protocols approved
by the Animal Care and Use Committee of the Medical College
of Shantou University.
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Gaussia Luciferase Assay
The pEZX-PG04 plasmid carrying double-expression cassette
for Gaussia luciferase under the control of the SOX2 promoter
(+270 to −1038), and secreted Alkaline Phosphatase (SeAP)
under the control of the CMV promoter was obtained from
GeneCopoeia (Catalog No. HPRM15202). Cells were seeded in
24-well plates, and transiently transfected with the above plasmid
using Lipofectamine 3000 (Thermo Fisher Scientific, catalog no.
L3000015) according to the manufacturer’s instructions. After
72 h of transfection, the culturemediumwas collected for analysis
of Gaussia luciferase and secreted Alkaline Phosphatase (SeAP)
activities using a Secrete-PairTM Dual Luminescence Assay Kit
(GeneCopoeia, SPDA-D010) according to the manufacturer’s
instructions. Gaussia luciferase activity was normalized on the
basis of seAP activity.

Statistical Analyses
All statistical analyses except for microarray data were carried
out using the statistical software package SPSS 17.0 (SPSS,
Inc., Chicago, IL, USA). The comparisons between two groups
were performed with Student’s t-test. The correlation between
MTA3 expression and clinicopathological data of patients was
analyzed with Pearson χ2 test. Survival curves were plotted
with the Kaplan-Meier method and compared by log-rank test.
Survival data were evaluated by univariate and multivariate

Cox regression analyses. The correlations of the histoscore
between MTA3 and SOX2 was determined by Spearman’s rank
test. Two-way ANOVA followed by a Tukey–Kramer post hoc
test was performed to compare the difference of proliferation
affected by MTA3 and SOX2 among four groups. All data were
presented as the mean ± SEM. The P < 0.05 was considered
statistically significant.

RESULTS

MTA3 Is Reduced in Human TSCC
To estimate the expression MTA3, we first assessed the mRNA
levels of MTA3 in OSCC from GEO database (https://www.
ncbi.nlm.nih.gov/geo/) GSE30784 (36) and GSE25099 (37). We
found that the MTA3 mRNA levels were significantly lower in
OSCC when compared with the normal controls (P < 0.001 and
0.01, respectively; Figure 1A and Supplementary Figure 1A).
Since TSCC is the highest incidence of all oral squamous
cell cancers (5), we focused on the role of MTA3 in TSCC.
Data from both datasets GSE78060 (38) and GSE34105 (39)
revealed higher MTA3 mRNA levels in normal tongue tissues
than in TSCC tissues (P = 0.014 and 0.003, respectively;
Figure 1B and Supplementary Figure 1B). Next, we examined
the MTA3 expression at protein levels in TSCC of 119 patient
specimens using immunohistochemistry (IHC). Representative

FIGURE 1 | MTA3 is downregulated in human TSCC. (A) Analysis of MTA3 mRNA expression was performed in an OSCC dataset from GEO (GSE30784). (B) MTA3

mRNA expression was analyzed in a TSCC dataset from GEO (GSE78060). (C) MTA3 expression in 119 human TSCC tissues and paired adjacent normal tissues

(ANT) was monitored by immunohistochemistry (IHC) (left panel). The immunohistochemistry score of MTA3 in TSCC (filled bar) and paired normal adjacent (open bar)

tissues were plotted (right panel). Shown are the mean values or representative data from at least three independent experiments. Error bars indicate SEM. *P < 0.05,

***P < 0.001 using student’s t-test.
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photomicrographs for MTA3 IHC scores of level 0, 4, 6, 9, and 12
are shown in Figure 1C (left panel). TSCC showed significantly
(P < 0.001, n = 119) lower levels of MTA3 protein in the
primary tumors compared to the corresponding normal tissue
(Figure 1C, Right panel). These findings demonstrate that MTA3
is downregulated in TSCC tissues compared to normal controls.

Downregulation of MTA3 Correlates With
Clinical Outcomes in TSCC Patients
We next assessed the prognostic impact of MTA3 on the
outcome of TSCC patients. An optimal cutoff value was
identified using Receiver operator characteristic (ROC) analysis
which categorized 51.3% (61/119) of the patient cohort into
a high MTA3 group and the remainder into a low MTA3
group (Figure 2A). Then Kaplan-Meier survival analyses were
performed and showed that patients with low MTA3 were
associated with shorter overall survival than those with high
MTA3 (P = 0.002, Figure 2B).

