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Zika virus (ZIKV), despite being discovered six decades earlier, became a major health
concern only after an epidemic in French Polynesia and an increase in the number of
microcephaly cases in Brazil. Substantial evidence has been found to support the link
between ZIKV and neurological complications in infants. The virus targets various cells in
the brain, including radial glial cells, neural progenitor cells (NPCs), astrocytes, microglial
and glioblastoma stem cells. It affects the brain cells by exploiting different mechanisms,
mainly through apoptosis and cell cycle dysregulation. The modulation of host immune
response and the inflammatory process has also been demonstrated to play a critical role
in ZIKV induced neurological complications. In addition to that, different ZIKV strains have
exhibited specific neurotropism and unique molecular mechanisms. This review provides
a comprehensive and up-to-date overview of ZIKV-induced neuroimmunopathogenesis
by dissecting its main target cells in the brain, and the underlying cellular and molecular
mechanisms. We highlighted the roles of the different ZIKV host factors and how they
exploit specific host factors through various mechanisms. Overall, it covers key
components for understanding the crosstalk between ZIKV and the brain.

Keywords: Zika virus, host factors, microcephaly, Guillain-Barre syndrome, immune response, neuroinflammation,
mitochondrial damage, animal models
INTRODUCTION

Zika virus (ZIKV) infection has been associated with adverse pregnancy and birth outcomes with
numerous neurological complications (1–4). Microcephaly is the most obvious symptom associated
with congenital Zika syndrome (CZS). It is characterized by reduced brain size and volume,
abnormal development of the neurons and reduced number of neurons in the grey matter (5, 6). To
reach the fetal brain, ZIKV needs to cross the placental and the blood-brain barrier (BBB), which are
responsible for protecting fetal brain development from pathogens during pregnancy. Chronic
placentitis has been observed in ZIKV-infected pregnant women (7). Evidence suggests that ZIKV
crosses the placenta to reach the fetus by directly infecting placental cells and disrupting the
placental barrier (Figure 1). It is hypothesized that ZIKV might reach the fetal vessels by using the
migratory ability of Hofbauer cells (Figure 1). Placental trophoblasts have also been shown to be
another target cell for ZIKV infection (9, 14) (Figure 1).
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Recent studies have demonstrated that ZIKV crosses the BBB
by infecting the brain endothelial cells and altering the tight
junction proteins (15–17). However, the mechanism of ZIKV
crossing the BBB to the central nervous system (CNS) is still
unclear. Initial studies suggested that ZIKV crosses the BBB
through the basolateral release or transcytosis pathway without
BBB disruption. However, it was found that persistent ZIKV
infection and inflammatory response may lead to disruption of
the BBB at later time points (15, 17). Another study showed that
the disruption of the BBB permeability by ZIKV could be strain
dependent (16). Alternatively, a recent study has demonstrated
that ZIKV might exploit the blood-cerebrospinal fluid (B-CSF)
by infecting pericytes in the choroid plexus (18). Once the virus
reaches the developing fetal brain, it has been shown to mainly
infect cells in the ventricular zone (VZ) and subventricular zone
(SVZ) (8) (Figure 1). The VZ consists of neuroepithelial cells
(NECs) and radial glial cells (RGCs), while the SVZ contains
intermediate progenitor cells (IPCs) (19). RGCs give rise to
neurons, astrocytes, ependymal cells and oligodendrocytes.
IPCs generate neurons or glial cells, including oligodendrocytes
and astrocytes (20).

To further support the association between ZIKV and the brain,
ZIKV-host protein-protein interaction (PPI) studieshave identified
cellular proteins involved in neurogenesis, embryonic and central
nervous system (CNS) development as well as neurological
disorders. In light of this, Scaturro et al. identified key ZIKV
cellular targets such as LARP7, LYAR, NGDN, CLN6, BSG,
CEND1, RBFOX2, CHP1 and TMEM41b (21). These identified
proteins play important roles in neuronal development (22),
embryonic growth and development (23–26), nervous system
development (27) and have been implicated in neurogenerative
Frontiers in Immunology | www.frontiersin.org 2
(28) and developmental disorders (29). ZIKV protein was also
found to interact with ANKLE2, a gene associated with brain
development in both drosophila and humans (30, 31). The key
host factors thatmediate ZIKVneuropathogenesis discussed in this
review are listed in Table 1.

This review provides a comprehensive and up-to-date
overview of ZIKV-induced neuropathogenesis by dissecting the
underlying cellular and molecular mechanisms. We explored in
detail how ZIKV infection and the mechanisms involved are
dependent on the types of strains, cells and infection rate. Here
we provide the most updated evaluation of recently identified key
host proteins responsible for the neuropathogenesis of ZIKV
(Table 1). We highlighted the roles played by the different ZIKV
and how they exploit specific host proteins through various
mechanisms. Overall, it covers some of the key components to
understand the crosstalk between ZIKV and the brain.
ZIKV ENTRY RECEPTORS

AXL, a receptor tyrosine kinase that has been implicated in
multiple cellular responses (50) and regulation of inflammatory
responses (51), plays a critical role in ZIKV entry (Figure 2).
Firstly, the virus is recruited to the AXL receptor through TAM
ligand growth arrest specific 6 (Gas6), which results in
internalization of ZIKV through clathrin-mediated endocytosis
(53). Then, the vesicles containing ZIKV are translocated to Rab5+
endosomes. The ZIKV/Gas6 complex activates AXL kinase
activity which induces the transcription of TOLL-like receptor 3
(TLR3), DExD/H-Box helicase 58 (DDX58), and interferon
induced with helicase C domain 1 (IFIH1) as well as several
FIGURE 1 | The brain cells targeted by ZIKV. ZIKV has shown to possess the ability to cross the placental barrier of infected pregnant women (8). It reaches fetal
brains through placenta by infecting placental trophoblasts and Hofbauer cells (7, 9). In the developing fetal brain, ZIKV has demonstrated to mainly target radial glial
cells (RGS) in the ventricular zone (VZ) and intermediate progenitor cells (IPCs) in the sub-ventricular zone (SVZ) (8, 10). During brain development, cortical stem cells
give rise to radial glial cells (RGCs) which proliferate into progenitor cells that make up the brain and central nervous system. RGCs generate IPCs which divide and
generate the majority of neurons in the brain. The neurons migrate through intermediate zone (IZ) to the developing cortical plate (CP) (11, 12). ZIKV infection in the
fetal brain has resulted in depletion of IPCs and differentiating neurons, and has caused reduction of thickness of VZ, SVZ and CP layers (13). Numerous studies
provide evidence that ZIKV has shown to induce apoptosis, cell cycle dysregulation and immune response in neuronal cells, which leads to impaired neurogenesis
and microcephaly.
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interferon-stimulated genes (ISGs), leading to suppression of the
innate immune response and subsequent productive infection
(Figure 2) (53, 54). The developing human brain cells such as
radial glia, astrocytes, endothelial and microglia overexpress AXL
protein, and they are especially vulnerable to ZIKV infection (52).
Blocking of AXL has been shown to inhibit ZIKV infection in glial
cells (53, 55). In astrocytes, pre-treatment of the cells with
antibodies targeting AXL managed to reduce ZIKV infection
(56). In addition, murine microglial cells with weak expression
of AXL were shown to be resistant to ZIKV (53). However,
evidence supports that AXL is not indispensable for ZIKV entry,
and its role in ZIKV infection could be cell type-specific. AXL
knockout mice showed similar levels of ZIKV RNA as compared
to wild-type mice (57). It has been proven that AXL is not
required for ZIKV infection in neural progenitor cells (NPCs)
(53, 58). Hence, there could be additional receptors that aid ZIKV
entry into specific cells.