Univariate analyses found that MTA3 expression, pTNM
stage, pN status, and tumor depth were significantly related to
TSCC patient outcome (Table 1). However, after multivariate
Cox regression analysis only MTA3 expression (HR 0.420; 95%
CI 0.218–0.810; P = 0.010) and pTNM stage (HR 3.029; 95%
CI 1.075–8.538; P = 0.036) were independently significant with
overall survival (Table 1). These results reveal that reduced
expression ofMTA3may be an independent prognostic factor for
the overall survival of patients with TSCC.

MTA3 Inhibits Key TSCC Plasticity
Regulator SOX2
The plasticity of CSC plays an important role in oncogenesis
and progression (7, 11, 12, 40). Therefore, we next explored
the relationship between MTA3 level and cancer cell stemness
using gene set enrichment analysis (GSEA) of published human
TSCC expression profiles (GSE78060) and found that a cancer
stemness related gene signature (BOQUEST_STEM_CELL_UP)

was significantly enriched in TSCC with low MTA3 expression
(P < 0.001, Figure 3A). Interestingly, SOX2, a key regulator in
the plasticity of cancer stemness, was also closely associated with
poor prognosis in TSCC patients (20). To study the relation
between MTA3 and SOX2, we measured the (co-)expression

TABLE 1 | Univariate and multivariate Cox proportional hazards analyses of

survival in TSCC patients.

Variables Univariate

analysis

P-value Multivariate

analysis

P-value

HR (95% CI) HR (95% CI)

Age (years)

> 60 vs. ≤ 60 1.106

(0.620–1.973)

0.734 1.171

(0.633–2.167)

0.616

Gender

Male vs.

Female

1.620

(0.909–2.886)

0.102 1.630

(0.882–3.010)

0.119

Differentiation

Poor vs.

Well/Moderate

1.418

(0.684–2.936)

0.348 1.159

(0.533–2.518)

0.709

pTNM stage

III–IV vs. I–II 4.428

(2.284–8.583)

0.000 3.029

(1.075–8.538)

0.036

MTA3 expression

High vs. Low 0.401

(0.221–0.727)

0.003 0.420

(0.218–0.810)

0.010

pN status

N1–N3 vs. N0 2.991

(1.672–5.349)

0.000 1.340

(0.590–3.047)

0.484

Tumor depth

T1/T2 vs.

T3/T4

2.472

(1.373–4.449)

0.003 1.064

(0.518–2.187)

0.865

HR, hazard ratio; CI, confidence interval.

High in this analysis is based on an MTA3 level > 5.5; the remaining individuals were

classified as low.

FIGURE 2 | Downregulation of MTA3 correlates with poor prognosis in human TSCC. (A) Receiver operating characteristic (ROC) curve analysis was performed to

determine the cut-off score for the low expression of MTA3. (B) Kaplan–Meier curves compared the overall survival in TSCC patients with high and low protein levels

of MTA3.
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FIGURE 3 | MTA3 represses key TSCC plasticity regulator SOX2. (A) GSEA plots of enrichment of BOQUEST_STEM_CELL_UP signatures in MTA3High tumors vs.

MTA3Low tumors in the GSE78060 dataset. (B) Representative IHC image against MTA3 and SOX2 of normal tissues (left panel), Pearson’s correlation analysis of

MTA3 and SOX2 IHC intensity in 119 adjacent non-tumor tissues (ANT) (right panel). (C) Representative IHC image against MTA3 and SOX2 of TSCC tissues (left

panel), Pearson’s correlation analysis of MTA3 and SOX2 IHC intensity in 119 TSCC tissues (right panel). (D) Representative double immunofluorescence of MTA3 and

SOX2 in TSCC patient tissues. DAPI = blue, MTA3 = green, SOX2 = red. (E) qRT-PCR of MTA3 and SOX2 in SCC-25 cells with MTA3 depletion (Left panel) and