A recent study identified the role of Neural Cell Adhesion
Molecule (NCAM1) in ZIKV entry. The study demonstrated that
inhibition of the NCAM1 receptor significantly reduced ZIKV
attachment and entry while its overexpression enhanced ZIKV
attachment and internalization (59). However, the role of
NCAM1 in ZIKV entry should be further investigated in
different cell types. Pujhari et al. demonstrated the role of
Hsp70 in ZIKV binding and entry into mammalian cells.
Frontiers in Immunology | www.frontiersin.org 3
Blocking of cell surface-localized HSP70 reduced ZIKV
infection and production of infectious virus particles (60).
HSP70 is also shown to mediate post-entry steps, including
ZIKV replication, capsid assembly and egress in various cells
such as human neural stem cells (hNSCs) and placental
trophoblast cells (60, 61). A study by Khongwichit et al.
showed interaction between GRP78 and ZIKV E protein and
found that antibodies blocking the N-terminus of GRP78 as well
knockdown by siRNA inhibited ZIKV entry into host cells (62).
In another study, the cell surface a2,3-linked sialic acid was
found to mediate ZIKV internalization. Removal of cell surface
sialic acid using neuraminidase inhibited ZIKV infection in Vero
cells and human iPSC-derived NPCs, suggesting its role in
facilitating ZIKV internalization. In addition, a2,3-linked sialic
acid-knockout significantly reduced ZIKV infection. The study
also showed that sialic acid does not directly interact with ZIKV
and it is not involved in ZIKV attachment (63). Table 2 provides
the host factors that facilitate ZIKV entry into the host cells.
STRAINS LINKED TO MICROCEPHALY

Different flaviviruses and almost all strains of ZIKV have
demonstrated the ability to infect NPCs and induce apoptosis
in cell models. However, only certain strains of ZIKV have been
TABLE 1 | Host factors that mediate ZIKV neuropathogenesis.

ZIKV
protein

Host
protein

Function

Capsid LARP7 Knockdown of LARP7 showed reduction of neuronal ribosome content as well as inhibition of protein synthesis in the hippocampal neurons;
mutations in LARP7 are linked to microcephaly (29).

LYAR A nucleolar protein that plays a role in cell growth is highly expressed during embryonic development and in undifferentiated human
embryonic stem cells (ESCs) (23, 24).

NGDN An important translational regulatory protein during the development of the vertebrate nervous system (27).
NS2A Adherens

junctions
(AJs)

Regulates signaling pathways critical for neural development and its disruption is associated with architectural disorganization of the
developing cortex (32).

NS3 CEP192 A major regulator of centrosome biogenesis and spindle organization (33); associated with microcephaly (34).
CEP85 A regulator of centriole duplication (35).
OFD1 A centriolar satellite protein and regulator. of centriole architecture; critical for forebrain development (36).

NS4A ANKLE2 Associated with brain development; its mutations causes microcephaly (18); ZIKV-NS4A resulted in reduction of brain size, affected
neuroblast division and brain development in Drosophila by targeting the ANKLE2 pathway (8, 19).

NS4B BSG Critical in fetal development and retinal function (37, 38); its knockdown of BSG inhibited ZIKV replication (21).
CLN6 Contributes to lysosomal function as well as the viability of neurones (22); mutations in CLN6 have shown to cause neurodegenerative

disease (28); CLN6 is also associated with mTOR and TELO2 regulators of signaling pathways that are known to be disrupted by ZIKV (21).
CENDI Functions as an inducer of neuronal differentiation in neuronal precursor cells (39); knockdown of CENDI inhibited ZIKV replication (21).
RBFOX2 An important role in splicing regulation during embryonic growth and development; deficiency of the protein has shown to cause reduced

cerebellar size (26).
TMEM41b Associated with motor system dysfunction in neurodegenerative disorder and has been shown to be essential in mouse embryonic

development (25); its knockdown inhibited ZIKV replication (21).
NS5 STAT2 Involved in antiviral immunity and regulation of IFN-I signaling (40); ZIKV inhibits IFN signaling through STAT2 degradation (41).

CDK5RAP2 Plays a critical role in cell cycle; loss of CDK5RAP2 function associated with reduced numbers of neural progenitor cells (NPCs); mutations in
CDK5RAP2 are linked to primary microcephaly (42, 43); mutations in CDK5RAP2 were identified in case of vertically transmitted ZIKV
infection with congenital syndrome (44).

TBK1 Highly expressed in NES cells and RGCs/IPCs in the developing neocortex; essential for both innate antiviral immune signaling and for cell
proliferation; ZIKV infection caused relocation and sequestration of pTBK1 from centrosomes to mitochondria (45).

NS4A/
NS5

Doublecortin
(DCX)

A microtubule-associated protein; involved in neurogenesis; downregulated at both mRNA and protein levels during ZIKV infection in NPCs
and fetal mouse brains (46).

Unknown PTPRZ1 Expressed mainly in the CNS during development; increased levels in ZIKV-infected brains (1).
MFN2 Highly expressed in the brain (47); essential in embryonic development (48); maintains the integrity of mitochondrial morphology and mediates

mitochondria fusion; ZIKV disrupts mitochondrial dynamics by targeting MFN2 (49).
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shown to induce neurological disorders, including microcephaly
in animal models (70, 71) (Table 3). Animal models better
represent actual brain tissue and could mimic at least some
clinical features of ZIKV infection in pregnant women, as well as
newborns. Therefore, in addition to cell models it is crucial to
study ZIKV infection in animal models to gain a deeper
Frontiers in Immunology | www.frontiersin.org 4
understanding of the virus-induced neuropathogenesis. A
number of studies have been conducted using various animal
models to evaluate the neuropathogenesis of ZIKV. Table 4
provides the list of animal models mentioned in this review to
provide evidence of ZIKV-induced neuropathogenesis and to
understand the various mechanisms involved. All the ZIKV
TABLE 2 | Host factors that facilitate ZIKV entry into different host cells.

ZIKV
protein

Targeted
host

protein

Function

ENV AXL Highly expressed in human radial glial cells, astrocytes, microglial and endothelial cells in the developing brain; promotes ZIKV entry and
modulates innate immune responses (52, 53).

NCAM1 Shapes the neuronal network during development; involved in synaptic plasticity and cognitive functions (64, 65); facilitates ZIKV attachment and
entry into host cells (59).

Integrin
avb5

Internalization factor for ZIKV in human neural stem cells (hNSCs) and glioblastoma stem cells (GSCs) (66).

GRP78 Endoplasmic reticulum (ER) chaperone protein GRP78; facilitates proper folding of nascent proteins; involved in ER stress by mediating the
unfolded protein response (UPR) pathway (67); mediates ZIKV entry into host cells (62).

Capsid Hsp70 Plays an essential role in protein translation, folding, intracellular trafficking, and degradation; involved in signal transduction, apoptosis, cell cycle
regulation and innate immunity (68); implicated in the replication of various viruses (69); facilitates ZIKV binding and entry into mammalian cells as
well as post-entry processes including replication and egress (60, 61).

Unknown a2,3-
linked
sialic acid

Attachment or entry receptor for various viruses; mediates ZIKV internalization (63).
FIGURE 2 | The role of AXL receptor in ZIKV entry and subsequent inhibition of innate immune response. AXL are highly expressed in developing human brain cells
(radial glia, astrocytes, endothelial and microglia), making these cell types particularly vulnerable to ZIKV infection (8, 52). ZIKV binds to Gas6 and uses Axl to gain
entry into cells (53). Subsequently, the virus dampens innate immunity through activation of Axl kinase which induces the transcription of TLR3, DDX58, and IFIH1 as
well as several interferon-stimulated ISGs (53, 54).
March 2022 | Volume 13 | Article 773191
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TABLE 4 | Mouse models for ZIKV neuropathogenesis.

Model strain Age Virus
inoculation

route/
dosage

ZIKV strains ZIKV detected Pathologies Ref.

Ifnar1-/- or Irf3
−/−Irf5−/− Irf7−/−
triple KO

5–6
weeks

s.c.
(footpad) or
i.p. or i.v./1
× 103 FFU

H/PF/2013,
MR 766

Serum, spleen, brain, spinal
cord, and testes

Hindlimb paralysis, hindlimb weakness, death (76)

C57BL/6 treated
with IFNAR1
antibody

4–5
weeks

i.p. or s.c./1
× 103–106

PFU

strain DAK
AR D 41525

Spleen, liver, kidney, heart,
brain, spinal cord

Neuronal death, astrogliosis, microgliosis, scattered necrotic cellular
debris, inflammatory cell infiltrates

(77)

Pregnant CD1 E10 i.u. 1x106

TCID50

units/100uL

FSS13025,
Paraiba
2015
(ZIKVBR),
PRVABC59

Trophoblast and endothelial
cells in the placenta, and
endothelial, microglial and
NPCs in the fetal brain

Placental inflammation and dysfunction, reduced fetal viability,
neuroinflammation and cortical thinning in neonatal brains

(78)

Pregnant SJL E10-
13

i.v./2 × 102,
8 × 109, or
2 × 1011

PFU

Paraiba
2015
(ZIKVBR)

Fetal brain, kidney, liver,
spleen

Apoptosis in neural tissue, IUGR, cortical malformations similar to
microcephaly

(72)

Pregnant C57 E13.5 i.p./9 × 104

PFU
SZ01 Serum, placenta, fetal brain Reduction of the cortical NPCs in the fetal mice. (13)

Reduced cavity of lateral ventricles and surface areas of the cortex.
Pregnant C57BL/
6J or 129S1/
SvImJ

E14.5 i.c./1.7 ×
103 TCID50

MEX1-44 N/A Postnatal growth restriction and microcephaly with neuronal loss, cell
cycle arrest and apoptosis of NPCs, dysregulation of genes associated
with immune responses in the brains, abnormal vascular development,
BBB leakage, microglial activation, astrogliosis

(73)

ICR E13.5 Lateral
ventricle
(injection of
fetus)/650
PFU

SZ01 Fetal brain apoptosis and cell-cycle arrest of NPCs, deregulation of associated with
immune response, apoptosis pathways and microcephaly in the brains,
Smaller brain size with enlarged ventricles and a thinner CP and VZ/SVZ

(74)

Ifnar1+/−

(IFNAR1-/- ×
C57BL/6)

E6.5
or

E7.5

s.c.
(footpad)/1
× 103 PFU

H/PF/2013 Placenta, fetal head and
body, maternal serum,
spleen and brain

placental and fetal brain apoptosis, fetal demise, IUGR (79)

Ifnar1+/− (C57BL/
6 treated with
anti-Ifnar
antibody [MAR1-
5A3])

E6.5
or

E7.5

s.c.
(footpad)/1
× 103 PFU

H/PF/2013 Placenta, fetal head and
body, maternal serum,
spleen and brain

IUGR (79)
Frontiers in Immuno
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Ifnar, interferon-a/b receptor; IFR, interferon regulatory factor; NPCs, neural progenitor cells; IUGR, intra-uterine growth restriction; TCID50, 50% median tissue culture infectious dose;
PFU, plaque forming units; CP, cortical plate; VZ, ventricular zone; SVZ, subventricular zone; i.p., intraperitoneal; s.c., subcutaneous; i.v., intravenous; i.c., intracerebral; i.u., intrauterine.
TABLE 3 | ZIKV strains that causes microcephaly and other neurological complications in animal models.

ZIKV strains Signs of microcephaly and other neurological complications Reference

Brazil-ZKV2015 ▪ Pups born to the infected pregnant mice (SJL mice) displayed intra-uterine growth restriction (IUGR) and ocular abnormalities.

▪ Infected mice brains exhibited cortical malformations with reduced cell number and cortical thickness.

▪ Resulted in a reduction of proliferative zones and disrupted cortical layers in human brain organoids.

(72)

MEX1-44 ▪ Replicated effectively in mouse brains (C57BL/6J from developmental through postnatal stages resulting in smaller body and brain size.

▪ Induced growth restriction of brain and other organs (hearts, lungs, livers and kidneys).

▪ Caused reduction in cortical radial thickness in infected brains as well as reduction in total number of neurons.

(73)

SZ01 ▪ Replicated efficiently in embryonic mouse brains (ICR mice) and resulted in smaller sized brains with thinning of cortical layers (74)
VEN/2016 ▪ Displayed 100% mortality in neonatal mice (BALB/c mice) with neurological indications including inactivity, motor weakness, and

bilateral hind limb paralysis.

▪ Caused microcephaly with cortical thinning in embryonic littermate brains

(75)

ZIKV_SMGC-1 ▪ Reduced birth rate of the infected neonatal mice (C57BL/6) to 71.9%.

▪ Viral RNA was detected in kidneys, eyes, and spinal cords of some offspring at postnatal day 0.

▪ 74.3% of the infected offspring mice died before postnatal day 28.

▪ Smaller brain size was observed in infected infant mice at postnatal day 14.

▪ 29.1% of cells in the infant cortex were positive for ZIKV and cspase-3.