SCC-4 cells MTA3 overexpression (Right panel), **P < 0.01 and ***P < 0.001 using student’s t-test. (F) Western blot of MTA3 and SOX2 in SCC-25 cells with MTA3

depletion (Left panel) and SCC-4 cells with MTA3 overexpression (Right panel).

of MTA3 and SOX2 in adjacent non-tumor tissues (ANT)
and TSCC tissues from the 119 patients. Indeed, a highly
significant inverse correlation between the MTA3 and SOX2
levels (r2 = 0.534, P < 0.001 and r2 = 0.624, P < 0.001,
respectively; Figures 3B,C) was observed. Moreover, a low
level of SOX2 was accompanied by high expression of MTA3,
and vice versa, as indicated by double immunofluorescent
staining (Figure 3D). In addition, two TSCC cell lines, SSC-
25 and SSC-4, were transfected with shMTA3 or the plasmid
overexpressing MTA3, respectively. The mRNA and protein
levels of MTA3 were then assessed by qRT-PCR and western
blot analysis, respectively. When compared to the controls,
the expression level of MTA3 was obviously enhanced in cells

transfected with pcMTA3 (P < 0.001), while it was significantly
decreased in cells transfected with shMTA3 (P < 0.001)
(Figures 3E,F). Knockdown MTA3 dramatically increased,
whereas overexpression ofMTA3 decreased, the expression levels
of SOX2 (Figures 3E,F), suggesting that theMTA3 inhibits SOX2
expression in TSCC cells.

MTA3 Suppresses TSCC Cell Stemness
and Proliferation Via SOX2
To determine whether SOX2 plays a key role in MTA3-
mediated plasticity of CSC and cell growth, we first established
TSCC cells with knockdown of MTA3 or SOX2 alone or
in combination using specific shRNA (Figure 4A) or stably
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FIGURE 4 | MTA3 reduces CSC properties and cell proliferation via SOX2 in TSCC cells. (A,B) Western blot and qRT-PCR in TSCC cells transfected with a

combination of shMTA3 and shSOX2 (A) or MTA3 and SOX2 expressing plasmid (B). (C,D) Flow cytometry analysis of the ALDH1+ population. Histograms showing

the proportion of ALDH1+ cells. (E,F) Cells were monitored by RTCA for 24 h. Data were shown as the means of three independent experiments or representative

data. Error bars indicate SEM. n.s., not statistically significant; **P < 0.01, ***P < 0.001 by two-way ANOVA followed by a Tukey–Kramer post hoc test.

overexpressing MTA3 or SOX2 alone or in combination
(Figure 4B). As expected, knockdown MTA3 significantly
promoted the percentage of cells expressing ALDH1, a major
CSC marker (Figure 4C). MTA3-depletion-mediated increase
of the number of ALDH1-positive cells were significantly
reduced when SOX2 is removed suggesting SOX2 plays a

crucial role in MTA3-repressed CSC properties (Figure 4C).
Next, the effects of overexpressed MTA3 individually or in
combination with SOX2 were examined. Figure 4D showed
that overexpression of MTA3 and SOX2 reduced and increased
the number of ALDH1-positive cells, respectively. However,
overexpressed SOX2 counteracted MTA3-repressed the number
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of ALDH1-positive cells (Figure 4D). In addition, real-time
proliferation assays were conducted to assess changes in cell
dynamics. Silencing SOX2 inhibited MTA3-depletion-induced
cell proliferation (Figure 4E) and forced SOX2 expression was
capable of counteracting MTA3-repressed cell proliferation
(Figure 4F). These data altogether demonstrate that in TSCC
cells MTA3 represses CSC property and proliferation by
targeting SOX2.