▪ Infected infant mice displayed smaller eyeballs and thinner optic nerves with visual deficiencies.

▪ Caused hind limb paralysis in offspring mice.

(71)
3191
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strains listed in Table 3 consist of S139N substitution in the pre-
membrane (prM) region, which is associated with increased
infectivity and microcephaly (75). A sequence alignment of the
prM region of all five strains exhibited 100% identity. A single
mutation in the prM region of a contemporary ZIKV strain
(VEN/2016) resulted in increased ZIKV infectivity in NPCs and
more severe microcephaly, as well as higher mortality in the
mouse model compared to an ancestral Asian strain (Cam/2010)
without the S139 substitution. In addition, a single reverse
mutation in VEN/2016 resulted in a significant reduction in
mortality in neonatal mice (75).

The African strain (MR-766) has also been shown to induce
severe brain damage, including reduced brain size and cortical
thinning, as well as postnatal mortality (70). However, due to
extensive serial propagation in suckling mice and Vero cells, the
MR766 strains used in most of the animal studies are different
from the original Ugandan strain isolated in 1947, which has a
mutation in a potential glycosylation site in the E protein (80, 81).
The MR766 strain with the deletion of the VNDT motif within
the glycosylation site exhibited reduced neuroinvasion (82).
BRAIN CELLS TARGETED BY ZIKV

Radial Glial Cells
ZIKV has been shown to infect radial glial cells (RGCs) in both
the ventricular and outer zones (55). The RGCs are primary
neural progenitors, one of the earliest classes of cells to emerge
from the neuroepithelium. They extend across the developing
cerebral wall from the ventricular cavity to the pial surface. These
cells are critical for the production and placement of neurons
during brain development, and they give rise to diverse types of
neuronal and glial cells (20, 83).

Examination of postmortem forebrain and SC tissues of ZIKV-
infected fetus with microcephaly revealed the presence of ZIKV-
NS1 and ZIKV-ENV in the neocortical RGCs. ZIKV infection of
RGCs caused centrosomal depletion and mitochondrial
sequestration of phospho-TANK-binding kinase 1 (TBK1),
resulting in abnormal mitoses, architectural disorganization and
cell death (45). Another study demonstrated that infection of RGCs
by vertically transmitted ZIKV resulted in the reduction of cortical
neural progenitors andsubsequentdefects in thebraindevelopment
of the offspring mice (13). Meanwhile, ZIKV-NS2A was identified
as the primary protein responsible for the reduced proliferation,
premature differentiation anddepletions ofRGCs in the developing
mouse cortex, which subsequently disrupted the positioning of
newborn neurons and cortical layer organization. ZIKV-NS2Awas
found to exert its action by destabilizing the adherens junctions
(AJs), which anchor RGCs and regulate their properties (84). AJ
plays a role in regulating signaling pathways critical for neural
development and its disruption has been shown to cause
architectural disorganization of the developing cortex (32).

Neural Progenitor Cells
Neural progenitor cells (NPCs), an integral population of the
developing embryonic brain, have been shown to be a direct
Frontiers in Immunology | www.frontiersin.org 6
target of ZIKV. Disruption of NPC differentiation is suggested to
be the major cause of microcephaly (73, 74). Different strains of
ZIKV have shown the ability to infect hNPCs at varying rates and
display different gene expression profiles. After 64 hours of
infection, the African ZIKV strain (MR766) resulted in higher
infection (69.8% at MOI of 0.02) compared to the Asian strain
(FSS13025), which only caused 46.7% of infection at a higher
MOI (0.04) (85). In addition, despite significant overlap in the
changes in gene expression between the two ZIKV strains, the
Asian ZIKV-infected hNPCs displayed less prominent changes
in gene expression than the African ZIKV infected hNPCs.
However, infection with the Asian strain resulted in
dysregulation of an additional 10 genes involved in DNA
replication and 13 genes involved in DNA repair (85). A
recent study has demonstrated that the differential pattern of
gene expression observed in different strains of ZIKV could be
due to the differences in infection level (86). Dengue virus type 2
(DENV2) has also been shown to infect hNPCs efficiently (85,
87). However, the levels of DENV2 vRNA were lower compared
to ZIKV (MR766). It was also shown that ZIKV resulted in a 30-
fold increase of vRNA levels from 24 to 72 hours of infection,
whereas DENV2 vRNA levels decreased over the 2 days (87). In
contrast to ZIKV, which significantly downregulated genes
involved in DNA replication and replication fork, DENV2
induced changes in genes related to inflammatory response
and Wnt signaling (85). A study showed the ability of the
Asian ZIKV strain (SZ01) to infect embryonic mouse brains,
in which ~300-fold of viral RNA copies were detected 3 days
post-infection and the size of the infected brains was smaller
compared to the non-infected brains (74). The study revealed
that ZIKV mostly targeted cells in the VZ and SVZ of the brain
where the NPCs are located.

ZIKV has exhibited cell cycle arrest, apoptosis and inhibition
of NPC differentiation which leads to cortical thinning and
microcephaly (74). Flow cytometry analysis of ZIKV infected
hNPCs demonstrated cell cycle perturbation and the results were
further confirmed by gene ontology analyses which revealed
enhancement of downregulated genes in cell cycle related
pathways. In another study, infection of NPCs with ZIKV
displayed an extended cell cycle length of about 30h compared
to the control (20h), suggesting cell cycle arrest (73). ZIKV
causes attenuation of hNPCs growth via induction of caspase-3
(73, 74, 88, 89) and ZIKV infection of hNPCs has also resulted in
upregulation of genes in apoptosis-related pathways (85).

In addition, ZIKV-induced microcephaly is also associated
with its ability to trigger a strong immune response in NPCs. It
was found that infection of NPCs isolated from developing
mouse brains with ZIKV (MEX1-44) resulted in a sharp
increase of tumor necrosis factor (TNF-a) (73). TNF-a, a
proinflammatory cytokine has been associated with neuronal
survival and neurogenesis through activation of two distinct
receptor subtypes, TNF-R1 and TNF-R2. TNF-R1 has been
shown to act as a suppressor of progenitor proliferation,
whereas TNF-R2 contributes to the survival of the newly
formed neurons (90). In a study conducted by Kim et al.,
treatment of primary human NPCs with TNF-a exhibited a
March 2022 | Volume 13 | Article 773191
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reduction in apoptosis by activating the NF-kB pathway (91).
However, TNF-a has been shown to cause inhibition of neuronal
cell number and specific neuronal cytoskeleton protein
expression in the NPCs (92). In addition, TNF-a has
demonstrated inhibition of neuronal differentiation of human
NPCs mediated by activation of STAT3 signaling (93, 94). The
overall effect of TNF-a on NPCs is most likely dependent on the
cytokine levels, the affinity and relative expression of TNF-R1
and TNF-R2, as well as binding to TNF receptors and subsequent
intracellular signaling (95).

ZIKV infection of NPCs caused disruption of a critical cellular
quality control process called the nonsense-mediatedmRNAdecay
(NMD) pathway. NMD is a post-transcriptional gene regulation
mechanism in eukaryotes that serves as a quality-control process by
destroying transcripts containing premature termination codons
(PTCs) (96, 97). Notably, the NMD also plays a critical role in
regulating the expression of naturally occurring transcripts (normal
transcripts) (98). The disruption of the NMD pathway has been
linked to microcephaly and other neurological complications. In
mice, genetic ablation ofNMD factors (SMG1, SMG6,UPF1,UPF2
and UPF3a), as well as exon-junction complex (EJC) components
(RBM8A andMAGOH) has been shown to cause early embryonic
lethality (99).NMD is essential for the early development ofmice as
mice embryos with mutations in NMD factors resulted in death
during gastrulation or early stages of organogenesis. Inmammalian
brain development, mutations in NMD factors and EJC
components are associated with neurodevelopment disorders.
Haploinsufficiency of RBM8A and MAGOH in mice has been
shown to cause microcephaly (99). As shown by Mao et al. EJC
haploinsufficiency affects neurogenesis by activating the p53
dependent cell death pathway. This was evident when the loss of
p53 prevented microcephaly caused by EIFA3 haploinsufficiency
(100). Other than that, Doublecortin (DCX), a microtubule-
associated protein that plays an essential role in neurogenesis was
downregulated at both mRNA and protein levels during ZIKV
infection inNPCs and fetalmouse brains (46). The downregulation
of DCX in NPCs was linked to NS4A and NS5 (46). DCX
downregulation was observed in NPCs infected with human
cytomegalovirus (HCMV), which is a leading viral cause of birth
defects and neurological dysfunction (101).

Astrocytes
Human fetal astrocytes (HFAs) are another type of cell that can
support persistent and productive infection of ZIKV for a
minimum of one month and are regarded as the reservoirs for
ZIKV in the fetal brain. Astrocytes are the most abundant cell
type in the CNS, and they play a role in maintaining BBB
functions (73, 102). They have been shown to be the first brain
cell type targeted by ZIKV upon infection of newborn mice (73,
103). ZIKV infection caused an increase in the number of
astrocytes in mice brains at postnatal day 3, indicating
astrogliosis and brain injury (73). The HFAs were shown to be
resistant to apoptosis and the interferon response, which results
in chronic brain infection associated with the ZIKV
neurodevelopment abnormalities. Even though flaviviruses
such as West Nile West Nile virus (WNV), tick-borne
encephalitis virus (TBEV) and dengue virus have been proven
Frontiers in Immunology | www.frontiersin.org 7
to induce apoptosis in human brain tissue, apoptosis induced by
ZIKV in HFAs is significantly lower. This could support the
prolonged virus shedding and persistence of ZIKV in the fetal
brain, which can result in an increased viral load in the cortical
layer as well as infection of additional cortical cells. The loss of
astrocytes in the cortex can reduce the density of glial and
neuronal cells, which eventually results in calcification, a
common scenario seen in ZIKV caused congenital infection
and microcephaly (102).

In addition, interferon response also plays an important role
in ZIKV infection of the HFAs. Post-treatment with interferon
did not block chronic viral infection and the cells continuously
shed virus for at least a month in spite of the robust antiviral
response. However, only moderate viral titers were observed and
the level of ZIKV-positive cells in persistently infected HFAs was
low (56). Another study demonstrated that ZIKV infection of
astrocytes resulted in only limited immune cytokine and
chemokine response activation (104).

Microglial Cells
Microglial cells have been shown to be highly permissive to ZIKV
infection (105, 106). These cells are the first glial cells observed in
the brain and they are known as the brain’s immune cells. They
are involved in the maturation of neural circuits and possess the
capacity to secrete neuroactive molecules. ZIKV (H/PF/2013)
infection of microglial cells resulted in the expression of high
levels of interferon type I (IFN-a and IFN-b) and type II (IFN-g),
as well as neurotoxic factors with strong proinflammatory effects
(TNF-a, IL-1b, IL-6, MCP-1) (105, 107). The production of IL-
1b is associated with the upregulation of lysophosphatiylcholine
(LPC) in microglial cells upon infection by ZIKV (105). LPC has
been demonstrated to cause morphological changes in
microglial cells (108) and they have also been shown to
enhance neurotoxic protein aggregation (109). ZIKV infection
of microglial cells also resulted in an increased production of
nitric oxide (NO) and inducible nitric oxide synthase (iNOS),
which is associated with the increased levels of LPC as well as
proinflammatory cytokines. Induction of INOS has been shown
to induce NO-mediated neuronal cell death (110).

Glioblastoma Stem Cells
Other than the neuronal cells in the developing brain, ZIKV has
also been shown to infect stem-like brain tumor cells. ZIKV
efficiently infected patient-derived glioblastoma stem cells
(GSCs) in a SOX2-dependent manner and induced apoptotic
cell death. The study demonstrated that the knockdown of SOX2
reduced the ZIKV infectivity of GSCs, in contrast to AXL. The
study found that SOX2 mediates ZIKV infection of GSCs by
suppressing the innate immune response. Furthermore, ZIKV
infection of glioblastoma organoids resulted in upregulation of
genes in the inflammasome, TLR signaling, adaptive immune
responses, and IFN responses. In addition, it was found that
integrin aVb5 mediates ZIKV internalization into GSCs.
Treatment with aVb5 blocking antibody reduced the size of
glioblastoma organoids over time. These findings support the
oncolytic activity of ZIKV against GSCs and that this is linked to
expression of aVb5 integrin (66). ZIKV infection of patient-
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derived GSCs decreased proliferation and increased apoptosis.
ZIKV infection of mice with glioma, prolonged survival of the
tumor-brain mice, and histopathological examination revealed
ZIKV-infected tumors were significantly smaller in size (111).
Overall, these findings support the idea that ZIKV infection
could serve as a potential therapy for glioblastoma.
MECHANISMS OF ZIKA VIRUS
NEUROPATHOGENESIS

Neuronal Apoptosis
Zika virus (ZIKV) induces neuropathogenesis via various
mechanisms, primarily neuronal apoptosis, cell cycle
dysregulation, immune and inflammatory responses. Apoptosis
has proven to be the key type of cell death in ZIKV induced
developmental brain disorders, including microcephaly. In brain
organoid models, ZIKV infection induced significant activation of
caspase-3 and cell death, resulting in diminished cortical layers
and attenuated growth (88, 112, 113). These findings were further
confirmed in mouse models, in which ZIKV infection induced
activation of caspase-3 and DNA fragmentation in NPCs,
resulting in a decrease in the cortical NPC pool and smaller
brains with damaged brain structure (13, 73, 74, 79). In the brains
of pups with congenital malformations born to Brazilian ZIKV-
infected pregnant mice, dysregulation of genes linked to apoptosis
and autophagy was observed (72). Another study showed that cells
in the intermediate zones and cortical plates (CP) of ZIKV infected
embryonic mouse brains were strongly positive for caspase-3 (74).
Caspase-3 expression was also increased in the parenchyma,
which comprises areas of the cerebral cortex in brain tissues
from fatal Zika microcephaly cases. This was accompanied by
the expression of cytokines (IL-4, IL-10, IL-33, IL-37, and TNF-a)
associated with apoptotic cell death (102). These findings were
corroborated by Liu et al. who demonstrated the ability of ZIKV-
ENV protein to induce apoptosis via caspase-9 and caspase-3
dependent intrinsic cell death pathway (114). In addition, ZIKV
ENV protein also resulted in up-regulation of both p53 and
p21Cip1/Waf1 and an increase in the ratio of Bax/Bcl-2
(Figure 3A). It has been identified that ZIKV causes
mitochondrial damage and increased levels of ROS in astrocytes,
resulting in DNA breaks through activation of DNA damage
response (DDR) signaling leading to cell death (122).