Dysregulated MTA3/SOX2 Axis Is
Associated With Tumor Progression
The results above indicate a role of MTA3/SOX2 in TSCC
progression. Therefore, we next investigated the role of

MTA3/SOX2 in a mouse model of tongue tumorigenesis induced
by 4 nitroquinoline 1-oxide (4NQO). Exposure to 4NQO caused
a temporal progression from hyperplasia to invasive carcinoma
in the murine tongue, resembling human tongue carcinogenesis
and development (41, 42). Mice were exposed to 4NQO in
daily drinking water for 16 weeks followed by 4NQO-free
drinking water for 12 additional weeks (Figure 5A), which
resulted in tongue carcinogenesis and progression (Figure 5B)
similar to what has been published previously (41, 42). Next,
we studied the expression of MTA3/SOX2 in normal tongue
tissue samples, hyperplasia, carcinoma in situ, early invasive
carcinoma and invasive carcinoma by immunohistochemistry.
As shown in Figure 5C, the expression of MTA3 gradually

FIGURE 5 | MTA3-SOX2 axis changes dynamically in a mouse model mimicking human TSCC. (A) Schematic representation of 4NQO tumorigenesis protocol in

wild-type C57BL/6 mice. (B) Representative macroscopic view of the normal tongue and tumor development. The red arrow indicates invasive carcinoma, the blue

arrow indicates papilloma. (C) Representative H&E and IHC stain for mice tongue preneoplastic and neoplastic tissues. (D) Representative double immunofluorescent

staining image against MTA3 and SOX2 of mice tongue neoplastic tissues. DAPI = blue, MTA3 = green, SOX2 = red.
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decreased during the process of carcinogenesis and progression,
in contrast to SOX2. This is indicative of an inverse relation
between MTA3 and SOX2 associated with cancer occurrence
and development, which was confirmed in mouse TSCC by
double immunofluorescent staining (Figure 5D). Thus, the levels
of MTA3 and SOX2 may change dynamically during tongue
carcinogenesis and progression.

Dysregulated MTA3/SOX2 Axis Associated
Strongly With Poor Prognosis
To validate our findings in a clinical setting, we assessed
the levels of MTA3 and SOX2 in 119 TSCC samples and
related this to the overall survival rate. Receiver operator
characteristic (ROC) analysis identified an optimal cutoff
value and categorized 39.5% (47/119) of the patients into a
high SOX2 group and the remainder into a low SOX2 group
(Figure 6A). Indeed, patients with low levels of MTA3 but
high levels of SOX2 (MTA3low/SOX2high) had significantly
shorter overall survival rate (P < 0.001; Figure 6B) than
those with high levels of MTA3. Moreover, low levels
of SOX2 (MTA3high/SOX2low), were associated with an
even shorter overall survival compared to TSCC patients
with any other expression pattern (MTA3high/SOX2high,
MTA3low/SOX2high, MTA3low/SOX2low) (P < 0.001;
Figure 6C). These data altogether suggest that combined
MTA3low-SOX2high expression had stronger correlation
with worst patient prognosis than that of the individual
components. Indeed, univariate and multivariate Cox
regression analysis (P < 0.001 and P < 0.001, HR =

4.044, 95 %CI = 1.925–8.495, respectively) indicated that
combined MTA3low/SOX2high expression is an independent
prognostic factor of TSCC as it was significantly associated
with prognosis (Table 2). Overall, these data indicate that
dysregulated MTA3/SOX2 axis may contribute to patient
outcomes and could be of value as a predictive biomarker for
TSCC prognosis.

DISCUSSION

Here we demonstrated that MTA3 was a potential independent
prognosis factor for TSCC patients. Moreover, we established the
negative regulation of SOX2, a key regulator in the plasticity of

TABLE 2 | Univariate and multivariate Cox proportional hazards model predicting

survival in TSCC patients.

Variables Univariate

analysis

P-value Multivariate

analysis

P-value

HR (95% CI) HR (95% CI)

Age (years)

> 60 vs. ≤ 60 1.106

(0.620–1.973)

0.734 1.310

(0.714–2.404)

0.383

Gender

Male vs.

Female

1.620

(0.909–2.886)

0.102 1.623

(0.878–3.000)

0.123

Differentiation

Poor vs.

Well/Moderate

1.418

(0.684–2.936)

0.348 1.211

(0.581–2.525)

0.610

pTNM stage

III–IV vs. I–II 4.428

(2.284–8.583)

0.000 1.642

(0.569–4.735)

0.359

Combination of MTA3 and SOX2

MTA3

Low/SOX2

High vs. Other

groups

5.209

(2.891–9.386)

0.000 4.044

(1.925–8.495)

0.000

pN status

N1–N3 vs. N0 2.991

(1.672–5.349)

0.000 1.495

(0.673–3.318)

0.323

Tumor depth

T1/T2 vs.