Apoptotic cell death was evident in MR766 infection with
Poly (ADP-ribose) polymerase (PARP) cleavage and caspase-3
activation (Figure 3A) (115). On the other hand, there were no
PARP cleavage and activation of caspase-3 in PRVABC59 (the
current American epidemic strain) infected hNSCs. The French
Polynesia (H/PF/2013) strain of ZIKV showed activation of p53
along with an increase in caspase-3 (116). When hNPCs were
exposed to Asian (FSS13025) and African (MR766) strains of
ZIKV, both the strains showed signs of apoptosis, but only the
Asian strain resulted in upregulation of p53 (Figure 3A). The
role of p53 in infection of the Asian strain was further confirmed
when p53 inhibitors exhibited higher potency in protecting the
cells from apoptosis by inhibiting caspase-3 activation (85).
Frontiers in Immunology | www.frontiersin.org 8
Cell Cycle Dysregulation
Thenext crucialmechanismassociatedwithZIKVinducedabnormal
development of the CNS is cell cycle arrest. ZIKV-ENV protein
causedG2/Marrest,whichwas further confirmedbydownregulation
ofG2/mitotic-specific cyclin B1 and inhibition of phosphorylation of
cell cycle kinase CDK1 (Figure 3B) (114). The cell cycle arrest
induced by ZIKV ENV could be attributed to the upregulation of
p53 and p21Cip1/Waf1. Increased levels of p53 phosphorylation were
also observed in hNSCs infected with PRVABC59. However,
infection with MR766 demonstrated reduced p53 phosphorylation.
Following increasedphosphorylationof p53, upregulationofp21and
PUMAwasobserved inPRVABC59 infectedhNSCssuggesting, p53-
mediated cell cycle arrest. Infection of hNPCs with PRVABC59
exhibited expression of cell cycle associated genes, including
CDKN1B, CDKN2B, GADD45A and WEE1 (115). Another study
revealed that 11 downregulated genes in tissues from ZIKV-linked
microcephaly are involved in cell cycle regulation (74, 88). In
addition, it has been proven that the growth attenuation of hNPCs
is partly due to cell cycle dysregulation (88). NPC cell cycle arrest was
observed in the mice embryonic brains, which displayed
microcephalic phenotypes following ZIKV infection. In these mice,
fewermitotic cells in theVZa, reduction in thenumberofNPCs in the
M phase and suppression of NPC proliferation were observed (74).

Strong evidence supports that primarymicrocephaly is linked to
cell cycle dysregulation. Many of the primary microcephaly genes
encode proteins involved in cell cycle regulation, centriole
biogenesis and mitosis (123). Centrosomal abnormalities can lead
to impairment ofmitosis, which is a hallmark of autosomal primary
recessive microcephaly (MCPH). In addition, a significant
proportion of microcephaly genes are ontologically linked to the
centrosome (124). In a vertically transmitted ZIKV infection case
with microcephaly and other congenital abnormalities, a mutation
in cyclin-dependent kinase 5 regulatory subunit-associated protein
2 (CDK5RAP2) was detected (44). CDK5RAP2 is a centrosomal
protein that plays a critical role in the cell cycle through the
regulation of microtubule function. Mutations in CDK5RAP2
have been shown to reduce the number of NPCs and have been
linked to primary microcephaly (42, 43, 125, 126). ZIKV-NS3 was
found to interact with centrosome regulatory proteins such as
CEP192, a major regulator of centrosome biogenesis and spindle
organization (33); OFD1, a centriolar satellite protein and regulator
of centriole architecture (127); and CEP85, a regulator of centriole
duplication (35, 128). To further support these findings, Golubeva
et al. identified the interaction of ZIKV proteins with proteins that
are associated with mitosis as well as primary microcephaly (129).

Immune Response and Signaling Pathways
An intense immune response to cell injury was observed in the
postmortem brains of neonates with CZS, as demonstrated by
the gliosis and inflammatory infiltrate in the meninges, cerebral
hemispheres, and spinal cord (1). Modulation of the host
immune response by ZIKV has proven to be the key
mechanism for ZIKV neuropathogenesis. Global transcriptome
analyses of RNAs isolated from ZIKV infected developing brains
demonstrated a large number of differentially expressed genes
associated with the immune response (73, 74). The top 10 most
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significantly upregulated genes (OASl2, USP18, IFIT1, MX2,
OAS1b, IFIT3, LIGP1, DDX60, IFI44, IRF7) are linked to
interferon response (73). In addition, genes that are involved
in cytokine productions such as IL1B, TNF, CXCL10, IFNB1 and
TLR3 were also upregulated (74). Dang et al. discovered that
ZIKV induced activation of an innate immune receptor, TLR3 in
mouse neurospheres and human organoids, which resulted in
Frontiers in Immunology | www.frontiersin.org 9
the disruption of 41 genes associated with neurodevelopment
and, as a result, a reduction in organoid volume. Treatment with
a TLR3 competitive inhibitor attenuated the shrinkage of ZIKV-
infected organoids (130). These findings suggest the potential
role of TLR3 in ZIKV neuropathogenesis.

ZIKV (PRVABC-59) NS5 strongly inhibited IFN-b signaling
and activated IFN-g signaling (119). It also caused suppression of
A

C

B

FIGURE 3 | The different mechanisms exploited by different strains of ZIKV to establish infection and develop neuropathogenesis. The molecular mechanisms
underlying ZIKV infection and neuropathogenesis have shown to be lineage specific. (A) Apoptosis. Both Asian lineage strains (HAITI/1225/2014, H/PF/2013 and
FSS13025) and African lineage strain (MR766) induce apoptosis via activation of caspase-3. However, only the Asian strains showed upregulation of p53 and they
have shown to induce intrinsic cell death pathway through regulation of Bcl-2 (114–116). On the other hand, the apoptosis induced by the African strain could be via
JNK pathway through activation of gH2AX (115, 117, 118). (B) Cell cycle arrest. Unlike other Asian lineage strains PRVABC59 and HAITI/1225/2014 showed induction
of cell cycle arrest through upregulation of p53 and p21Cip1/Waf1, and downregulation of cyclin B1 and cell cycle kinase CDK1 (114, 115). (C) Immune response. Zika
virus infection has demonstrated to activate type II IFN, and supress type I and type II IFN signaling. This differential modulation of IFN signaling which is associated
to destabilization of STAT2 has resulted in selective expression of ISGs and differentiated activation of immune and proinflammatory response (119). Zika virus
structural proteins (NS5, NS2A, NS2B, NS4B, NS4A and NS2B-NS3) have demonstrated to modulate immune response through distinct pathways (119–121).
March 2022 | Volume 13 | Article 773191

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Komarasamy et al. Zika Virus Neuropathogenesis
IFN-l without having any effect on TNF-a-induced activation of
NF-kB activity. The differential modulation of type I and type II
IFN signaling is attributed to the ability of NS5 to destabilize
STAT2 but not STAT1. The destabilization of STAT2 affected
the formation of both STAT1-STAT2-IRF9 and STAT1-STAT1
complexes, which may control the relative activities of ISRE and
GAS in different ISGs (Figure 3C) (119). STAT2 protein levels
were also reduced by NS5 from other strains of ZIKV (H/PF/
2013 and MR766) (41).

In addition to NS5, other ZIKV nonstructural proteins
(NS2A, NS2B, NS4B and NS4A) from Cambodian FSS13025
have also been shown to suppress the production of IFN-b in
HEK-293T cells by targeting distinct cellular components from
the retinoic acid‐inducible gene 1 receptor (RIG-1) pathway
(Figure 3C). It was also discovered that the PRVABC-59 and
Dakar 41525 strains suppressed IFN-b induction by binding to
TBK1 in HEK-293T cells (120). Another study demonstrated
that NS1 and NS4B of Z1106033 inhibited retinoic acid-
inducible gene 1-like receptors (RLR)-induced production of
IFNb by interacting with TBK1 and blocking its oligomerization.
It was also shown that ZIKV MR766 infection reduced
phosphorylation of Janus kinase 1 (JAK1) and STAT1 in A549
cells. These observations are associated with NS2B-NS3
(Z11060330), which caused a reduction in the protein levels of
JAK1 and subsequently inhibited phosphorylation of JAK1 and
STAT1 (Figure 3C). In addition, NS2B-NS3 also reduced the
expression of ISG15, IFIT1, IFIT2 and Viperin (121). A study
demonstrated that infection of human DCs with PRVABC59,
P6-740, MR-766, and Dakar 41524 strains resulted in the
induction of notable IFNB1 gene transcription but caused
inhibition of type I IFN protein translation (131). On the other
hand, MR766, PRVABC59 and R103451 strains in astrocytes and
MEX1-44 in NPCs led to a significant increase in the secretion of
IFN-b levels (73, 117). These findings indicate that secretion of
IFN-b seems to be dependent on the strain and cell type.

As the innate immune response is compromised during ZIKV
infection, the adaptive immune response has an important role in
controlling the infection. Suppression of type I IFN response in
Rag1−/−mice, which lack both T cell and B cell responses, resulted
in weight loss and increased levels of viral RNA in spleen, lymph
node, brain and testes. In these mice, neurons were the main target
for ZIKV, and the astrocytes and microglia showed signs of
activation, suggesting CNS damage (132). Notably, it has been
shown that pregnancy-linked immunotolerance impacts the T cell
response to ZIKV infection in the uterus (133). Furthermore a,
reduction of CD4+ and CD8+ T activation and proliferation were
observed in pregnant mice compared to non-pregnant controls
(132).The influenceofpregnancyoncell-mediated immunitycould
increase the virus spread to the fetus leading to adverse
pregnancy outcomes.

Neuroinflammation
In recent studies, it has been found that ZIKV induced
inflammatory responses may be responsible for the disruption of
the BBB. ZIKV has been shown to efficiently infect BBB cells,
including endothelial cells, pericytes and astrocytes, leading to
upregulation of inflammatory cytokines (IL-6 and IL-8) and
Frontiers in Immunology | www.frontiersin.org 10
chemokines (CCL5 and CXCL10) both in vitro and in vivo (134).
These inflammatory molecules modulate the integrity of the BBB
and act as immune cell recruitment. In addition, ZIKV infection
also resulted in upregulation of cell adhesion molecules (CAMs),
which are involved in leukocyte docking to the BBB and contribute
to immune cell CNS infiltration and neuroinflammation (134).
Examination of postmortem brain samples of ZIKV-infected
neonates with CZS revealed a decrease in expression of genes
related to ECM organization and collagen formation, such as
collagen encoding genes, which are important for the
development of the brain and the BBB. A significant increase in
PTPRZ1, which is involved in the modulation of inflammation in
the CNS was observed (1). The African strain of ZIKV
demonstrated greater upregulation of certain inflammatory and
adhesion molecules than the Asian strain (134).

Ina studybyGurungetal. fetusesborn toZIKV-infectedpregnant
olive baboons displayed neurological damage, including defects in
radial glia, disorganised neuron migration to cortical layers, and
pathology in immature oligodendrocytes. Indicators of severe
neuroinflammation including astrogliosis, increased microglia and
IL6were observed in the fetuses (135). Similarly, inmice, intrauterine
ZIKV infection during pregnancy resulted in neuroinflammation
and cortical thinning in postnatal brains (78). Importantly,
neurodevelopmental defects in fetuses were observed despite the
absence of detectable ZIKV RNA, suggesting the possible role of
neuroinflammation in causing long-term sequelae (78, 135).

An inflammatory form of programmed cell death, pyroptosis has
been shown to play a role in ZIKVassociated developmental disorders
and microcephaly. Brain tissue specimens from ZIKV-infected mice
had significantly elevated inflammasome-associated genes, including
IL1B, IL-18, CASP1, ASC, and GSDMD. Additionally, cleavage of
caspase-1 and GSDMD occurred in the ZIKV-infected brains. Other
than that, caspase-1 was intensely stained in ZIKV-infected
neutrospheres. Furthermore, LDH release was observed in ZIKV-
infectedneurospheres (136). Thesefindings support the occurrence
of pyroptosis cell death during ZIKV infection. In caspase-1-
deficient mice, severe brain atrophy was significantly reduced
following ZIKV-infection compared with ZIKV-infected wild-
type mice. Histopathological examination revealed that Caspase-1
deficient mice did not exhibit any inflammation-induced damage.
Furthermore, treatment of ZIKV-infected mice with a selective
caspase-1 inhibitor (VX-765) reduced ZIKV-induced severe brain
atrophy and reversed neuroinflammation (136).