T3/T4

2.472

(1.373–4.449)

0.003 1.069

(0.533–2.142)

0.852

HR, hazard ratio; CI, confidence interval.

FIGURE 6 | Dysregulated MTA3-SOX2 axis is associated with poor prognosis. (A) Receiver operating characteristic (ROC) curve analysis was performed to determine

the cut-off score for the low expression of SOX2. (B,C) The overall survival of TSCC patients with tumors expressing low levels of MTA3 and high levels of SOX2 and

those with high levels of MTA3 and low levels of SOX2 (B), as well as all other subjects (C).
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cancer stemness, by MTA3 repressed the number of ALDH1-
positive cells and cell proliferation in TSCC cells. We identified
the expression of MTA3 and SOX2 as important markers in a
4NQO-induced TSCC mouse model, human TSCC progression
and clinical outcomes.

The biological and clinical significance of the MTA family
members in malignancies has been well-established. The levels
of these factors have even been proposed as potential diagnostic
parameters and targeting each one of the family members
could be potential treatments for different cancers (26, 43–45).
However, unlike MTA1 and MTA2 which were mainly involved
in cancer progression and metastasis, MTA3 possesses both
tumor-suppressing and tumor-promoting properties depending
on specific cancer types (21, 43). We found that MTA3 was
negatively associated with overall survival and could act as an
independent prognosis factor in TSCC. To the best of our
knowledge, this is the first study to show the expression of MTA3
in TSCC.

The plasticity of CSCs is key mechanisms in oncogenesis
and progression of cancers (7, 11, 12, 16) and a predictive
factor of poor prognosis in a wide variety of cancers, including
tongue cancer (17–20). Accumulating evidence suggests that
transcription factor SOX2 is a key regulator in the plasticity of
cancer stemness (46–48). Moreover, overexpression of SOX2 is
often associated with increased cancer aggressiveness, resistance
to chemoradiation therapy and decreased survival rate, which
has been reported in various cancer types (49, 50), including
TSCC (51). Previous studies revealed that SOX2 is vital in
the regulation of TSCC motility, invasion, tumorigenicity, and
upregulated SOX2 is significantly associated with the progression
of TSCC (51). SOX2 is detectable in oral pre-invasive lesions,
suggesting that SOX2 upregulation may be an early event in
TSCC carcinogenesis. We found that MTA3 can inhibit CSC
properties and cell proliferation via downregulating SOX2 in
TSCC cells. In addition, luciferase reporter assays showed that
knockdown or overexpression MTA3 had no significant effect
on the luciferase activity (Supplementary Figure 2), suggesting
that MTA3 does not regulate the expression of SOX2 by
interacting with its proximal promoter. However, these results
do not necessarily rule out the possibility that MTA3 is directly
involved in the regulation of SOX2 expression by interacting
with its enhancer region or the sequence other than the
proximal promoter. Further studies will better the understanding
about the mechanisms in MTA3-regulated SOX2 expression in
tongue cancer.

Given the fact that alterations of MTA3 and SOX2
highly correlate with clinical outcomes and the predictability

of prognosis, the levels of MTA3 and SOX2, especially
MTA3low/SOX2high, could be used as diagnostic parameters.
In addition, targeting MTA3 and/or SOX2 could be potential
therapeutic strategies in TSCC treatment. Finally, 4NQO-induce
TSCC mice model has been widely used in the study of TSCC
(41, 42). And we used this model to further elaborate the
dynamic changes of MTA3 and SOX2 in the occurrence and
developmental progression of TSCC.

In summary, consistent with the fact that MTA3 is often
silenced in the process of carcinogenesis and development, we
found that MTA3 was capable of inhibiting CSC properties and
cell proliferation by negatively regulating SOX2. Additionally,
we found that TSCC patients in the MTA3low/SOX2high group
had a poor prognosis. Future research may involve translational
research to clinically evaluate the efficacy of this therapeutic
strategy using IHC evaluation of low MTA3 and high SOX2 as
a companion diagnostic for patient selection.
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