Endoplasmic Reticulum Stress
and Activation of the Unfolded
Protein Response
The other mechanism is linked to the remodeling of the
endoplasmic reticulum (ER) structure by ZIKV for its replication.
This, in turn, causes the accumulation of misfolded virus
polyproteins in the ER lumen, resulting in ER stress and
activation of the unfolded protein response (UPR). Elevation of
the expression of ER stress markers such as GRP78, calreticulin,
calnexin and protein disulfide isomerase (PDI) was observed in
ZIKV-infected neural progenitors. This series of events
subsequently leads to the disruption of neurogenesis. Other than
UPR, ER stress-induced during ZIKV infection also leads to other
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cellular processes, including the formation of stress granules and
reticulophagy to repair stress-induced damage and restore normal
cellular functions. However, ZIKV proteins subvert these processes
to allow continuous viral replication andprotect the virus fromhost
cell innate defense mechanisms. Prolonged ER stress may
eventually result in paraptosis-like death (137).

Modulation of Mitochondrial Dynamics
Several studies have shown ZIKV-induced disruption of
mitochondrial dynamics in different cells, including human
retinal pigment epithelial (RPE) cells, human iPSC-derived
astrocytes (122). human neural stem cells (NSCs) and human
glioblastoma cells (SNB-19) (49). ZIKV-induced ER stress causes
calcium (Ca2+) release, which can be taken up by mitochondria,
resulting in an increase in ROS production and mitochondrial-
dependent cell death. Furthermore, ZIKV replication requires
energy, which leads to ATP synthesis by OxPhos and increased
oxygen flux. However, when the mitochondrial reserve capacity
decreases, it leads to mitochondiral failure (122). Another study
found that ZIKV disrupts mitochondrial dynamics by decreasing
the levels of mitofusin-2 (MFN2) proteins (49). MFN2 plays an
important role in maintaining the integrity of mitochondrial
morphology and function by mediating mitochondria fusion.
MFN2 is highly expressed in the brain (47) and it has been shown
to be essential in embryonic development (48), neuronal
maturation and synapse formation (138). Its deficiency has been
shown to cause an increase in the levels of ROS and mitochondrial
dysfunction and has resulted in a range of congenital eye defects
(139), disruption of placental development and is associated with
spontaneous abortion (140). A study demonstrated that Mdivi-1, a
small molecule that inhibits mitochondrial fission blocked
mitochondrial fragmentation and reduced ZIKV induced cell
death (49). This finding suggests that maintenance of normal
mitochondrial dynamics could offer a potential therapeutic
strategy for ZIKV infection. Chatel-Chaix et al. demonstrated that
DENVandZIKV induced similarmitochondrial elongation. In this
study, it was found that DENV-NS4B was responsible for inducing
mitochondrial elongation through inactivation of the
mitochondrial fission factor Dynamin-Related Protein-1 (DRP1)
(141). The study further demonstrated that DENV-induced
mitochondrial elongation enhanced DENV replication and
reduced RIG-1 dependent activation of interferon responses. ZIKV
may also use modulation of mitochondrial morphodynamics to
disrupt innate immunity (141).
THE MECHANISMS OF ZIKA VIRUS-
ASSOCIATED-GUILLAIN-BARRE
SYNDROME IN ADULTS

Other than neurological complications in new-borns and adverse
pregnancy outcomes, ZIKV has also been associated with
Guillain-Barre syndrome (GBS) in adults. ZIKV outbreaks in
French Polynesia and Latin America witnessed an increase in the
Frontiers in Immunology | www.frontiersin.org 11
incidence of GBS (142, 143). Epidemiological studies reported an
increase between 2.0- and 9.8-fold in the ZIKV-associated GBS
in 7 countries in the Americas (144).

Analysis of plasma samples from Zika patients with GBS
showed the presence of higher levels of anti-ganglioside IgM/IgG
antibodies compared with Zika patients without GBS (145).
Similarly, another study found a several-fold increase in the
levels of IgG autoantibodies to brain gangliosides in serum of the
Zika patients (146). Another study found anti-glycolipid
antibody activity against, particularly GA1 (142). An in silico
analysis found that the glycan loop (GL) region of the E protein
contains an IVNDT motif which is conserved in human
neuronal proteins, namely Heat Shock 70 kDa protein 12A
(HSP70 12A) and voltage-dependent L-type calcium channel
subunit alpha-1C (Cav1.2) (147). A study by Lucchese and
Kandu found a significant peptide overlap between ZIKV and
human proteins that when altered are linked to GBS (148). These
findings suggest the possible role of molecular mimicry as one of
the potential mechanisms of ZIKV-associated GBS.

Antibody-dependent enhancement (ADE) of Zika has been
proposed as another possible mechanism for ZIKV-associated
GBS. ADE occurs as a results of circulating antibodies from
previous immunological responses binding to the virus, but it is
not capable of neutralizing the infection. In this context, higher
titers of neutralizing antibodies to both ZIKV and DENV2 were
detected in ZIKV patients with GBS compared to non-GBS
ZIKV patients (149). Another study by Anaya et al. found
ZIKV patients with GBS had IgG antibodies against both
DENV and ZIKV. Interestingly, the study also found the
presence of IgG antibodies against M. pneumonia, indicating
M. pneumoniae exposure as a high risk for developing GBS
following ZIKV infection. Although a study by Meyer Sauteur
supports the link between M. pneumoniae infection and GBS
(150), more investigations are required to understand its role in
ZIKV-associated GBS.
CONCLUSION

Zika virus (ZIKV) has evolved to induce new clinical syndromes,
particularly in newborns. Accumulating evidence support that ZIKV
interacts with key host proteins to induce neuropathogenesis through
various molecular mechanisms, including neuronal apoptosis, cell
cycle dysregulation, exploitation of host immune response and
activation of inflammatory response. These mechanisms were
shown to be dependent on the types of cells, strains and infection
rate. It is also evident that the ZIKV-induced anomalies are also the
result of indirect effects of modulation of host immune response and
inflammatory process, rather than just the virus itself. These findings
suggest that a combination of different mechanisms may be
responsible for the neuropathogenesis of ZIKV. However, more in-
depth studies are required to fully understand the distinct molecular
pathways involved in ZIKV induced infection in different brain
cells and to further validate the differences observed in different
strains of the virus.
March 2022 | Volume 13 | Article 773191

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Komarasamy et al. Zika Virus Neuropathogenesis
In addition to brain proteins, it is also crucial to identify other
host factors that drive inflammation and immune response
during ZIKV infection. Identification of host proteins is
important for developing effective host-directed antivirals and
for drug repurposing for the treatment of ZIKV infection,
particularly to prevent neurological complications in newborns
and of the possible long-term effects. In addition, the
combination of the host-factors-targeting agents with drugs
that directly target viral enzymes could lead to a more effective
therapeutic regimen to fight ZIKV as well as other flaviviruses.
Importantly, given the ability of ZIKV to alter genes in the brain
cells associated with CNS development, it is crucial for long-term
neurodevelopmental follow-up of ZIKV-exposed infants.
Notably, the absence of microcephaly at birth with prenatal
exposure to ZIKV does not preclude the presence of ZIKV-
associated brain abnormalities. Hence, it is crucial for long-term
neurodevelopmental follow-up of ZIKV-exposed infants.
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